گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲						
PROJ	DOC	DIS	SEQ	REV	VOL	سازمان زمین شناسی و اکتشاف
18702	06	GE	02	01	00	معدنی کشور

وزارت صنایع و معادن

سازمان زمینشناسی و اکتشافات معدنی کشور

طرح تلفیق لایههای اطلاعاتی پایه و معرفی مناطق امیدبخش معدنی کشور

پروژه: اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

مجری طرح: ناصر عابدیان

مجرى فني: ابراهيم شاهين

ناظر فني: محسن نجاران

مشاور: شرکت مهندسین مشاور کاوشگران

تیرماه ۱۳۸۸

کارفرما: سازمان زمین شناسی و اکتشافات معدنی کشور

مشاور: مهندسین مشاور کاوشگران

پيمانكار: ---

شماره مدرک : KCE- 18702-06-RE-02-01

شماره قرارداد : ۱٤۲۱–۲۰۰

ېگيده الف

چکیدہ

منطقه انتخاب شده جهت مطالعات ژئوشیمیایی و کانیسنگین در مقیاس ۱:۲۵۰۰۰ با مساحتی حدود ۴۸ کیلومترمربع در فاصله ۳۰ تا ۴۰ کیلومتری محدوده شهر میانراهان واقع شده است. جهت اجراء این مطالعات اقدام به طراحی شبکه نمونه برداری شامل ۲۳۶ نمونه ژئوشیمایی و ۴۹ نمونه کانیسنگین گردید. پس از آماده ســازی و آنالیز در آزمایشگاه مربوطه (با نظر کارفرما) نتایج حاصل از آنالیز شیمیایی و مطالعات کانیسنگین بعنوان دادههای خام اولیه در اختیار پیمانکار قرار گرفت تا مورد پردازش و تحلیل قرار گیرد. عملیات مربوط به پردازش دادههای اولیه شامل اندازه گیری خطای آنالیز (که این مقدار در حد قابل قبولی بوده است)، جایگزین کردن مقادیر سنسورد، تعیین حدود بالا و پایین خارج از رده، نرمالایز کردن، تحلیلهای تک متغیره، دو متغیره (تعیین ضرایب همبستگی پیرسون و اسپیرمن) ، چند متغیره (آنالیز فاکتوری و آنالیز خوشه ای) ، تهیه نقشه-های تک متغیره و چند متغیره و در نهایت تفسیر آنها بوده است. عملیات نسبتاً مشابهی نیز در مورد نمونههای کانیسنگین انجام گرفت. عملیات فوق منجر به معرفی ۲۰ محدوه آنومال به مساحت کل ۶/۷۷ کیلومترمربع گردید. محدودههای آنومال معرفی شده تحت پوشش عملیات کنترل صحرایی قرار گرفت که ماحصل این برداشتهای اکتشافی ۲۴ نمونه کانیسنگین و ۵۱ نمونه مینرالیزه بود. نقشههای کانیسنگین با ترکیب دادههای حاصل از این نمونههای جدید و قبلی با روش مشابه تهیه گردیـد. بر روی نمونههای مینرالیزه نیز آنالیز چند متغیره برای تعیین نمونهها و عناصر پرپتانسیل به لحاظ کانیسازی انجام گرفت. تعبیر و تفسیرهای دیگری در مورد نقشه توزیع شکستگیها در منطقه انجام پذیرفت. در نهایت زونهای پرپتانسیل در هر محدوده أنومال مشخص گردید. جهت انجام مطالعات تفصیلی لیتوژئوشیمیایی نیز حدود ۴ کیلومترمربع معادل ۸/۵٪ از مساحت کل منطقه مطالعاتی پیشنهاد گردید.

صفحه

فهرست مطالب I

	-
ĺ	چکیدہ
بات	-۱ کل
دمه۱	۱–۱– مق
ف مطالعات	1-۲- هد
قعیت جغرافیایی ، توپوگرافی ، آب و هوایی و راه های دسترسی۲	۱-۳- مو
۔اف پروژه و روش کار	۱–۴۰ اه
اللعات انجام شده پیشین۴	20 −۵−۱
لاصه زمین شناسی منطقه۶	۱–۶– خا
لاعات ژئوفیزیک هوایی۸	-Y–۱ اط
لاعات ماهواره ای۹	۱–۸– اط
شاف ژئوشیمیایی	۲– اک
ش نمونه برداری و اهداف آن (بند ۱–۲ شرح خدمات)	۲-۱- رو
زیه و تحلیل سایز و فاصله نمونه برداری	۲–۲– تج
احی شبکه نمونه برداری و نحوه نمونه برداری و کد گذاری نمونه ها	۲-۳- طر
وه آماده سازی نمونه های ژئوشیمیایی (موضوع بند ۱–۳ شرح خدمات)	۲-۴- نح
سی روش آنالیز و تجزیه و تحلیل دقت و صحت داده ها (موضوع بندهای ۱–۳، ۱–۴ و ۳–۶ شرح خدمات)۱۳	۲-۵- بر
ِسیهای آماری (موضوع بند ۳–۶ شرح خدمات)	۲-۶- بر
ازش داده های سنسورد	۲-۶-۲-پر،
سی آماری تک متغیرہ	۲-۶-۲-بر,
سی آماری چند متغیرہ	۲-۶-۳-بر,
سیم نقشه های تک متغیره و چند متغیره داده های ژئوشیمیایی۳۵	۲-۷- تر،
یر و تفسیر نقشه های ژئوشیمیایی	۲–۸– تع
رفی مناطق امیدبخش ژئوشیمیایی	۲-۹- مع
شافات کانی سنگین	۳– اک
ش نمونه برداری و اهداف آن (بند ۱–۲ شرح خدمات)۴۴	۳–۱۰ رو
احی شبکه نمونه برداری و نحوه نمونه برداری و کدگذاری نمونه ها	۳–۲– ط
وه آماده سازی نمونه های کانی سنگین۴۵	۳–۳– نح
ِسی آماری داده ها	۳–۴– بر,
ِسی پارامترهای آماری و رسم دیاگرامهای آماری داده ها	۳-۴-۲-بر,
ین ضرایب همبستگی۵۱	۳–۴–۲–تع
یز خوشه ای۵۵	۳–۴–۳–آنا

فهرست مطالب II

صفحه

۵Υ	۳–۵– روش و تهیه نقشه های کانی سنگین
۵Υ	۳-۶- تعبير و تفسير نقشه هاي كاني سنگين
۵۸	۳–۷– معرفی مناطق امیدبخش کانی سنگین
۶۰	۴ – تعبير و تفسير داده ها۴
۶۱	 ۴–۱– کنترل صحرایی (بند ۳–۹ شرح خدمات)
۶۴	۴–۱–۱–نتایج نمونه های کانی سنگین
<i>99</i>	۴–۱–۲–نتایج نمونه های مینرالیزه
۶۸	۴-۱-۳-مطالعات میکروسکوپی
۶۸	۲-۴ مطالعه رابطه آنومالیها با ساختارهای تکتونیکی
۶۸	۲-۲-۱ روش مطالعه
۶۹	۴–۲–۲–تحلیل داده شکستگی ها
۷۱	۴-۲-۳-تخمین و ترسیم نقشه دانسیته شکستگیها
۷۱	۴-۲-۴-انطباق محدوده آنومالیهای نهایی با محدوده زونهای با شکستگی زیاد
٧۴	۴-۳- مطالعه رابطه آنومالیها با لیتولوژی و پدیده های دگرسانی منطقه مطالعاتی
۷۵	۴–۴– شرح مناطق ناهنجار ۲۰ گانه
۷۵	۴–۴–۱– محدوده آنومال شماره MR1
٧٨	۲-۴-۲ محدوده أنومال شماره MR2
٨١	۴–۴–۳– محدوده آنومال شماره MR3
٨۴	۴-۴-۴ محدوده أنومال شماره MR4
٨٧	۴–۴–۵– محدوده آنومال شماره MR5
٩.	۴–۴–۶– محدوده أنومال شماره MR6
٩٣	۲–۴–۷ محدوده آنومال شماره MR7
٩۶	۴–۴–۸– محدوده آنومال شماره MR8
۱۰۱	۴–۴–۹–محدوده آنومال شماره MR9
۱۰۸	۴–۴–۱۰– محدوده أنومال شماره MR10
)))	۴–۴–۱۱– محدوده أنومال شماره MR11
114	۴–۴–۱۲– محدوده أنومال شماره MR12
17.	۴–۴–۱۳ محدوده آنومال شماره MR13
١٢٣	۴–۴–۱۴ محدوده آنومال شماره MR14
178	۴–۴–۱۵ محدوده آنومال شماره MR15
179	۴–۴–۲۶– محدوده آنومال شماره MR16

III

صفحه

۱۳۲	۴-۴-۱۷- محدوده أنومال شماره MR17
۱۳۵	۴–۴–۱۸– محدوده أنومال شماره MR18
۱۳۹	۴–۴–۱۹– محدوده أنومال شماره MR19
147	۲۰-۴-۲۰ محدوده أنومال شماره MR20
۱۴۵	۵ نتیجه گیری و پیشنهادها
۱۴۵	۵-۱-۰ ارزیابی اکتشافی و اقتصادی یافته ها
۱۴۵	۵-۲-۰ معرفی زونهای پر پتانسیل در محدودههای آنومالی معرفی شده
۱۴۷	۵-۳- ارائه پیشنهادها در خصوص ادامه و یا توقف عملیات اکتشافی
)) Y	۵-۱- ارائه پیستهادها در خصوص ادامه و یا توقف عملیات اکتسافی

صفحه

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

عنوان

فهرست جداول

IV

جدول ۱–۱– مختصات نقاط رأس چهار ضلعي محدوده اكتشافي مورد مطالعه جدول ۱–۲– آنومالیهای بدست آمده در برگه ۱:۱۰۰٬۰۰۰ میانراهان (واقع در برگه ۱:۲۵٬۰۰۰ میانراهان۲) جدول ۲-۳- لیست نمونههای تکراری و معادل نمونه های آبراهه ای آنها برای تعیین خطای آنالیز جدول ۲–۵– عناصر آنالیزشده در این پروژه به همراه واحد و حد حساسیت اندازه گیری و تعداد نمونه های سنسورد۱۷ جدول ۲–۶– پارامترهای اَماری محاسبه شده بر اساس داده های خام در منطقه مطالعاتی....................... جدول ۲–۷– حدود جدایش زمینه، حد آستانه ای و آنومال بکار رفته در ترسیم نقشه های تک عنصری.......۲۲ جدول ۲–۸- تعداد ، حدود و شماره نمونه های خارج از رده (Outlier) داده های خام در منطقه مطالعاتی۳۳ جدول ۲–۱۰– ماتریس همبستگی پیرسون محاسبه شده بر اساس مقادیر داده خام در منطقه مطالعاتی۲۸ جدول ۲–۱۱– ماتریس همبستگی اسپیرمن محاسبه شده بر اساس مقادیر داده خام در منطقه مطالعاتی۲۹ جدول ۲–۱۲– نتایج آنالیز فاکتوری بر اساس مقادیر نرمال شده داده های خام در منطقه مطالعاتی۳۲ جدول ۲–۱۳– ماتریس چرخش یافته آنالیز فاکتوری بر اساس مقادیر نرمال شده داده های خام در منطقه مطالعاتی......۳۲ جدول ۳–۳–کانیهای مشاهده شده در مطالعات نمونه های کانی سنگین به همراه تعداد نمونه های حاوی هر کانی در منطقه مطالعاتی جدول ۳-۴- پارامترهای آماری محاسبه شده بر اساس مقادیر کانی سنگین در منطقه مطالعاتی جدول ۳–۵- ماتریس همبستگی پیرسون محاسبه شده بر اساس مقادیر کانی سنگین در منطقه مطالعاتی۵۳ جدول ۳–۶– ماتریس همبستگی اسپیرمن محاسبه شده بر اساس مقادیر کانی سنگین در منطقه مطالعاتی جدول ۴-۲- شماره و مختصات (UTM) نمونه های کانی سنگین برداشت شده مرحله کنترل صحرایی در محدوده مطالعاتی جدول ۴–۳– شماره و مختصات (UTM) نمونه های التره برداشت شده مرحله کنترل صحرایی در محدوده مطالعاتی.......۶۲ جدول ۴–۴– شماره و مختصات (UTM) نمونه های مینرالیزه برداشت شده در محدوده مطالعاتی جدول ۴–۵– شماره و مختصات (UTM) نمونه های مقطع نازک و صیقلی برداشت شده در محدوده مطالعاتی جدول ۴–۸– شماره نمونه های مینرالیزه بهمراه ارزش کانی سازی هر کدام حاصل از آنالیز ویژگی در منطقه مطالعاتی۶۷ جدول ۴–۹– عناصر مهم آنالیز شده در نمونه های مینرالیزه بهمراه ارزش کانی سازی هرکدام حاصل از آنالیز ویژگی در منطقه مطالعاتی۶۸ جدول ۴–۱۰- پارامترهای آماری دانسیته شکستگیها در منطقه مطالعاتی..... جدول ۴–۱۱– مشخصات مدل برازش شده ۲۱ جدول ۴–۱۲– شناسنامه محدوده أنومال MR1..... جدول ۴–۱۳– شناسنامه محدوده أنومال MR2..... جدول ۴–۱۴– شناسنامه محدوده أنومال MR3.....

صفحه

فهرست مداول V

عنوان

λεΜ	حدول ۴–۱۵– شناسنامه محدوده أنومال IR4
49 M	
۸٦١٧١	جدول ۱–۱۷ - سناستامه محدوده انومال ۱۳۸3
٩٢М	جدول ۴–۱۷– شناسنامه محدوده أنومال IR6
۹۵M	جدول ۴–۱۸- شناسنامه محدوده أنومال IR7
۹۹M	جدول ۴–۱۹- شناسنامه محدوده أنومال IR8
١٠ΥΜ	جدول ۴-۲۰- شناسنامه محدوده أنومال IR9
۱۱۰MR	جدول ۴-۲۱- شناسنامه محدوده أنومال R10
۱۱۳MR	جدول ۴-۲۲- شناسنامه محدوده أنومال ۲۱۱
۱۱۸MR	جدول ۴-۲۳- شناسنامه محدوده أنومال R12
۲۲۲MR	جدول ۴-۲۴- شناسنامه محدوده أنومال R13
۱۲۵MR	جدول ۴-۲۵- شناسنامه محدوده أنومال ۲۱4
۱۲۸MR	جدول ۴-۲۶- شناسنامه محدوده أنومال R15
۱۳۱MR	جدول ۴-۲۷- شناسنامه محدوده أنومال R16
۱۳۴MR	جدول ۴–۲۸- شناسنامه محدوده أنومال ۲۱۶
١٣٨MR	جدول ۴-۲۹- شناسنامه محدوده أنومال ۲۱8
۱۴۱MR	جدول ۴–۳۰- شناسنامه محدوده أنومال R19
۱۴۴MR	جدول ۴–۳۱– شناسنامه محدوده أنومال R20

جداول پيوست

149	جدول ۲–۱- شماره و مختصات محل نمونه های ژئوشیمیایی برداشت شده
۱۵۱	جدول ۲-۲- نتایج آنالیز نمونه های ژئوشیمیایی برداشت شده
١۶٧	جدول ۳-۱- شماره و مختصات محل نمونه های کانی سنگین برداشت شده
١۶٨	جدول ۳-۲- نتایج آنالیز نمونه های کانی سنگین برداشت شده
١٧۴	جدول ۲-۴- محاسبه پارامتر های لازم جهت ترسیم دیاگرام خطای آنالیز دراین برگه .
۲۹۱	جدول ۴-۶- نتایج آنالیز نمونه های کانی سنگین برداشت شده در فاز کنترل صحرایی
794	جدول ۴–۷– نتایج آنالیز نمونه های مینرالیزه برداشت شده

	گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲	سازمان زمین شناسی و اکتشاف
	فهرست اشکال	معدنی کشور
	VI	
صفحه		عنوان

عنوان

شکل ۱-۱- چهارضلعی مربوط به محدوده اکتشافی و راههای دسترسی به آن۳ شکل ۱-۲- بخشی از نقشه ژئوفیزیک هوایی ۱:۲۵۰٬۰۰۰ کرمانشاه و موقعیت محدوده موردمطالعه در آن۸ شکل ۱-۳- تصویر ماهواره ای گرفته شده از منطقه مطالعاتی با استفاده از نرم افزار گوگل ارث با مقیاس ۱:۱۰۰,۰۰۰۹ اهان ۲ بینهار، ۲

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

عنوان

فهرست نمودارها

VII

صفحه

نمودارهای پیوست
نمودار ۲–۱– نتایج خطاگیری عنصر (N*10)
نمودار ۲–۲– نتایج خطاگیری عنصر Ag (N*100) میں دمودار ۲–۲– نتایج خطاگیری عنصر
نمودار ۲–۳- نتایج خطاگیری عنصر (Al(N/ 100
نمودار ۲-۴- نتایج خطاگیری عنصر As (N)
نمودار ۲–۵- نتایج خطاگیری عنصر Ba (N)
نمودار ۲–۶- نتایج خطاگیری عنصر (N*100 Be (N*100
نمودار ۲-۷- نتایج خطاگیری عنصر (N*1000 Bi (N*1000 میں
نمودار ۲–۸- نتایج خطاگیری عنصر (N/100 Ca (N/100
نمودار ۲-۹- نتایج خطاگیری عنصر (N*1000)
نمودار ۲–۱۰– نتایج خطاگیری عنصر (Ce (N) Ce (N
نمودار ۲–۱۱– نتایج خطاگیری عنصر (N) Co (N.
نمودار ۲–۱۲– نتایج خطاگیری عنصر (Cr (N)
نمودار ۲–۱۳– نتایج خطاگیری عنصر (Cs (N*100
نمودار ۲–۱۴– نتایج خطاگیری عنصر (N*10) Cu Cu در ۲۰۴
نمودار ۲–۱۵– نتایج خطاگیری عنصر (N*100 Dy (N*100
نمودار ۲–۱۶– نتایج خطاگیری عنصر (N*100 Er (N*100
نمودار ۲–۱۷– نتایج خطاگیری عنصر (N*100 Eu (N*100
نمودار ۲–۱۸– نتایج خطاگیری عنصر (Fe(N/ 100 Fv۵
نمودار ۲–۱۹– نتایج خطاگیری عنصر (N*100) Gd
نمودار ۲-۲۰- نتایج خطاگیری عنصر (N*100 Ho (N*100
نمودار ۲–۲۱– نتایج خطاگیری عنصر (N/100). K (N/100)
نمودار ۲-۲۲- نتایج خطاگیری عنصر (La (N*10
نمودار ۲-۲۳- نتایج خطاگیری عنصر Li (N*10)
نمودار ۲–۲۴– نتایج خطاگیری عنصر (N/100). Mg (N/100)
نمودار ۲–۲۵– نتایج خطاگیری عنصر Mn (N/10)

صفحه

فهرست نمودارها

VIII

نمودار ۲–۲۶– نتایج خطاگیری عنصر (N*1000 Mo
نمودار ۲–۲۷– نتایج خطاگیری عنصر (Na (N/100
نمودار ۲–۲۸– نتایج خطاگیری عنصر Nb (N*10)
نمودار ۲-۲۹– نتایج خطاگیری عنصر Nd (N*10)
نمودار ۲-۳۰- نتایج خطاگیری عنصر Ni (N)
نمودار ۲–۳۱– نتایج خطاگیری عنصر P (N/10) ۲۱۰
نمودار ۲–۳۲– نتایج خطاگیری عنصر (N*10) Pb
نمودار ۲–۳۳– نتایج خطاگیری عنصر (N*100). Pr
نمودار ۲–۳۴– نتایج خطاگیری عنصر (N*10) Rb
نمودار ۲–۳۵– نتایج خطاگیری عنصر (N) S
نمودار ۲–۳۶– نتایج خطاگیری عنصر (N*100 یا Sb (N*100 ی
نمودار ۲–۳۷– نتایج خطاگیری عنصر (N) Sc (N
نمودار ۲–۳۸– نتایج خطاگیری عنصر (N*100 Sm (N*100
نمودار ۲–۳۹– نتایج خطاگیری عنصر (N*100
نمودار ۲–۴۰– نتایج خطاگیری عنصر (Sr (N) Sr (N
نمودار ۲–۴۱– نتایج خطاگیری عنصر (N*100 Tb (N*100
نمودار ۲–۴۲– نتایج خطاگیری عنصر (N*100 Te (N*100
نمودار ۲–۴۳– نتایج خطاگیری عنصر (Th (N*50 ۲۱۴
نمودار ۲–۴۴– نتایج خطاگیری عنصر (N/100 Ti (N/100
نمودار ۲–۴۵– نتایج خطاگیری عنصر (N*100)
نمودار ۲–۴۶– نتایج خطاگیری عنصر (N*1000 Tm (N*1000
نمودار ۲–۴۷– نتایج خطاگیری عنصر U (N*100)
نمودار ۲–۴۸– نتایج خطاگیری عنصر (N) V
نمودار ۲-۴۹- نتایج خطاگیری عنصر (N*100) W
نمودار ۲–۵۰- نتایج خطاگیری عنصر (N) Y
نمودار ۲–۵۱– نتایج خطاگیری عنصر (N*100 یا Yb (N*100 ی
نمودار ۲–۵۲– نتایج خطاگیری عنصر (N) Zn
نمودار ۲–۵۳– نتایج خطاگیری عنصر (Xr (N*10)
نمودار ۲-۵۴- هیستوگرام و نمودارهای P-P, Q-Q و Box Plot ترسیم شده برای متغیر Au در منطقه مطالعاتی ۲۱۹
نمودار ۲–۵۵- هیستوگرام و نمودارهای P-P, Q-Q و Box Plot ترسیم شده برای متغیر Al در منطقه مطالعاتی ۲۲۰
نمودار ۲–۵۶- هیستوگرام و نمودارهای P-P, Q-Q و Box Plot ترسیم شده برای متغیر As در منطقه مطالعاتی ۲۲۱

فهرست نمودارها IX

زمان زمین شناسی و معدنی کشور

صفحه

عنوان

نمودار ۲–۵۷– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Ba در منطقه مطالعاتی. ۲۲۲ نمودار ۲–۵۸– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Be در منطقه مطالعاتی. ۲۲۳ نمودار ۲–۵۹– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Bi در منطقه مطالعاتی...... ۲۲۴ نمودار ۲–۶۰– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Ca در منطقه مطالعاتی. ۲۲۵ نمودار ۲–۶۱– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Cd در منطقه مطالعاتی. ۲۲۶ نمودار ۲–۶۲– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Ce در منطقه مطالعاتی. ۲۲۷ نمودار ۲–۶۳– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Co در منطقه مطالعاتی. ۲۲۸ نمودار ۲–۶۴– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Cr در منطقه مطالعاتی...... ۲۲۹ نمودار ۲–۶۵– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Cs در منطقه مطالعاتی. ۲۳۰ نمودار ۲–۶۶– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Cu در منطقه مطالعاتی. ۲۳۱ نمودار ۲–۶۷– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Dy در منطقه مطالعاتی...... ۲۳۲ نمودار ۲–۶۸– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Er در منطقه مطالعاتی...... ۲۳۳ نمودار ۲–۶۹– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Eu در منطقه مطالعاتی. ۲۳۴ نمودار ۲–۷۰– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Fe در منطقه مطالعاتی...... ۲۳۵ نمودار ۲–۷۱– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Gd در منطقه مطالعاتی...... ۲۳۶ نمودار ۲–۷۲– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Ho در منطقه مطالعاتی...... ۲۳۷ نمودار ۲–۷۳– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر K در منطقه مطالعاتی. ۲۳۸ نمودار ۲–۷۴– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر La در منطقه مطالعاتی. ۲۳۹ نمودار ۲–۷۵– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Li در منطقه مطالعاتی...... نمودار ۲–۷۶– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Mg در منطقه مطالعاتی. ۲۴۱ نمودار ۲–۷۷– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Mn در منطقه مطالعاتی. ۲۴۲ نمودار ۲–۷۸– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر MO در منطقه مطالعاتی..... ۲۴۳ نمودار ۲–۷۹– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Na در منطقه مطالعاتی. ۲۴۴ نمودار ۲–۸۰– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Nb در منطقه مطالعاتی...... ۲۴۵ نمودار ۲–۸۱– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Nd در منطقه مطالعاتی...... ۲۴۶ نمودار ۲–۸۲– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Ni در منطقه مطالعاتی...... ۲۴۷ نمودار ۲–۸۳– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر P در منطقه مطالعاتی. ۲۴۸ نمودار ۲–۸۴– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Pb در منطقه مطالعاتی. ۲۴۹ نمودار ۲–۸۵– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Pr در منطقه مطالعاتی...... ۲۵۰ نمودار ۲–۸۶– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Rb در منطقه مطالعاتی...... ۲۵۱ نمودار ۲–۸۷– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر S در منطقه مطالعاتی. ۲۵۲

عنوان

Х

صفحه

نمودار ۲–۸۸– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Sb در منطقه مطالعاتی. ۲۵۳ نمودار ۲–۸۹– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Sc در منطقه مطالعاتی...... ۲۵۴ نمودار ۲–۹۰– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Sm در منطقه مطالعاتی. ۲۵۵ نمودار ۲–۹۱– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Sn در منطقه مطالعاتی. ۲۵۶ نمودار ۲–۹۲– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Sr در منطقه مطالعاتی...... ۲۵۷ نمودار ۲–۹۳– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Tb در منطقه مطالعاتی. ۲۵۸ نمودار ۲–۹۴– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Te در منطقه مطالعاتی. ۲۵۹ نمودار ۲–۹۵– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Th در منطقه مطالعاتی. ۲۶۰ نمودار ۲–۹۶– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Ti در منطقه مطالعاتی...... ۲۶۱ نمودار ۲–۹۷– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر T1 در منطقه مطالعاتی...... ۲۶۲ نمودار ۲–۹۸– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Tm در منطقه مطالعاتی. ۲۶۳ نمودار ۲–۹۹– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیرU در منطقه مطالعاتی. ۲۶۴ نمودار ۲–۱۰۰۰ هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر ۷ در منطقه مطالعاتی...... ۲۶۵ نمودار ۲–۱۰۱– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر W در منطقه مطالعاتی. ۲۶۶ نمودار ۲–۱۰۲– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Yb در منطقه مطالعاتی. ۲۶۷ نمودار ۲–۱۰۳– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Zn در منطقه مطالعاتی..... ۲۶۸ نمودار ۲–۱۰۴– هیستوگرام و نمودارهای P-P, Q-Q و BOX PLOT ترسیم شده برای متغیر Zr در منطقه مطالعاتی. ۲۶۹ نمودار ۳–۱– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین سیلیکاتهای ألتره شده در منطقه مطالعاتي,....

XI

صفحه

عنوان

نمودار ۳–۱۴– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین مگنتیت در منطقه مطالعاتی. ۲۸۳ نمودار ۳–۱۵– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی های پیریت در منطقه مطالعاتی. ۲۸۹ نمودار ۳–۱۶– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین پیروکسن در منطقه مطالعاتی. نمودار ۳–۱۷– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین سریسیت در منطقه مطالعاتی. نمودار ۳–۱۸– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین سریسیت در منطقه مطالعاتی. نمودار ۳–۱۸– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین سریسیت در منطقه مطالعاتی. نمودار ۳–۱۸– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین سریسیت در منطقه مطالعاتی. نمودار ۳–۱۸– هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین اسفن در منطقه مطالعاتی. نمودار ۳–۲۰۰ هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین در منطقه مطالعاتی.

<mark>فهرست تصاویر</mark> XII

صفحه

عنوان

تصویر ۴–۱– تصویر ماهوارهای محدوده آنومال MR1 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده ...۷۵ تصویر ۴–۲– تصویر ماهوارهای محدوده آنومال MR2 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده۷۹ تصویر ۴–۳–تصویر ماهوارهای محدوده آنومال MR3 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده۸۲ تصویر ۴–۴– تصویر ماهوارهای محدوده أنومال MR4 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده۸۵ تصویر ۴–۵– تصویر ماهوارهای محدوده آنومال MR5 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده۸۸ تصویر ۴–۶- تصویر ماهوارهای محدوده آنومال MR6 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده۹۱ تصویر ۴–۷– تصویر ماهوارهای محدوده أنومال MR7 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده ..۹۴ تصویر ۴–۸- تصویر ماهوارهای محدوده أنومال MR8 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده ...۹۷ تصویر ۴–۱۰– تصویر ماهوارهای محدوده أنومال MR9 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده ۱۰۲ تصوير ۴–۱۱– تصوير ميكروسكويي گرفته شده از مقطع صيقلي نمونه MR2.96.P تصویر ۴–۱۳– تصویر میکروسکویی گرفته شده از مقطع صیقلی نمونه MR2.96.P ۱۰۴ تصویر ۴–۱۵– تصویر ماهوارهای محدوده آنومال MR10 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده تصویر ۴–۱۶– تصویر ماهوارهای محدوده آنومال MR11 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این تصویر ۴–۱۷– تصویر ماهوارهای محدوده آنومال MR12 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده تصویر ۴–۱۹– تصویر ماهوارهای محدوده آنومال MR13 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده تصویر ۴–۲۰– تصویر ماهوارهای محدوده آنومال MR14 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده تصویر ۴–۲۱– تصویر ماهوارهای محدوده آنومال MR15 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده ١٢٧ تصویر ۴–۲۲- تصویر ماهوارهای محدوده آنومال MR16 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده تصویر ۴–۲۳– تصویر ماهوارهای محدوده أنومال MR17 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده

فهرست تصاوير

XIII

صفحه

	تصویر ۴–۲۴– تصویر ماهوارهای محدوده آنومال MR18 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این
۱۳۵	محدوده
۱۳۷	تصویر ۴–۲۵- تصویر میکروسکوپی گرفته شده از مقطع صیقلی نمونه MR2.34.P
۱۳۷	تصویر ۴–۲۶- تصویر میکروسکوپی گرفته شده از مقطع صیقلی نمونه MR2.34.P
	تصویر ۴–۲۷– تصویر ماهوارهای محدوده آنومال MR19 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این
۱۳۹	محدوده
	تصویر ۴–۲۸– تصویر ماهوارهای محدوده آنومال MR20 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این
147	محدوده

فهرست نقشه ها و ضمائم

XIV

عنوان

نقشه های ۲–۲ الی ۲–۲۸– نقشه های ژئوشیمیایی داده های خام (G01-G28) نقشه های ۲–۲ الی ۲–۲۸– نقشه های فاکتوری داده های خام (F01-F06) نقشه های ۳–۲ الی ۳–۹– نقشه های کانی سنگین (H01-H08) نقشه های ۴–۲ الی ۴–۹– نقشه های کانی سنگین پس از آنومالی چکینگ (H09-H16) نقشه های ۴–۲ الی ۴–۹– نقشه های کانی سنگین پس از آنومالی چکینگ (H09-H16) نقشه M2-01– نقشه موقعیت کل نمونه های برداشت شده در محدوده در قطع A4 نقشه M2-02– نقشه تلفیقی کانی سنگین (Sum Fe, SumPyrite, Sum Ore M, Sum Ore NM) در محدوده در قطع A4 نقشه M2-03– نقشه موقعیت ۲۰ محدوده آنومال معرفی شده در قطع A4 نقشه M2-04– نقشه موقعیت ۲۰ محدوده آنومال معرفی شده در قطع A4 نقشه M2-04– نقشه موقعیت ۲۰ محدوده آنومال معرفی شده در قطع A4

پيوست ها

١۴٨	پیوست ۱− نتایج نمونه های ژئوشیمی و کانی سنگین فاز I
۱۷۳	پیوست۲- جداول و نمودارهای خطاگیری
۲۱۸	پیوست ۳− هیستوگرامها، نمودارهای P-P ،Q-Q و Box-Plot
نترلى۲۹۰	پیوست ۴- نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز ک
۳۰۷	پيوست ۵- نقشه ها

فصل اول- كليات

1- کلیات

1-1- مقدمه

اکتشافات ژئوشیمیایی با استفاده از روش نمونه برداری آبراههای، یکی از روشهای متداول در اکتشافات معدن در مقیاس ناحیهای و نیمه تفصیلی در کلیه نقاط جهان است. هدف از این بررسیها محدود کردن مناطق تحت پوشش اکتشافی جهت تعیین پر پتانسیل ترین نقاط جهت تمرکز عملیات اکتشافی است. در این راستا ورقه ۱:۱۰۰،۰۰۰ زمین شناسی میانراهان (کرکسار) توسط سازمان زمین شناسی و اکتشافات معدنی کشور با برداشت ۸۳۷ نمونه تحت پوشش عملیات اکتشافی قرار گرفته و بر اساس نتایج این مطالعات، چندین محدوده پرپتانسیل جهت انجام عملیات اکتشافات ژئوشیمیایی و کانی سنگین در مقیاس ۱:۲۵٬۰۰۰ معرفی شده است. گزارش حاضر شرح عملیات اکتشافات ژئوشیمیایی و کانی سنگین در آنومال و پر پتانسیل تعیین شده در ورقه ۱:۱۰۰،۰۰۰ زمین شناسی میانراهان می باشد. این محدوده تحت عنوان میانراهان ۲ به این مشاور معرفی و عملیات اکتشافی از تیر ۱۳۸۷ در این محدوده آغاز گردیده است. در این گزارش کلیه عملیات انجام شده بر اساس شرح خدمات ارائه شده از طرف کارفرما که زیر نظر مستقیم ناظر محترم پروژه انجام پذیرفته است، به تفصیل ارائه

۲-۲- هدف مطالعات

هدف از مطالعات حاضر تهیه نقشههای ژئوشیمیایی ۱:۲۵٬۰۰۰ به منظور ارزیابی درجه اعتبار ناهنجاریهای ژئوشیمیایی، کانی سنگین، ژئوفیزیک هوایی و غیره که در مقیاسهای کوچکتر و ناحیهای بدست آمده است، میباشد که این بررسیها در نهایت منجر به معرفی مناطق امید بخش برای ادامه عملیات زمین شناسی و اکتشافی در مقیاس بزرگتر میگردد. این مطالعات در شناسایی و اکتشاف کانسارهای عناصر مس، سرب، روی، مولیبدن، طلا، ارسنیک، آنتیموان، نقره، تنگستن و ... که هالههای ژئوشیمیایی نسبتاً وسیعی تشکیل میدهند بسیار مفید است.

فصل اول- كليات

1-3-موقعیت جغرافیایی ، توپوگرافی ، آب و هوایی و راه های دسترسی

محدوده مورد مطالعه که جهت اکتشافات ژئوشیمیایی و کانی سنگین در مقیاس ۱:۲۵,۰۰۰ از طرف کارفرما معرفی شده است در بخش جنوبی برگه توپوگرافی ۱:۵۰,۰۰۰ خامسان با شماره (IV 5459) و بخش شمالی برگه توپوگرافی ۱:۵۰,۰۰۰ کندوله با شماره (III 5459) واقع شده است. همچنین شامل ۴ برگه توپوگرافی ۱:۲۵,۰۰۰ به نامهای : وندنی سفلی SW V کندوله با شماره (III SW 5459) واقع شده است. همچنین شامل ۴ برگه توپوگرافی ۱:۲۵,۰۰۰ به نامهای : وندنی سفلی SW SW معاد خانقا SU SE در شمال غرب شهر معاد خانقا S459 ای در شمال غرب شهر میانراهان و تقریبا در فاصله ۳۰ تا ۴۰ کیلومتری محدوده شهر واقع شده است. این محدوده به شکل یک چهار ضلعی بوده و مساحت آن در حدود ۴۸ کیلومتر مربع است. مختصات رأسهای این چهار ضلعی در سیستم مختصاتی UTU در جدول ۱–۱ ارائه شده است.

نقطه رأس	X	Y
А	692059.37	3849875.66
В	693910.71	3853296.63
С	704536.45	3847747.82
D	702517.73	3844172.19

جدول 1-1- مختصات نقاط رأس چهار ضلعي محدوده اكتشافي مورد مطالعه

در شکل ۱–۱ موقعیت چهار گوش فوق نسبت به عوارض توپوگرافی ۱:۲۵,۰۰۰ و به راههای دسترسی منطقه قابل مشاهده است. همانطور که در این شکل نشان داده شده است در حدود ۴۱ کیلومتر مربع از محدوده تحت پوشش در مناطق مرتفع واقع شده و دارای رخنمون های سنگی است و در حدود ۸۵٪ کل محدوده را شامل میشود و بقیه محدوده که حدود ۱۵٪ از محدوده تحت پوشش اکتشافی را در بر میگیرد، بصورت دشت هایی با شیب متوسط می باشد. بلندترین نقطه ارتفاعی کوه سنگ سیاه در مرکز محدوده با ارتفاع ۲۶۶۱ متر و پست ترین نقطه آن مربوط به روستای پشت کلان در شرق محدوده با ارتفاع ۱۸۲۸ متر از سطح دریا واقع میباشد بدلیل بارندگی نسبتا زیاد ۴۰۰–۶۰۰ میلیمتر در سال سفره های آب زیر زمینی در منطقه غنی بوده و سرابها و چشمه های فراوانی در جای جای این منطقه قابل مشاهده است . دشتهای منطقه عمدتا زیر کشت گندم قرار دارند. عمده ترین راه های دسترسی به منطقه عبارتند از:

شکل1-1- چهارضلعی مربوط به محدوده اکتشافی و راههای دسترسی به آن

1-4-اهداف پروژه و روش کار

هدف اصلی از اجرای این پروژه بررسی تفضیلی پتانسیل کانیسازی مربوط به أنومالیهای ژئوشیمیایی ۱:۱۰۰،۰۰۰ انجام پذیرفته در ورقه ۱:۱۰۰،۰۰۰ میانراهان است. بر اساس نتایج مطالعات فوق، چند محدوده آنومال ژئوشیمیایی در ورقه ۱:۱۰۰،۰۰۰ میانراهان معرفی شده است که محدوده اکتشافی مورد مطالعه در این گزارش یکی از این مناطق میباشد. جهت نیل به اهداف موردنظر در این پروژه و با توجه به وسعت محدوده از روش نمونهبرداری از رسوبات آبراههای استفاده میشود. به منظور اجراء این روش ابتدا بر اساس دستورالعمل موجود در شرح خدمات پروژه، شبکه نمونهبرداری ژئوشیمیایی و کانیسنگین طراحی شده و عملیات نمونهبرداری بر اساس دستورالعمل استاندارد انجام خواهد پذیرفت. پس از آنالیز و مطالعه نمونههای برداشت شده، بر اساس تجزیه و تحلیل دادهها، مناطق آنومال اولیه تعیین گردیده و در مرحله کنترل ناهنجاریها با توجه به

سازمان زمینشناسی و اکتشاف معدنی کشور

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل اول- كليات

1-5- مطالعات انجام شده پیشین

مهمترین فعالیت سیستماتیک در این محدوده، اکتشافات ژئوشیمیایی و کانی سنگین در مقیاس ۱:۱۰۰,۰۰۰ در ورقه میانراهان توسط سازمان زمین شناسی می باشد که محدوده میانراهان ۲ با توجه به آنومالیهای جدول ۱–۲ به این مشاور معرفی شده است. در نقشه ۱–۱ نقشه موقعیت محدوده مورد مطالعه در ورقه ۱:۱۰۰,۰۰۰ ارائه شده است.

دول ۱-۲- آنومالیهای بدست آمده در برگه ۱:۱۰۰,۰۰۰ میانراهان (واقع در برگه ۱:۲۵,۰۰۰ میانراهان ۲)	ج
---	---

ليتولوژى	نمونه های مینرالیزه	کانی های سنگین	عناصر آنومالی(ژئوشیمی)	موقعیت	برگه ۵۰,۰۰۰	ورقه ۱۰۰,۰۰۰
گابرو، دیوریت، دیوریت گابرو و گابرو دیوریت	Ti = 15400 ppm	ایلمنیت و نقرہ طبیعی	Cu ,Ti	شمال غربی روستای قلعه لان	خامسان	چهار فرسخ
گابرو، گابرو دیوریت، دیوریت و دیوریت گابرو	Y = 76.8 ppm	پيريت و پيريت اکسيده	Au ,Zn ,Ti	یک کیلومتری جنوبغربی روستای سربرزه	خامسان	چهار فرسخ
دیاباز، بازالت، گابرو، گابرو دیوریت، دیوریت و دیوریت گابرو	Cu = 296 ppm, Pb=1690 ppm, S=14800 ppm	-	Ag	۲/۵ کیلومتری غرب روستای باش گلان	خامسان	چهار فرسخ

گزارش نهایی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل اول- كليات

نقشه 1-1- موقعیت محدوده مطالعاتی در ورقه ۱۰۰٬۰۰۰ میانراهان

گزارش نهایی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

1-6-خلاصه زمین شناسی منطقه

محدوده مورد مطالعه در قسمت غربی نقشه زمین شناسی ۱:۱۰۰,۰۰۰ میانراهان و در زون سنندج سیرجان قرار دارد. در نقشه ۱–۲ (تحت عنوان نقشه G) نقشه زمین شناسی محدوده مورد بررسی به همراه چهارچوب منطقه مورد مطالعه ارائه شده است. واحدهای سنگی مشاهده شده در محدوده مورد نظر با توجه به نقشه زمین شناسی منطقه به ترتیب سنی از قدیم به جدید به شرح زیر می باشد:

K^f₂ : نهشتههای کرتاسه پایانی در این منطقه شامل رخساره فلیش است که دگرگونی ضعیف از نوع دینامومتامورفیسم را تحمل نموده است. سنگهای این واحد مجموعهای از شیل، شیل مارنی، فیلیت و سنگهای آهکی نازک لایه ذغالی رنگ، لیتیک توف و سنگهای ولکانیکی زیردریایی که بعضاً کالک شیستهای سبز زیتونی رنگ نیز آنها را همراهی مینماید. سنگهای آهکی سیلیسی خاکستری رنگ، عمدهترین لایههای سنگی همراه این واحد محسوب گردیده که به صورت متناوب و نازک لایه در برخی از رخنمونها قابل شناسایی است.

gd: گابرو دیوریت که عمدتاً دارای بافت گرانولار هستند و اندازهٔ بلورها در آنها بسیار درشت است.

dg : ديوريت گابرو كه عمدتاً داراي بافت دلريتي هستند.

di: دیوریت که دارای بافت گرانولار و میکروگرانولار میباشند.

ی اینترگرانولار قابل مشاهده هستند. gb²: گابرو که دارای بافت گرانولار قابل مشاهده هستند.

db: شامل سنگهای دیاباز خاکستری تیره و ارغوانی رنگ می باشد.

رسوبات نرم تراز پایین با بافت متنوع، رسوبات عهد حاضر Q^{t2}

R^{mb}: سنگ مرمر خاکستری تیره تا زرد روشن و ورقه شده

فصل اول- كليات

نقشه 1-4- نقشه زمین شناسی منطقه به همراه محدوده مطالعاتی اقتباس شده از نقشه ۱:۱۰۰٬۰۰۰ زمین شناسی (G)

فصل اول- كليات

۱-۷-) اطلاعات ژئوفیزیک هوایی

بزرگ مقیاس ترین نقشه ژئوفیزیک موجود از محدوده مطالعاتی مربوط به نقشه ژئوفیزیک هوایی ۱:۲۵۰,۰۰۰ کرمانشاه است که محدوده مورد نظر در بخش شمالی این نقشه واقع شده که در شکل ۱–۲ قابل مشاهده است. بر اساس نقشه فوق منطقه شامل طاقدیس نسبتاً بزرگی با روند شرقی – غربی و گسل احتمالی با امتداد شمال غربی– جنوب شرقی می باشد. در این محدوده هیچ پدیده خاص ژئوفیزیکی نظیر تودههای نفوذی نیمه عمیق و و ولکانیکهای نیمه عمیق مشاهده نمی شود.

شکل ۱-۲- بخشی از نقشه ژئوفیزیک هوایی ۱:۲۵۰,۰۰۰ کرمانشاه و موقعیت محدوده موردمطالعه در آن

فصل اول- كليات

۱-8-اطلاعات ماهواره ای

Google اطلاعات ماهوارهای مربوط به منطقه از طریق تصویر ماهوارهای به دست آمده با استفاده از نرم افزار گوگل ارث (Google (Earth (Earth) جهت نمایش وضعیت مورفولوژی، زمین شناسی و (Earth) جهت نمایش وضعیت منطقه مطالعاتی در شکل ۱–۳ ارائه شده است که به خوبی وضعیت مورفولوژی، زمین شناسی و راههای دسترسی منطقه در آن مشخص است. دقت تصویر ماهوارهای فوق بیش از ۲۵٬۰۰۰ میباشد ولی در شکل ۱–۳ راههای دسترسی منطقه در آن مشخص است. دقت تصویر ماهوارهای فوق بیش از ۲۵٬۰۰۰ میباشد ولی در شکل ۱–۳ رامهای دسترسی منطقه در آن مشخص است. دقت تصویر ماهوارهای فوق بیش از ۲۵٬۰۰۰ میباشد ولی در شکل ۱–۳ رامهای دسترسی منطقه در آن مشخص است. دقت تصویر ماهوارهای فوق بیش از ۲۵٬۰۰۰ میباشد ولی در شکل ۱–۳ رامهای دسترسی منطقه با مقیاس ۱:۱۰۰۰۰۰ ارائه شده است. با توجه به تصویر ارائه شده در این شکل، مشاهده می- بمنظور ارائه شمای کلی منطقه با مقیاس ۱:۱۰۰۰۰۰ ارائه شده است. با توجه به تصویر ارائه شده در این شکل، مشاهده می- شود که عمده مساحت تحت پوشش منطقه مطالعاتی کوهستانی بوده و دارای رخنمونهای سنگی میباشد که در قسمتهای شود که عمده مساحت تحت پوشش منطقه مطالعاتی کوهستانی بوده و دارای رخنمونهای سنگی میباشد که در قسمتهای شود که عمده می می قرد. همچنین مسیر آبراههها و دره ها نیز در این تصویر دیده می شود.

شکل ۱-۳- تصویر ماهواره ای گرفته شده از منطقه مطالعاتی با استفاده از نرم افزار گوگل ارث با مقیاس ۱:۱۰۰,۰۰۰

فصل دوم- اکتشاف ژئوشیمیایی

۲- اکتشاف ژئوشیمیایی

۲-۱- روش نمونهبرداری و اهداف آن (بند ۱-۲ شرح خدمات)

با در نظر گرفتن وسعت منطقه مطالعاتی، روش مناسب جهت عملیات اکتشافی در این پروژه نمونهبرداری از رسوبات آبراههای میباشد. از آنجاییکه ماهیت این روش و به طبع آن نمونههای برداشتشده به گونهای است که نمایانگر و نماینده رسوبات و محصولات هوازدگی و دگرسانی حوضه بالادست خود میباشد، لذا با استفاده از این روش میتوان نسبت به تصمیم-گیری در مورد وسعت بزرگی از منطقه مطالعاتی با برداشت نمونه از پایین دست اقدام نمود. البته با توجه به امکان تغییرپذیری ذرات در مسیر انتقال رسوبات استفاده از یک واسطه نمونهای دیگر که نمونه کانیسنگین میباشد در دستور کار قرار میگیرد. در واقع این دو روش نمونهبرداری بعنوان دو روش مستقل در کنار یکدیگر باعث خواهند شد تا از این طریق بتوان در سطح اعتماد بالاتری اقدام به معرفی محدودههای ناهنجار مرتبط با کانیسازیهای احتمالی نمود. البته در این بین طراحی مناسب شبکه نمونهبرداری، تعیین محل مناسب جهت نمونهبرداری در صحرا، انتخاب سایز مناسب نمونه و میزان دقت در برداشت نمونه همگی مواردی است که در نتیجه کار نقش به سزایی خواهند داشت. همانطور که پیشتر نیز بدان اشاره شد هدف از این بروژه و برداشت نمونههای مذکور تعیین محدودههای ناهنجار مرتبط با کانیسازیهای محتمالی محتمل و محدودتر کردن منطقه مطالعاتی جهت اجراء مطالعات تفصیلی میباشد.

۲-۲-تجزیه و تحلیل سایز و فاصله نمونه برداری

مطابق بند ۱–۲ شرح خدمات عملیات اکتشاف ژئوشیمیایی در مقیاس۱۱۲۵٬۰۰۰، مش مناسب نمونهبرداری نمونههای ژئوشیمیایی براساس نمونههای برداشت شده در ورقه ۱۱۰۰٬۰۰۰ مربوطه (میانراهان) انجام شد. یعنی هر نمونه ژئوشیمیایی متشکل از حدود ۳۰۰ گرم الک شده با سایز۸۰– مش رسوبات آبراههای میباشد.

۲-۳- طراحی شبکه نمونه برداری و نحوه نمونه برداری و کد گذاری نمونه ها

بر اساس چگالی تعیین شده در بند ۱–۲ شرح خدمات عملیات اکتشاف ژئوشیمیایی در مقیاس۰۱:۲۵،۰۰۰، لازم است در فاز اول نمونه برداری به ازای هر کیلومتر مربع پنج نمونه رسوب آبراههای در نواحی رخنمون دار، دو نمونه رسوب آبراههای در

فصل دوم- اکتشاف ژئوشیمیایی

دشتهای آبرفتی و یک نمونه کانی سنگین برداشت شود. در این پروژه نیز سعی بر این بوده است که در کنار رعایت این مسئله در مناطق مهم چگالی نمونه برداری افزایش پیدا کند. بدین منظور سعی شد تا با توجه به نقشههای زمین شناسی و ژئوفیزیک هوایی عوارض مهم زمین شناسی مانند تودههای نفوذی رخنـموندار، تودههای نفوذی نیمه عمیق، گسلها، دگرسانیها و آثار کانیسازی بر روی نقشه توپوگرافی ۱:۲۵,۰۰۰ مشخص شده و در اطراف این عوارض چگالی نمونهبرداری افزایـش داده شود. جهت طراحی شبکه نمونهبرداری و پیادهسازی تعداد نمونههای محاسبهشده، از الگوریتم مرکز ثقل استفاده گردید. با توجه به مسائل مطرح شده فوق نقشه نمونهبرداری اولیه تهیه گردید که شامل ۲۳۶ نمونه رسوب آبراههای میباشد.

پس از انجام مراحل طراحی، یک اکیپ نمونه برداری شامل ۶ نفر کارشناس اکتشاف معدن بعنوان نمونه بردار، یک نفر کارشناس اکتشاف با ۸ سال سابقه بعنوان سرپرست نمونه برداری و یک نفر کمپ گردان در شهرستان کامیاران مستقر گردید که طی ۱۰روز عملیات نمونهبردای را زیر نظر ناظر محترم پروژه به اتمام رسانده است. تمامی مراحل مربوط به عملیات نمونه-برداری منطبق بر شرح خدمات، نظرات ناظر پروژه و دستورالعملهای استاندارد نمونهبرداری انجام گرفته است. نحوه کد گزاری نمونهها نیز به شرح ذیل انجام شده است:

کلیه نمونهها دارای یک شماره منحصر به فرد بوده که شامل سه کد می باشد.

- کد اول معرف نام محل انجام پروژه است که برای کلیه نمونهها (MR) در نظر گرفته شده است.
- کد دوم معرف شماره محل نمونهبردای که در فاز طراحی تعیین و به همراه مختصات مربوطه در اختیار کارشناسان
 نمونهبردار قرارگرفته است.
- کد سوم معرف نوع نمونه برداشت شده است. برای مشخص کردن نمونه های ژئوشیمی از کد (G) استفاده شده است.
 به طور مثال شماره نمونه MR-54-G معرف نمونه ژئوشیمی در محل شماره ۵۴ در منطقه میانراهان ۲ می باشد.

در نهایت در مجموع ۲۳۶ نمونه ژئوشیمی طراحی شده در این فاز برداشت گردید. محل برداشت نمونههای نهایی ژئوشیمی در نقشه ۲–۱ (تحت عنوان نقشه S01) نشان داده شده است. شماره و مختصات محل برداشت نمونههای ژئوشیمیایی نیز در جدول ۲–۱ در بخش پیوست گزارش ارائه گردیده است.

گزارش نهایی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمیایی

نقشه ۲-1- نقشه توزیع محل ۲۳۶ نمونه ژئوشیمیایی برداشت شده در منطقه مطالعاتی (801)

گزارش نهایی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

معدني كشور

فصل دوم- اكتشاف ژئوشيميايي

۲-۴-نحوه آماده سازی نمونه های ژئوشیمیایی (موضوع بند ۱-۳ شرح خدمات)

کلیه نمونههای ژئوشیمیایی در کمپ کنترل و به لحاظ حجم نمونه، صحت بستهبندی و شماره نمونه کنترل شده و پس از کنترل بر اساس لیست نمونهبردای در بسته بندیهای مناسب به تهران حمل شده است. پس از حمل نمونهها به تهران کلیه نمونهها با لیست تایپ شده و به صورت تک به تک به نماینده محترم ازمایشگاه زرازما تحویل گردیده است.کلیه نمونههای ژئوشیمیایی تحت خردایش قرار گرفته تا به ۲۰۰ – مش خرد شوند و سپس برای آنالیز مورد استفاده قرار گیرند.

۲-۵-بررسی روش آنالیز و تجزیه و تحلیل دقت و صحت دادهها (موضوع بندهای ۱-۳، ۱-۹ و ۳-۶ شرح خدمات)

روش أناليز انتخابشده نيز بر طبق شرحخدمات مىباشد بطوريكه نمونههاى ژئوشيميايى برداشت شده تحت أناليز ۵۳ عنصری بروش ICP قرار گرفتند. در این بین میزان عنصر طلا با استفاده از روش F.A. به انجام رسیده است. نتایج آنالیز در جدول ۲–۲ در بخش پیوست و بصورت یک فایل رقومی در CD ضمیمه آورده شده است. به منظور تعیین میزان خطای آنالیز دستگاهی اقدام به تهیه ۳۰ نمونه تکراری از ۳۰ نمونه اصلی که بصورت اتفاقی انتخاب شده است گردید. نتایج آنالیز نمونههای تکراری مذکور نیز در انتهای جدول ۲–۲ در بخش پیوست آورده شده است. برای تعیین خطای اندازه گیری آنالیزهای شیمیایی طبق بند ۱-۳ شرح خدمات اقدام به تهیه ۳۰ نمونه خردایش شده زیر ۲۰۰ مش (تحت دیگر شرایط یکسان) صورتجلسه تهیه و در اختیار اُزمایشگاه قرار گرفت. شماره نمونههای تکراری و معادل اُنها در جدول ۲–۳ اُمده است.

برای محاسبه خطا لازم است تا دادههای بدست آمده از دوبار آزمایش برای عناصر مختلف موجود باشد. میانگین دو آزمایش و اختلاف آنها نیز لازم است تعیین گردد. همان طور که قبلاً اشاره شد در بررسیهای اکتشافی ناحیهای آنچه حائز اهمیت است تعیین دقت عملیات (قابلیت تکرار اُزمایش با نتایج مشابه) میباشد. صحت اندازه گیریها که مقدار تطابق اُنها را با واقعیت نشان میدهد و از طریق بکارگیری نمونههای استاندارد با غلظت معین تعیین می شود، در شرح خدمات این پروژه مدنظر نبوده است. البته آزمایشگاهها از چنین نمونههایی جهت کنترل کیفیت کار خود استفاده میکنند. روش بکار برده شده در تخمین سطح خطای آنالیزهای شیمیایی در زیر تشریح می گردد. در این روش در یک دستگاه مختصات لگاریتمی، روی محور افقی میانگین دوبار اندازه گیری و روی محور عمودی اختلاف دو مقدار اندازه گیری شده نشان داده می شود. جدول ۲–۴ که در بخش پیوست گزارش ارائه گردیده است، این مقادیر را برای کلیه عناصر نشان میدهد. در این روش دقت اندازه گیریها از طریق

فصل دوم- اکتشاف ژئوشیمیایی

آنالیز جفت نمونههای تکراری بررسی میشود، به همین منظور از نمودار تامسون – هوارث (2002) استفاده گردید. در این روش در یک دستگاه مختصات لگاریتمی، روی محور افقی میانگین دوبار اندازه گیری و روی محور عمودی اختلاف دو مقدار اندازه -گیری شده نشان داده می شود. تلاقی این دو به صورت نقطهای در دستگاه مختصات نمایش داده می شود. در دستگاه مختصات دو خط مایل و شناور نسبت به مقدار سنسورد دستگاه برای ۵۰٪ و ۹۵٪ رسم می گردد که فرمول این دو عبارتند از:

$$P_{50} = 0.954(\frac{C_L}{3} + BC)$$
$$p_{95} = 2.772(\frac{C_L}{2} + BC)$$

Y Fitness for Purpose Criteria

فصل دوم- اکتشاف ژئوشیمیایی

مندخي شادر

Zn ،Yb ،W ،V ،U ،Tm ،Tl ،Th ،Te و Zr دارای خطای قابل قبول می با شند. طبق این نمودارها در مورد برخی عناصر باید با احتیاط بیشتری تصمیم گیری کرد، این عناصر عبارتند از Cd و Ti. لازم به ذکر است که اغلب نمونه های عناصر Ag و Y سنسورد بودهاند. بدیهی است آنومالی عناصر مذکور و تحلیل های صورت گرفته در آنها می تواند مورد سؤال با شد.

Row	Original Sample No.	Duplicate Sample No.	Row	Original Sample No.	Duplicate Sample No.
1	MR-31	BB-42-BV	16	MR-205	WE-54-TF
2	MR-146	HH-45-PJ	17	MR-17	TF-29-JK
3	MR-110	RX-76-BM	18	MR-113	KL-65-ER
4	MR-139	MT-93-DF	19	MR-169	FD-76-PM
5	MR-71	DN-43-RT	20	MR-174	KN-12-LM
6	MR-148	DK-29-JG	21	MR-57	EE-48-ZS
7	MR-109	VF-80-FD	22	MR-104	SR-85-ED
8	MR-221	CF-44-BM	23	MR-12	BC-55-DF
9	MR-106	СТ-83-РМ	24	MR-133	BA-83-FR
10	MR-213	HI-23-GG	25	MR-66	SK-98-HB
11	MR-186	DV-32-AS	26	MR-64	DE-22-FG
12	MR-159	ZB-56-AB	27	MR-218	FK-72-KJ
13	MR-235	EA-34-GH	28	MR-37	RW-88-TF
14	MR-85	BN-89-MN	29	MR-14	SS-38-HJ
15	MR-162	DB-45-JH	30	MR-5	ZY-55-MR

جدول ۲-۳- لیست نمونههای تکراری و معادل نمونههای آبراههای آنها برای تعیین خطای آنالیز

۲-6-بررسیهای آماری (موضوع بند ۳-6 شرح خدمات)

بعد از انجام آنالیز نمونهها، دادههای مربوطه برای ۲۳۶ نمونه ژئوشیمی برداشت شده بصورت رقومی و تحت فرمت نرم افزار Excel به این مشاور تحویل داده شد. در جدول ۲–۵ عناصر آنالیز شده به همراه حد حساسیت اندازه گیری آورده شده است. گزارش نهایی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمیایی

۲-۶-۲- پردازش داده های سنسورد

از آنجاییکه وجود مقادیر سنسورد (مقادیر کمتر و یا بیشتر از حد حساسیت اندازه گیری آزمایشگاه) در پردازشهای آماری ایجاد اشکال مینماید لذا میبایست با بکار بردن روشهای مشخص نسبت به خنثی کردن اثر منفی این دادهها در پردازشهای آماری اقدام گردد. در این پروژه از روش جایگزین کردن دادههای سنسورد توسط $\frac{3}{4}$ مقدار حد حساسیت برای مقادیر "کوچکتر از" استفاده شده است. تعداد نمونههای سنسورد برای هر نمونه در جدول ۲–۵ آورده شده است. با توجه به جدول زیر میتوان دریافت که اکثر قریب به اتفاق دادههای مربوط به عنصر Ag سنسورد می باشد. با در نظر گرفتن موارد فوق و مشکلاتی که این عنصر میتواند در تجزیه و تحلیلهای بعدی ایجاد کند لذا این نمونه و دادههای مربوطه از تحلیلهای بعدی حذف میشود.

۲-۶-۲- بررسی آماری تکمتغیره

۲-۲-۲-۱ محاسبه پارامترهای آماری و ترسیم نمودارهای آماری

تمامی دادههای خام پس از جایگزینی مقادیر سنسورد توسط مقادیر محاسبه شده مجدداً مورد فایل بندی در نرم افزارهای Excel و SPSS قرار می گیرند تا پردازشهای آماری مناسب بر روی آنها انجام پذیرد. بدین منظور اقدام به ترسیم نمودارهای هیستوگرام، Q-Q، Q- و Box Plot گردید. نتایج حاصل در نمودارهای ۲–۵۴ تا ۲–۱۰۴ در بخش پیوست آورده شده است. اطلاعات مربوط به ۱۳ پارامتر آماری محاسبه شده برای ۵۲ عنصر مورد مطالعه (همانطور که پیشتر ذکر شده عنصر Ag از محاسبات حذف گردید) در جدول ۲–۶ آورده شده است. پارامترهای آماری این جدول شامل تعداد نمونه های معتبر بکار رفته در بیشینه و مقادیر نظیر ۲۵٪، ۵۰٪ و ۷۵٪ فراوانی آورده شده است. از آنجاییکه مقدار ۵۰٪ فراوانی معادل مقدار میانه می باشد لذا بیشینه و مقادیر نظیر ۲۵٪، ۵۰٪ و ۲۵٪ فراوانی آورده شده است. از آنجاییکه مقدار ۵۰٪ فراوانی معادل مقدار میانه می باشد لذا

فصل دوم- اکتشاف ژئوشیمیایی

جدول ۲-۵- عناصر آنالیزشده در این پروژه به همراه واحد و حد حساسیت اندازهگیری و تعداد نمونههای سنسورد

عنص	حد	واحد	تعداد مقادير	مقدار جایگزین	عنص	حد	واحد	تعداد مقادير	مقدار جایگزین
June	حساسيت		سنسورد	شده	Jun	حساسيت		سنسورد	شده
Au	1	ppb	112	0.75	Nb	0.005	ppm	0	-
Ag	0.01	ppm	230	0.0075	Nd	0.002	ppm	0	-
Al	10	ppm	0	-	Ni	0.01	ppm	0	-
As	0.1	ppm	0	-	Р	0.1	ppm	0	-
Ba	0.01	ppm	0	-	Pb	0.1	ppm	0	-
Be	0.005	ppm	0	-	Pr	0.001	ppm	0	-
Bi	0.002	ppm	1	0.0015	Rb	0.01	ppm	0	-
Ca	5	ppm	0	-	S	50	ppm	0	-
Cd	0.005	ppm	0	-	Sb	0.002	ppm	0	-
Ce	0.005	ppm	0	-	Sc	0.01	ppm	0	-
Co	0.05	ppm	0	-	Sm	0.002	ppm	0	-
Cr	0.1	ppm	0	-	Sn	0.05	ppm	0	-
Cs	0.05	ppm	0	-	Sr	0.002	ppm	0	-
Cu	0.05	ppm	0	-	Tb	0.002	ppm	0	-
Dy	0.002	ppm	0	-	Te	0.05	ppm	40	0.0375
Er	0.002	ppm	0	-	Th	0.002	ppm	0	-
Eu	0.002	ppm	0	-	Ti	0.05	ppm	0	-
Fe	5	ppm	0	-	T1	0.005	ppm	0	-
Gd	0.002	ppm	0	-	Tm	0.002	ppm	0	-
Но	0.002	ppm	0	-	U	0.002	ppm	0	-
K	200	ppm	0	-	V	0.1	ppm	0	-
La	0.005	ppm	0	-	W	0.1	ppm	0	-
Li	0.01	ppm	0	-	Y	0.01	ppm	0	-
Mg	100	ppm	0	-	Yb	0.002	ppm	0	-
Mn	0.05	ppm	0	-	Zn	0.01	ppm	0	-
Mo	0.005	ppm	0	-	Zr	0.005	ppm	0	-
Na	50	ppm	0	-					

فصل دوم- اکتشاف ژئوشیمیایی

جهت تعیین عناصر پر پتانسیل و ناهنجار در منطقه در پردازشهای تک متغیره از شکل تابع و مقادیر مربوط به پارامترهای بیشینه و چولگی استفاده شده است. بدین ترتیب ناهنجاری خاصی در اولویت اول قرار نمی گیرد. عنصر Cu با چولگی بالای ۵ و مقدار بیشینه چند برابر مقدار زمینه در درجه دوم اهمیت قرار می گیرد. عناصر دیگری نظیر Sb، Ni، Cr و Sc در اولویت سوم اهمیت قرار می گیرند. عناصر دیگر دارای اهمیت اکتشافی خاصی نبوده و ناهنجاریهای آن صرفا در ارتباط با چند نمونه با مقادیر خارج از رده می باشد. با توجه به هیستو گرامهای ترسیم شده در نمودارهای ۲–۵۴ تا ۲–۱۰۴ در بخش پیوست می توان عناصر مورد مطالعه را بر اساس تابع توزیع آنها در چند دسته زیر ردهبندی کرد:

الف- توزيع نزديك به L براى عناصر Bi ،As ،Au، Bi ،As و Te ،S ،Pb ،Mo ،Bi ،As

ب- توزیع نزدیک به لاگنرمال برای عناصر Ti ،Th ،Sn ،Sb ،P ،Ni ،Mn ،Li ،Cs ،Cr ،Ce ،Cd ،Ca ،Be ،Ba و U ،Ti ،Th ،Sn ،Sb ،P ،Ni ،Mn ،Li ،Cs ،Cr ،Ce ،Cd ،Ca ،Be ،Ba و W، V

ج- توزیع نزدیک به نرمال برای عناصر Pr ،Nd ،Nb ،Na ،Mg ،La ،K ،Ho ،Gd ،Fe ،Eu ،Er ،Dy ،Cu ،Co ،Al و Yb و Tm ،Tl ،Tb ،Sr ،Sm ،Sc ،Rb

Al (ppm) As (ppm) Ba (ppm) Be (ppm) Bi (ppm) Ca (ppm) Cd (ppm) Ce (ppm) Co (ppm) Cr (ppm) Cs (ppm) Cu (ppm) Statistic Au (ppb) 236 236 236 236 236 236 236 236 236 236 236 236 236 Valid Ν Missing 0 0 0 0 0 0 0 0 0 0 0 0 0 76299.33 1.199 6.528 224.462 33762.78 0.289 58.612 124.815 45.361 Mean 1.363 0.121 33.307 3.994 Median 77762.5 205.91 33234 55.462 32.71 121.05 3.525 40.355 6.2 1.298 0.105 0.274 Std. Deviation 0.857 8763.041 3.010 0.153 17.168 6.559 42,720 1.989 23.436 64.566 0.799 0.088 10940.28 1824.988 Variance 0.735 76790886. 9.059 4168.73 0.639 0.008 119689666 0.023 294.745 43.021 3.955 549.246 Skewness 3.096 -0.826 0.880 0.819 9.842 3.389 0.869 2.142 1.122 0.379 2.153 1.821 6.157 فصل Kurtosis 12.298 1.982 0.972 0.296 128.788 17.518 2.834 12.630 1.992 -0.271 11.379 4.028 53.928 Minimum 38319 0.7 0.358 0.0015 0.025 20.727 17.33 38.9 22.09 0.75 103.91 7178 1.36 Maximum 7 107061 17.6 404.31 11.893 0.727 90278 1.431 127.627 52.01 424.5 13.31 283.17 25 0.75 71771.25 4.3 178.06 1.06275 0.068 26765 0.1938 47.797 28.16 100.125 2.67 33.54 اكتشاف ژئوشيميايى Percentiles 50 1 77762.5 6.2 205.91 1.298 0.1045 33234 0.274 55.462 32.71 121.05 3.525 40.355 75 82255.5 7.975 1 262.71 1.564 0.14375 39549 0.362 65.6545 37.9075 143.225 4.6375 48.5925 **Statistic** Gd (ppm) Dy (ppm) Er (ppm) Eu (ppm) Fe (ppm) Ho (ppm) K (ppm) La (ppm) Li (ppm) Mg (ppm) | Mn (ppm) | Mo (ppm) | Na (ppm) Valid 236 236 236 236 236 236 236 236 236 236 236 236 236 Ν Missing 0 0 0 0 0 0 0 0 0 0 0 0 0 Mean 8.721 4.848 1.712 66998.526 5.912 1.737 11215.462 24.131 25.253 23290.46 1438.765 0.691 19041.97 Median 8.7515 4.8055 1.725 67279.048 5.9695 1.717 10845.5 23.607 23.775 22833 1438.49 0.6665 19066 Std. Deviation 1.782 1.127 11294.226 1.072 5.838 8.334 6043.632 268.119 5409.738 0.285 0.375 3160.422 0.248 3.174 1.270 127559546 9988270.3 36525483.9 29265263. Variance 0.081 1.150 0.141 34.087 69.456 71887.86 0.062 -0.098 0.209 -0.345 -0.250 0.779 1.196 0.087 0.622 Skewness -0.138 0.072 0.727 0.928 -0.1040.060 0.116 0.320 -0.020 0.240 0.099 1.056 1.840 1.960 2.255 0.140 0.490 -0.343 Kurtosis Minimum 3.792 2.168 0.755 29494.648 2.654 0.757 4434 9.279 10.65 8759 704.39 0.162 4907 Maximum 13.079 8.215 2.392 98227.848 8.75 2.808 23154 46.702 58.37 46898 2226.99 1.538 34006 25 4.11575 1.54775 5.22825 1.48425 20.5195 19.485 0.52625 7.6165 59442.948 9166.5 19370.5 1268.24 15236 8.7515 4.8055 67279.048 23.607 23.775 22833 1438.49 0.6665 50 1.725 5.9695 1.717 10845.5 19066 Percentiles 75 9.85825 5.574 1.9305 75112.848 6.5835 1.96875 13006 27.3345 29.565 26393 1611.74 0.82425 23173.5

حدول ۲-6- یارامترهای آماری محاسبه شده بر اساس داده های خام در منطقه مطالعاتی

669 –

σ

	سازمان زمینشناسی و اکتشاف معدنی کشور
U	ینشناسی و اکتشاف یدنی کشور

Statis	tic	Nb (ppm)	Nd (ppm)	Ni (ppm)	P (ppm)	Pb (ppm)	Pr (ppm)	Rb (ppm)	S (ppm)	Sb (ppm)	Sc (ppm)	Sm (ppm)	Sn (ppm)	Sr (ppm
N	Valid	236	236	236	236	236	236	236	236	236	236	236	236	236
1	Missing	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean		11.041	26.473	77.699	1241.408	12.689	6.273	51.378	690.860	0.416	21.286	6.069	2.478	162.456
Median		10.9305	26.682	71.075	1105.45	11.45	6.184	46.33	658	0.3675	20.885	6.178	2.455	151.852
Std. Deviati	ion	2.614	5.052	32.905	516.718	6.580	1.289	20.648	259.752	0.201	3.929	1.092	0.695	42.244
Variance		6.833	25.519	1082.739	266997.7	43.292	1.660	426.337	67470.98	0.040	15.436	1.193	0.482	1784.53
Skewness		0.661	-0.087	3.953	1.895	4.127	0.317	1.548	4.060	2.005	0.476	-0.361	3.747	1.849
Kurtosis		3.244	0.827	27.593	5.470	34.094	1.538	3.202	24.690	6.457	0.835	0.368	34.873	6.535
Minimum		4.057	9.887	28.4	413.3	3.2	2.319	15.55	310	0.095	10.05	2.216	0.76	97.672
Maximum		25.311	44.787	360.5	3788.3	75.1	11.547	144.4	2656	1.596	36.42	8.864	9.11	420.802
	25	9.428	23.3645	59.4675	915.9	9	5.549	38.235	564.5	0.28625	18.82	5.35025	2.1	132.977
Percentiles	50	10.9305	26.682	71.075	1105.45	11.45	6.184	46.33	658	0.3675	20.885	6.178	2.455	151.852
	75	12.727	29.427	89.5825	1528.45	15.275	6.994	61.0575	754.75	0.48475	23.7125	6.7005	2.7775	179.752
Statis	tic	Tb (ppm)	Te (ppm)	Th (ppm)	Ti (ppm)	Tl (ppm)	Tm (ppm)	U (ppm)	V (ppm)	W (ppm)	Y (ppm)	Yb (ppm)	Zn (ppm)	Zr (ppn
N	Valid	236	236	236	236	236	236	236	236	236	236	236	236	236
IN IN	Missing	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean		1.254	0.123	5.389	11274.50	0.313	0.700	1.117	183.778	1.025	1.680	4.473	113.507	61.626
Median		1.2735	0.07	5.0815	11107.51	0.3025	0.696	1.065	180	1	1.68	4.455	110.06	59.6615
Std. Deviati	ion	0.249	0.104	1.878	3634.179	0.107	0.165	0.374	38.406	0.305	0.000	1.022	29.214	18.568
Variance		0.062	0.011	3.528	13207253.9	0.012	0.027	0.140	1475.034	0.093	0.000	1.044	853.483	344.766
Skewness		-0.046	2.126	1.240	0.866	0.387	0.146	1.349	1.300	1.174		0.138	2.825	0.561
Kurtosis		0.250	6.371	2.607	1.990	-0.190	0.258	5.137	6.155	2.733		-0.072	15.646	0.278
Minimum		0.568	0.0375	1.934	3368.11	0.058	0.237	0.422	70.3	0.3	1.68	1.979	58.7	20.859
Maximum		2.015	0.74	14.211	26855.71	0.604	1.193	3.413	419.1	2.2	1.68	7.667	321.96	128.384
	25	1.097	0.05	4.1885	8812.21	0.234	0.59425	0.84075	159.675	0.9	1.68	3.808	96.8425	47.644
Percentiles	50	1.2735	0.07	5.0815	11107.51	0.3025	0.696	1.065	180	1	1.68	4.455	110.06	59.6615
	75	1.402	0.16	6.2365	13256.71	0.38475	0.80075	1.3135	204.625	1.1	1.68	5.171	125.4	73.0457

ادامه جدول ۲-۶-پارامترهای آماری محاسبه شده بر اساس داده های خام در منطقه مطالعاتی

فصل دوم- اكتشاف ژئوشيميايي

Ŷ

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمیایی

۲-۲-۲-۲ جدایش ناهنجاریها

جدایش ناهنجاریها با روش *x* + *n*

متداولترین روش برای جداسازی جوامع ناهنجار از جامعه کل در پروژههای اکتشافی استفاده از پارامترهای آماری تک متغیره میباشد. در این روش ابتدا مقادیر میانگین و انحرافمعیار جامعه بدون در نظر گرفتن مقادیر خارج از رده محاسبه و سپس حدود چهارگانه زیر جهت تعیین مقادیر ناهنجار و حدود زمینه، آستانهای و ناهنجاری بکار میروند:

- مقدار X بعنوان حد زمینه.
- . مقدار $\overline{X} + S$ بعنوان حد أستانهای.
- . مقدار $\overline{X} + 2S$ بعنوان حد أنومالي ممكن.
- مقدار $\overline{X} + 3S$ بعنوان حد أنومالي احتمالي. –

همانطور که گفته شد این روش متداولترین روش جداسازی ناهنجاریها در مطالعات ژئوشیمیایی است که فرض نرمال بودن دادهها باید در آن صادق باشد. جدول ۲–۷ حدود تفکیکی مذکور را بر اساس مقایر نرمال شده نشان میدهد.

• جدایش ناهنجاریها با روش تعیین حدود خارج از ردیف

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمیایی

جدول ۲-۷- حدود جدایش زمینه ، حد آستانه ای و آنومال بکار رفته در ترسیم نقشه های تک عنصری

حد آنومالی	حد آنومالی	حد آستانه	1° - ° 40	دنه مان		حد آنومالی	حد آنومالی	حد آستانه	1: -: 1 0	cie ali	
احتمالي	ممكن	محلى	حد رمیته	نام عنصر	رديف	احتمالي	ممكن	محلى	حد رمینه	0م عنصر	رديف
18.157	15.784	13.412	11.039	Nb (ppm)	27	4.036	2.561	1.625	1.031	Au (ppb)	1
40.397	35.758	31.118	26.478	Nd (ppm)	28	99114.593	91647.129	84179.665	76712.201	Al (ppm)	2
172.839	129.464	96.973	72.637	Ni (ppm)	29	23.034	14.513	9.144	5.761	As (ppm)	3
3161.813	2246.652	1596.377	1134.319	P (ppm)	30	498.177	376.966	285.247	215.844	Ba (ppm)	4
38.565	25.766	17.215	11.501	Pb (ppm)	31	3.202	2.350	1.725	1.266	Be (ppm)	5
9.686	8.560	7.433	6.306	Pr (ppm)	32	0.514	0.296	0.170	0.098	Bi (ppm)	6
109.999	90.471	70.943	51.415	Rb (ppm)	33	79595.402	58815.896	43461.174	32115.019	Ca (ppm)	7
1309.174	1033.364	815.661	643.822	S (ppm)	34	1.145	0.697	0.424	0.258	Cd (ppm)	8
1.222	0.820	0.550	0.369	Sb (ppm)	35	127.403	96.827	73.588	55.927	Ce (ppm)	9
31.702	28.192	24.681	21.171	Sc (ppm)	36	51.731	45.535	39.339	33.143	Co (ppm)	10
9.140	8.127	7.114	6.101	Sm (ppm)	37	290.194	215.593	160.170	118.995	Cr (ppm)	11
4.585	3.695	2.978	2.400	Sn (ppm)	38	12.668	8.339	5.489	3.613	Cs (ppm)	12
290.726	235.955	191.502	155.424	Sr (ppm)	39	92.861	71.156	54.524	41.779	Cu (ppm)	13
1.985	1.741	1.496	1.251	Tb (ppm)	40	13.562	11.951	10.339	8.728	Dy (ppm)	14
0.791	0.387	0.189	0.093	Te (ppm)	41	7.891	6.873	5.856	4.839	Er (ppm)	15
13.128	9.540	6.933	5.039	Th (ppm)	42	2.540	2.267	1.993	1.719	Eu (ppm)	16
26834.974	19820.301	14639.267	10812.557	Ti (ppm)	43	99271.645	88568.395	77865.146	67161.896	Fe (ppm)	17
0.630	0.525	0.420	0.316	Tl (ppm)	44	8.897	7.907	6.918	5.928	Gd (ppm)	18
1.152	1.001	0.850	0.699	Tm (ppm)	45	2.789	2.440	2.090	1.740	Ho (ppm)	19
2.678	1.962	1.436	1.052	U (ppm)	46	19718.950	16827.012	13935.075	11043.138	K (ppm)	20
294.519	249.940	212.108	180.003	V (ppm)	47	40.728	35.205	29.682	24.159	La (ppm)	21
2.381	1.773	1.320	0.983	W (ppm)	48	57.612	42.846	31.864	23.697	Li (ppm)	22
7.358	6.384	5.411	4.437	Yb (ppm)	49	45310.086	35807.699	28298.142	22363.483	Mg (ppm)	23
194.265	160.644	132.841	109.851	Zn (ppm)	50	2197.146	1944.192	1691.239	1438.285	Mn (ppm)	24
146.943	108.191	79.659	58.651	Zr (ppm)	51	1.983	1.361	0.934	0.641	Mo (ppm)	25
						34974.045	29642.129	24310.214	18978.298	Na (ppm)	26

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمیایی

جدول ۲-8- تعداد ، حدود و شماره نمونه های خارج از رده (outlier) داده های خام در منطقه مطالعاتی

Variables	Outlier Number				Outli	er Sa	mples			Variables	Outlier Number				Outli	er Sa	nples			
Au (ppb)	1	98								Nb (ppm)	3	1	109	137						
Al (ppm)	7	107	109	121	125	191	210	212		Nd (ppm)	4	87	109	137	211					
As (ppm)	6	66	90	117	125	169	181			Ni (ppm)	6	65	67	97	131	132	182			
Ba (ppm)	0									P (ppm)	4	152	153	154	167					
Be (ppm)	3	96	137	188						Pb (ppm)	2	67	207							
Bi (ppm)	5	55	86	98	151	169				Pr (ppm)	7	87	109	113	121	137	188	211		
Ca (ppm)	6	109	123	177	210	211	212			Rb (ppm)	4	109	118	137	188					
Cd (ppm)	5	3	21	90	123	190				S (ppm)	5	52	123	193	196	197				
Ce (ppm)	2	125	211							Sb (ppm)	5	104	117	118	119	170				
Co (ppm)	4	43	121	128	131					Sc (ppm)	6	34	87	121	137	191	211			
Cr (ppm)	3	109	132	188						Sm (ppm)	4	109	121	137	211					
Cs (ppm)	2	112	121							Sn (ppm)	4	62	109	137	234					
Cu (ppm)	7	59	61	62	68	113	155	180		Sr (ppm)	5	109	123	154	188	191				
Dy (ppm)	8	68	76	77	109	113	121	137	181	Tb (ppm)	1	68								
Er (ppm)	8	27	74	76	77	109	113	121	137	Te (ppm)	1	151								
Eu (ppm)	2	121	137							Th (ppm)	3	104	118	211						
Fe (ppm)	3	41	121	137						Ti (ppm)	4	12	137	211	213					
Gd (ppm)	5	68	76	109	121	137				Tl (ppm)	3	97	139	143						
Ho (ppm)	5	76	77	109	121	137				Tm (ppm)	6	58	77	109	121	137	185			
K (ppm)	4	104	118	169	170					U (ppm)	2	104	187							
La (ppm)	3	109	137	211						V (ppm)	9	12	32	34	41	121	137	176	177	222
Li (ppm)	4	113	118	187	210					W (ppm)	0									
Mg (ppm)	5	31	121	177	191	236				Yb (ppm)	3	76	77	181						
Mn (ppm)	4	121	137	148	184					Zn (ppm)	5	51	68	121	123	137				
Mo (ppm)	2	54	87							Zr (ppm)	1	34								
Na (ppm)	1	181																		

1/PN جدایش ناهنجاریها با روش ۱/PN

یکی دیگر از روشهای متداول جدایش ناهنجاریها استفاده از مقدار احتمال پیدایش هر نمونه با توجه به کل نمونهها است، که به روش PN معروف است. در این روش احتمال پیدایش هرنمونه با توجه به نوع تابع توزیع و پارامترهای آماری تعیین و در تعداد نمونهها ضرب میشود. از آنجا که این عدد برای مقادیر آنومال بسیار کوچک است، به منظور ملموس تر بودن این عدد از نسبت معکوس آن یعنی 1/PN استفاده میشود. محاسبه مقادیر ۱/PN برای تمامی عناصر موجود به غیر از نقره و ایتریم محاسبه گردید.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمیایی

1

پروژه اکتشاف ژئوشیمیایی ۵۰۰۵،۱۰ در محدوده اکتشافی میانراهان ۲

	_													Ĺ	خثر	ید ب	, 1م	اطق	ب من	تخا	و اذ	جار	ناهن	ای	نه ه	نمو	بش	جدا	· _ ٩	-1	ʻ J	مدو	•												
3	5	Sample No.	Au A	d Be	Bi	Ca	Cd	Ce	Co	Cr	Cs C	u D	y Er	Fe	Gd	Ho	K	La	Li	Mg 1	Mn	Na N	Nb No	d l	Ni P	P	b P	r Ri	S	Sb	Sc	Sm	Sn	Sr 1	ſb T	e Th	Ti	TI	Tm	U	V	W	Yb	Zn	Sum(1/PI
1	-	211 123		_	-	13	15	2.2				-	_					42		_	_	_	42	2		-	42	2 9.7	42		6	1.3		17	_	7.3	+	<u> </u>	$ \rightarrow$	┢──┦	\vdash		–	42	156.28
s v		68				1.5					4	2			1.8														1.2					4	.7									42	93.61
÷۲,		104															42	3.2										6.6	;	35						1.4					\square	1.3			93.50
7	-	62	4	2	-						4	2	_									_	_	_		-	_	_					42	42	_		+	—	\vdash	┢┻┩	\vdash		\vdash	\vdash	88.45
	-	109	4	-2	-					42		-	-	-								_	_	4	2		_	-			-			42	_		+	┼──	┢─┤	┢──┦	\vdash	-	├ ──'	\vdash	85.77
		118								12							10	2.5	1.2					T	-		2.	4 42		1.2		1					+	1.4						\square	64.85
		169			1.2								_				42	7.4					_			1.	2 1.	9 2.9	1						_	_									60.76
	-	34	42	_	07							_	_										_	+	_			_	-		42				_	_	—	<u> </u>	$ \vdash $	┢──┦	12		\vdash		59.40
	-	131	42		0.7				2.2	2.8		-	-										-	4	2	-	_	+	-						-				┝─┤	┢─┤			'	$\left - \right $	47 90
		41												2.3											-																42				46.95
		146																				4	42																						46.51
	-	187			-						4	-	_						1.6					_	_		_	_		-		-			_		┿──	<u> </u>	$ \vdash $	42	\square		\vdash	\vdash	46.29
	-	96		42	-						4	2	_										-	+	-		_	-							-	-	-		┝─┤	┝─┦	\vdash	\vdash			45.26
	_	207																								42	2																		43.64
	_	196																									_		42								<u> </u>	<u> </u>	\square	⊢	\square		<u> </u>		43.54
	-	193		_	-							_	_	-									_	+	_	-	_	_	42						_	_	+	—	┝─┤	┢──┦	\vdash		—'	\vdash	42.92
	-	51											+	1						_				+				+	42		1						+	<u> </u>	┝─┤	┝─┤	\vdash	\square	\vdash	37	38.28
		87																9.5					1.	6			14	4 1.5	1		7.9														37.33
۰g		210																	1									33																	36.02
3	-	55			30	-						_	_	-								_		+	20		_	_	-	-	-				_	-	+	—	┝─┤	┢┻┩	\square	<u> </u>	—'		30.36
	-	76											9.4		1.9	3.7				_				+	20	,		-									+		┢─┤			\vdash	3.1	\vdash	21.94
S		213																										17																	19.77
e.		7	16																								_									_	<u> </u>	\vdash		\square	\square		\square		17.08
	-	229	16	_	-	-						_	_	-								_	_	+	14		_	_	-	-	-				_	_	+	—	┝─┤	⊢	\square		—'		16.70
5	-	132										1.	2							_		1.8		+	14		-										+		┢─┤			\vdash	9.3	\vdash	16.26
		170															1.6	1.8										7.2	2	2							1								15.95
1	_	59									1	4												_			_										<u> </u>	<u> </u>	\square	⊢	\square		<u> </u>	\square	15.43
IJ	-	125		_	12			3.2				_						7.4					_	_			1.	2 1							2	3	+	─		┝──┦	\vdash	+	—'	┝──┤	15.00
" `	-	77			12								3.7	'		3.4				-	_			+											2.	5	+		2.1			\square			12.99
<u>و</u>		97																						1	1												1	1							12.41
	_	154										_												_	5.4	4		_						5.1			<u> </u>	<u> </u>		⊢	\square		<u> </u>	\square	11.56
_ _ ;	-	58		_	-							-	_	-								_	_	+	_	-	_	_	10						_	_	+	<u> </u>	8	┢──┦	\vdash	\vdash	──'	┢──┦	10.88
7 :	-	191																		3.3				+					10		2.1			4.6			+		\vdash			\square		\square	10.01
3		12																																			3.2				5.1				10.71
	_	185			-					2			_	-						4.6		_		-	2		_	_	-							_	–	_	5.9	\vdash	\square		<u> </u>		9.88
	-	31		_	-					2		-	_	-					-	4.5		_	_	- 1	.2	-	_	2.2	,	-	-				_	_	┼──	–	┢─┥	┝──┦	\vdash	\vdash	<u> </u>	\square	8.90
	-	117																1.4						+				2.1		2.5							+	<u> </u>				\vdash		H	7.39
		113									1.9								3.6																										6.11
	⊢	184	++	+	+	-						+	_	+						-	4.7		+	+	-	+	+	+	-	1	<u> </u>		57		+	_		–	┢┻┥	\vdash	\vdash	\vdash	—'	⊢	6.11
	\vdash	177	+	-	1							+	+	+	-				\vdash	5.1	-			+	-	+	+	-	-	+	1	-	3.5			+	+-	\vdash	┢─┤	\vdash	\vdash	┝─┤	\vdash	┢──┦	5.92
	Ē	112									4.7													1		1				L							1								5.78
		188																																4.4			\square	Ļ	\square					\square	5.62
	F	122	++	+	+		$ \rightarrow $							-					\square		-+	-+	+	+	-	+	+	1.7	'	-	-				+	_	\vdash	1.4	┢─┤	⊢	\vdash	\square	—′	\vdash	5.30
	F	43	++	_	+	\vdash	\vdash		36	\vdash		+	- 2.9			\vdash		\vdash	\vdash	+	+		+	+	_	+	+	+	-	\vdash	-	-	-		+	+	+	┢──	┢┻┥	┝──┦	\vdash	⊢	\vdash	┢─┤	4.92
		157	2.9						2.0																																				4.37
		153																							3.4	4																			4.26
	- F	222	2.0	_	+	\vdash						+	+	+				\vdash	\vdash	+	+	-+	+	+	+	+	+	+-		-		-		\vdash	+	+	+	–	┢─┤	┢──┦	2.3	\vdash	──'	\vdash	3.98
,		128	2.9						2.2			+	+	1					\vdash			+	+	+	+	+	+	+	+	\mathbf{I}		1		\vdash	+	+	+	<u>†</u>	┢┼┤	-	\vdash		\vdash	<u> </u> −	3.59
	Ľ	23	2.9																											L	L														3.53
		147									1.1													T													\square		\square		\square	\square		\square	3.45
	⊢	212	++	_	+	\vdash	$ \rightarrow $					+	+-	+		\vdash		\vdash	\vdash	-+	1 0	-+	+	+	+	+	+	1.5	-	\vdash			-	$ \rightarrow $	+	+		—	┢─┤	┝──┦	\vdash	\vdash	—′	\vdash	3.36
	F	27	++	-	+				-				1.3		-				\vdash	+	1.7	-+	+	+	+	+	+	+	+	\vdash	-		-		+	+	+-	<u> </u>	┢─┤	┍─┦	\vdash	\vdash	\vdash	┢──┦	3.04
1	Ľ	49																						1		L	t			L														2.1	2.90
	F	106								1.6		1											T	T			T										+	\vdash	F		\square				2.90
	- F	28	++	_	+	$\left \right $				┝─┤			+	+						+	+	_	+	+	+	+	+	+-	+	┢			<u> </u>		+	+	┼──	—	┢─┤	┢──┦	\vdash	\vdash	—'	1.9	2.82
	F	236	++	-	+				-				+	+	-				\vdash	1.3	+	-+	+	+	+	+	+	+	+	\vdash	-		-		+	+	+-	<u> </u>	┢─┤	┍─┦	\vdash	\vdash	\vdash	1.0	2.37
								_				_	-		÷								_	_			-		-					_	_		_	<u> </u>							

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمیایی

۲-6-3- بررسی آماری چندمتغیره

۲-۲-۳-۱ محاسبات و پردازشهای دو متغیره دادههای خام

طبق شرح خدمات در این بخش اقدام به محاسبه ضرایب همبستگی پیرسون و اسپیرمن دادههای خام و نرمال (در صورت نرمال نبودن تابع توزیع هر عنصری با تبدیل لگاریتمی نرمال شد) گردید. نتیجه این محاسبات به ترتیب در جداول ۲–۱۰ و ۲–۱۱ آورده شده است. در این جداول برای تفکیک مناسب از رنگآمیزی زیر استفاده شده است:

- مقادیر بالاتر از ۸/۰ برنگ قرمز
- مقادیر بین ۸/۰- ۶/۶ برنگ نارنجی
 - مقادیر بین ۶/۰-۴/۰ برنگ زرد
- مقادیر کوچکتر از ۴/۰ بدون رنگ
- گروه Ca-Mg-Fe: این گروه که دارای ضریب همبستگی متوسطی می باشند عموماً جزء عناصر سنگ ساز قرار می گیرند
 و در کانیهایی نظیر آمفیبولها، پیروکسنها و اصولاً کانیهای فرومنیزین قرار دارند. با توجه به سنگ شناسی محدوده نیز
 این امر توجیه پذیر است.
- گروه Ał Ca-Na: این گروه را نیز میتوان جزء عناصر سنگ ساز با همبستگی متوسط دانست. این عناصر در ساخت
 کانی پلاژیوکلاز که در واحدهای دیوریتی و گابرویی یکی از اصلی ترین کانیها میباشد نقش دارند. در قسمتهای اسیدی تر
 سنگها مقدار سدیم و در بخش بازیک تر (گابرویی) مقدار Ca بالاتر است. همبستگی متوسط بین Al Ca-Na
 سنگها مقدار سدیم و در بخش بازیک تر (گابرویی) مقدار Ca بالاتر است. همبستگی متوسط بین Al Ca-Na
 رویه پیروی می کند.
- گروه Mn این گروه که از همبستگی متوسط به بالا برخوردار است جزء عناصر اولیهٔ سنگهای ماگمایی متوسط تا بازیکاند. بعبارت دیگر حضور و همبستگی متوسط به بالای این عناصر در سنگهای دیوریتی، گابرویی و گابرو – دیوریتی موجود در منطقه با توجه به مقادیر مطلق آنها طبیعتاً نمیتواند بیانگر کانی سازی خاص باشد و عموماً مربوط به ترکیب حد واسط تا بازیک ماگمای سازندهٔ سنگهای نفوذی منطقهاند.
- گروههای As-Sb و Pb-Ba دارای همبستگی خوبی هستند که شاید نمایانگر نوعی کانیسازی هیدروترمال درجه حرارت پایین باشند (براساس کانی سنگین و مقادیر مطلق مشخص خواهد شد.) در این بین شاید همبستگی K با Ba وجود نوعی

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمیایی

سیالات هیدروترمالی را نمایش دهد که موجب نهشت رگه، رگچههایی از باریت- گالن و آنتیموان و آرسنیک در سنگهای ماگمایی اسیدیتر (با حضور فلدسپاتهای آلکالن) شده است.

- گروه دیگر شامل عناصر P-Ti است که از همبستگی متوسطی برخوردارند. این عناصر در سنگهای بازیک می توانند معرف نوعی کانیسازی تیتان و فسفات آذرین باشند که باید بر مبنای نتایج مطالعات کانی سنگین و مقاطع نازک و صیقلی و DXX در مورد آنها قضاوت نمود (وجود کانیهای ایلمنیت، آپاتیت، تیتانو مگنتیت و ...). البته بنظر نمی رسد در این محدوده با توجه به بررسیهای انجام شده از این دست کانی سازی وجود داشته باشد و بیشتر همبستگی نمی رسازی وجود داشته باشد و آنها را باید بر می ایلمنیت، آپاتیت، تیتانو مگنتیت و ...).
- گروه دیگری که از همبستگی خوب و حتی بالایی برخوردارند گروه عناصر Fe-Ti-V میباشد که همراهی (همبستگی)
 نسبی با P (در ادامهٔ گروه بالا) نیز میتواند گویای نوعی کانیسازی از تیپ Early Magmatic Ore deposit باشد. این
 موضوع با بررسی نتایج مطالعات دستگاهی (XRD و میکروسکوپی) نمایان خواهد شد.
 - همبستگی پایین بین عناصر Au, Zn, Pb, Cu می تواند از نکات جالب اکتشافی باشد.
 - بالاترین همبستگیها بین عناصر مربوط به خانوادهٔ لانتانیدها و اکتنیدها (U,Th) میباشد.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

جدول ۲-۱۰- ماتریس همبستگی پیرسون محاسبه شده بر اساس مقادیر داده خام در منطقه مطالعاتی

Variables	Au	Al	As Ba	Be	Bi C	a C	Cd Ce	Co	Cr	Cs Cu	Dy Er	Eu Fe	Gd Ho	K La	Li Mg	Mn Mo	Na	Nb	Nd N	li P	Pb	Pr 1	Rb S	s s	Sb Sc	Sm Sn	Sr	Tb	Te Th	ті п	Tm U	v w	Yb Z	Zn Zr
Au	1	-0.090 0	0.100 0.07	-0.036	0.144 -0.1	155 -0.1	141 0.01	8 -0.01	6 -0.010	0.052 -0.024	-0.064 -0.074	4 -0.025 -0.022	-0.076 -0.095	0.054 0.031	0.080 -0.13	4 0.021 -0.06	9 -0.084	0.035 -	0.025 0.0	034 -0.09	9 0.060	-0.004 0.	006 -0.	112 0.1	170 -0.016	-0.039 0.009	-0.046	-0.070 -	0.002 0.012	0.007 -0.055	-0.036 -0.040	0.027 0.013	-0.103 -0.	.104 0.036
Al	-0.090	1 -(0.368 -0.3	79 -0.048	-0.263 0.6	<mark>623</mark> -0.2	220 -0.34	15 0.34	3 0.030	-0.210 0.182	0.321 0.354	0.168 0.489	0.202 0.328	-0.356 -0.314	-0.254 0.66	2 0.143 -0.15	5 0.573	-0.088 -	0.186 -0.1	158 0.18	8 -0.191 -	-0.242 <mark>-0</mark> .	<mark>455</mark> 0.1	164 -0.3	379 0.350	-0.020 0.053	0.325	0.275	0.074 -0.377	0.300 -0.288	0.342 -0.323	0.319 -0.167	0.350 0.	029 -0.118
As	0.100	-0.368	1 0.63	33 0.117	0.298 -0.3	388 0.2	295 0.58 [°]	7 -0.17	9 0.083	0.509 -0.134	-0.235 -0.304	4 -0.019 -0.343	-0.046 -0.281	0.571 0.599	0.523 -0.48	<mark>88</mark> -0.007 0.222	2 <mark>-0.561</mark>	0.128	0.424 0.2	-0.18	34 0.505	0.521 0.	<mark>636</mark> -0.	152 0.6	658 -0.101	0.207 0.096	-0.030	-0.205 -	0.044 0.554	-0.344 0.208	-0.221 0.413	-0.196 0.376	-0.351 0.	033 0.270
Ba	0.076	-0.379	<mark>).633</mark> 1	0.217	0.407 -0.5	5 <mark>29</mark> 0.3	341 0.792	2 -0.28	3 -0.068	0.614 -0.169	-0.122 -0.183	3 0.098 -0.310	0.091 -0.149	0.846 0.834	0.611 -0.59	0.018 0.393	3 <mark>-0.466</mark>	0.385	0.645 0.2	-0.01	4 0.495	0.740 0.	845 -0.1	285 0.7	709 -0.127	0.381 0.156	0.027	-0.081 -	0.013 0.826	-0.322 0.528	-0.141 0.635	-0.317 0.436	-0.198 0.	136 0.161
Be	-0.036	-0.048 0	0.117 0.21	17 1	0.137 -0.2	201 0.0	073 0.274	4 -0.00	3 0.028	0.112 0.064	0.142 0.146	0.142 0.050	0.192 0.137	0.236 0.319	0.201 -0.17	78 0.053 0.102	2 -0.024	0.198	0.313 0.1	03 -0.07	9 0.092	0.323 0.	238 -0.	136 0.3	309 0.085	0.266 0.312	-0.074	0.173 -	0.052 0.252	0.056 0.242	0.068 0.184	0.025 0.231	0.096 0.	156 0.017
Bi	0.144	-0.263 0).298 0.40	0.137	1 -0.2	250 0.1	176 0.30	6 -0.17	5 -0.047	0.377 0.062	-0.244 -0.252	2 -0.114 -0.323	-0.130 -0.249	0.335 0.370	0.323 -0.32	26 -0.184 0.000	6 -0.369	0.070	0.213 0.1	43 -0.10	08 0.363	0.265 0.	<mark>408</mark> -0.1	203 0.5	514 -0.155	0.056 -0.080	0.076	-0.191	0.163 0.402	-0.241 0.462	-0.270 0.267	-0.218 0.279	-0.283 0.	066 -0.048
Ca	-0.155	0.623 -0	0.388 <mark>-0.5</mark>	<mark>29</mark> -0.201	-0.250 1	-0.	118 <mark>-0.60</mark>	<mark>)9</mark> 0.21	3 -0.025	-0.281 0.102	0.014 0.099	-0.176 0.159	-0.111 0.070	-0.562 -0.547	<mark>-0.468</mark> 0.61	1 -0.080 -0.36	67 0.515	-0.193	<mark>.0.460</mark> -0.2	200 0.32	1 -0.304 -	-0.514 -0.	610 0.4	480 -0.4	<mark>491</mark> 0.057	-0.322 -0.170	0.570	-0.043	0.103 <mark>-0.537</mark>	0.218 -0.410	0.102 -0.513	0.229 -0.275	0.141 0.	014 -0.191
Cd	-0.141	-0.220 0	0.295 0.34	41 0.073	0.176 -0.1	118 1	1 0.324	4 -0.01	3 0.024	0.199 0.083	-0.047 -0.049	0.036 -0.108	0.079 -0.069	0.355 0.332	0.215 -0.27	0.131 0.30	1 -0.312	0.128	0.286 0.0	91 0.05	8 0.318	0.315 0.	373 0.2	201 0.2	266 -0.048	0.203 0.112	-0.002	0.014 -	0.012 0.314	-0.170 0.193	-0.054 0.410	-0.097 0.206	-0.054 0.	<mark>454</mark> 0.248
Ce	0.018	-0.345	0.587 0.79	0.274	0.306 -0.6	<mark>509</mark> 0.3	324 1	-0.18	9 0.018	0.477 -0.091	0.174 0.072	0.382 -0.050	0.386 0.116	0.747 0.931	0.514 -0.52	28 0.195 0.50 [°]	7 <mark>-0.400</mark>	0.421	0.840 0.1	81 0.02	4 <u>0.457</u>	0.910 <u>0</u> .	<mark>785</mark> -0.	301 0.5	568 0.130	0.652 0.332	-0.171	0.219 -	0.068 0.805	-0.122 0.482	0.096 0.687	-0.118 0.446	0.030 0.	182 0.298
Co	-0.016	0.343 -0	0.179 -0.2	83 -0.003	-0.175 0.2	213 -0.0	013 -0.18	39 1	0.391	-0.178 0.359	0.219 0.137	0.241 0.485	0.187 0.159	-0.396 -0.249	-0.086 0.55	2 0.598 0.019	9 0.126	0.046 -	0.041 0.4	03 0.06	7 -0.131 -	-0.150 -0.	301 -0.	074 -0.	178 0.409	0.109 0.145	0.113	0.226 -	0.014 -0.263	0.351 -0.208	0.142 -0.147	0.455 -0.096	0.208 0.	160 0.277
Cr	-0.010	0.030	0.083 -0.0	68 0.028	-0.047 -0.0	025 0.0	024 0.01	8 0.39	1 1	0.044 -0.053	3 -0.104 -0.139	9 -0.083 -0.015	-0.107 -0.145	5 -0.089 -0.015	0.083 0.37	1 0.149 0.049	9 -0.186	-0.064 -	0.055 0.7	<mark>'86</mark> -0.13	52 0.008 ·	-0.041 -0.	006 0.0	013 0.0	038 0.224	-0.102 -0.077	-0.122	-0.129 -	0.015 -0.009	-0.039 -0.050	-0.110 0.070	0.115 -0.054	-0.115 -0.	.153 0.330
Cs	0.052	-0.210	0.509 0.61	4 0.112	0.377 -0.2	281 0.1	199 0.47	7 -0.17	8 0.044	1 -0.091	-0.359 -0.416	5 -0.222 -0.428	-0.190 -0.376	0.528 0.521	0.727 -0.25	55 -0.220 0.17	5 <mark>-0.534</mark>	0.084	0.310 0.2	.82 0.00	1 0.415	0.401 0.	<mark>669</mark> -0.	062 0.6	604 -0.047	0.076 -0.037	0.245	-0.336	0.039 0.562	-0.427 0.379	-0.369 0.451	-0.264 0.305	<u>-0.412</u> -0.	.050 0.103
Cu	-0.024	0.182 -0	0.134 -0.1	69 0.064	0.062 0.1	.02 0.0	083 -0.09	0.35	9 -0.053	-0.091 1	0.231 0.202	0.147 0.307	0.225 0.222	-0.236 -0.081	-0.117 0.18	5 0.159 0.018	8 0.074	0.057	0.023 -0.0	023 0.04	7 -0.075 -	-0.029 -0.	173 0.0	040 -0.	112 0.277	0.140 0.352	0.023	0.282 -	0.011 -0.156	0.233 -0.077	0.189 -0.075	0.231 0.154	0.140 0.	559 0.008
Dy	-0.064	0.321 -0	0.235 -0.12	22 0.142	-0.244 0.0	014 -0.0	047 0.174	4 0.21	9 -0.104	-0.359 0.231	1 0.933	0.829 0.830	0.886 0.948	-0.044 0.185	-0.278 0.08	2 0.580 0.27	1 0.572	0.563	0.486 -0.2	260 0.32	7 -0.040	0.375 -0.	192 -0.	126 -0.2	246 0.288	0.681 0.508	-0.332	0.949	0.029 -0.007	0.739 0.008	0.906 0.097	0.519 0.218	0.899 0.4	402 0.031
Er	-0.0/4	0.354 -0	0.304 -0.1	83 0.146	-0.252 0.0	99 -0.0	049 0.072	2 0.13	/ -0.139	-0.416 0.202	0.933 1	0.759 0.804	0.828 0.962	-0.067 0.100	-0.391 0.10	8 0.508 0.20	2 0.641	0.503	0.398 -0.3	340 0.34	0 -0.053	0.287 -0.	270 -0.	059 -0.2	295 0.208	0.574 0.442	-0.329	0.915	0.064 -0.052	0.712 -0.028	0.932 0.029	0.521 0.192	0.923 0.1	376 -0.082
Eu	-0.025	0.168 -0	0.019 0.09	0.142	-0.114 -0.1	50 0.0	100 0.05	2 0.24	1 -0.083	-0.222 0.14/	0.829 0.759	1 0.682	0.880 0.793	0.150 0.355	-0.08/ -0.10	0.63/ 0.304	4 0.325	0.511	0.637 -0.1	0.31	5 0.060	0.543 0.	038 -0.	232 -0.0	055 0.183	0.770 0.481	-0.303	0.848	0.002 0.180	0.552 0.141	0.740 0.264	0.382 0.296	0.744 0.	334 0.139
Fe	-0.022	0.489 -0	0.343 -0.3	10 0.050	-0.323 0.1	.59 -0.	108 -0.05	0 0.48	5 -0.015	-0.428 0.307	0.830 0.804	0.682 1	0.698 0.818	-0.226 -0.066	0.022 0.36	9 0.6/8 0.23	5 0.552	0.434	0.236 -0.1	189 0.33	9 -0.145	0.119 -0.	3/1 -0.	169 0.	366 0.437	0.480 0.416	-0.263	0.795	0.047 -0.216	0.826 -0.143	0.786 -0.045	0.723 0.090	0.791 0.	360 0.110
Ga	-0.0/6	0.202 -0	0.046 0.09	40 0.192	-0.130 -0.1	70 0.0	0.380	6 0.18	/ -0.10/	-0.190 0.225	0.886 0.828	0.880 0.698		0.150 0.401	-0.083 -0.07	0 0 545 0 22	3 0.358	0.567	0.692 -0.1	0.39	5 0.062	0.583 0.	244 0	168 -0.0	031 0.233	0.622 0.472	-0.306	0.917	0.005 0.240	0.5/1 0.124	0.795 0.278	0.389 0.344	0.783 0.4	442 0.071
H0	-0.095	0.328 -0	0.281 -0.14	49 0.137	0.225 0.0	····	069 0.110	0 0.15	9 -0.145	-0.376 0.222	0.948 0.962	0.793 0.818		-0.069 0.145	-0.335 0.09	9 0.545 0.23	9 0.605	0.543	0.444 - 0.3	324 0.34	8 -0.055	0.333 -0.	244 -0.	140 0.	$\frac{277}{0.241}$	0.622 0.472	-0.325	0.927	0.044 -0.039	0.738 0.006	0.916 0.056	0.555 0.229	0.920 0.	38/ -0.03/
Le	0.034	-0.330	$0.5/1$ 0.6^2	0.230	0.333 -0.	02 0.3	0.74	-0.39	0 0.015	0.520 -0.250	0 185 0 100	0.150 -0.220	0.130 -0.005	0.705 1	0.544 0.54	-0.041 0.57.	3 -0.393	0.555	0.021 0.0	50 0.00	0 0.323	0.719 0.	806 -0.	207 0.0	60 0.027	0.598 0.205	-0.103	0.018 -	0.003 0.800	-0.301 0.393	0.122 0.700	-0.313 0.430	-0.117 0.	222 0.216
La	0.031	0.254 0	0.399 0.83	0.319	0.370 -0	168 0.3	0.92 0.93	1 -0.24	6 0.082	0.321 -0.081	0.165 0.100		0.401 0.143	0.793 1 0.576 0.544	1 0.21	2 0 107 0 28	1 0.610	0.340	0.875 0.1	40 0.08	9 0.492	0.940 0.	720 0	172 0.6	675 0.021	0.039 0.304	-0.121	0.230	0.012 0.850	0.208 0.266	0.123 0.709	0.226 0.240	0.059 0.	027 0.100
Mg	-0.134	0.662	0.488 -0.5	0.201	-0.325 -0.5	11 -0 [′]	279 - 0.51	4 -0.08	$\frac{0}{2}$ 0.371	-0.255 0.185	0.082 0.108	-0.087 - 0.320	-0.078 0.000	-0.584 -0.557		0.008 -0.10	1 -0.019	0.114	0.393 0.3	80 0 12	1 - 0.307	0.497 -0	577 01	225 -0.	516 0.446	-0.227 -0.137	0.034	0.023	0.010 0.009	-0.398 0.300	0.111 -0.426	0.310 -0.336	-0.393 0.	120 0.010
Mn	0.021	0.002 -0	0.007 0.01	18 0.053	-0.184 -0.0	11 -0.2	131 0 10 ⁴	5 0.50	8 0 1/0	-0.233 0.183	0.580 0.508	0.637 0.678	0.566 0.545		-0.107 0.00	8 1 0.35	7 0 230	0.416	0.450 0.1	59 0.12	6 -0.007	0.294 -0	088 -0	170 -0	118 0 304	0.403 0.357	0.240	0.572	0.033 0.015	0.212 - 0.040	0.512 0.114	0.510 -0.550	0.574 0	301 0 270
Mo	-0.021	-0.155 (0.007 0.01	0.000	0.006 -0.3	367 0.3	301 0.19	7 0.01	9 0.049	0.175 0.018	0.271 0.202	0.304 0.235	0.333 0.239	0.375 0.487	0.281 -0.10	0 1 0.55 08 0 357 1	-0.158	0.447	0.515 0.1	31 0.17	7 0 227	0.294 = 0.	360 -0.	054 0 2	217 0 149	0.461 0.291	-0.242	0.264	0.035 0.015	0.137 0.274	0.228 0.524	0.181 0.254	0.207 0	262 0 204
Na	-0.084	0.133 -0	0.561 - 0.4	66 -0 024	-0.369 0.5	15 -0 ²	312 -0 40	0 0.01	6 -0 186	-0 534 0 074	0.572 0.641	0.325 0.552	0.358 0.605	-0 393 -0 348	-0.619 0.37	2 0 230 -0 15	i8 1	0.214	0.118 -0.4	129 0.24	8 -0 420 -	-0 215 -0	572 0 (080 -0	555 0.066	0.106 0.192	0.145	0.495	0 100 -0 439	0.137 0.271	0.599 -0.423	0.373 -0.070	0.644 0	075 -0 274
Nb	0.035	-0.088 () 128 0 38	35 0 198	0.070 -0.1	193 0 1	128 0.42	1 0.04	6 -0.064	0.084 0.057	0.563 0.503	0.511 0.434	0.567 0.543	0.335 0.540	0.019 0.037	59 0416 044	7 0 214	1	0.622 -0.0	01 0 31	1 0 162	0.595 0	255 -0	232 0.2	273 -0.004	0.619 0.505	-0.111	0.529	0.088 0.436	0.583 0.235	0.525 0.453	0.344 0.534	0.500 0	332 0 146
Nd	-0.025	-0.186 0	0.424 0.64	45 0.313	0.213 -0.4	160 0.2	286 0.840	0 -0.04	1 -0.055	0.310 0.023	0.486 0.398	0.637 0.236	0.692 0.444	0.621 0.875	0.393 -0.43	8 0.380 0.51	5 -0.118	0.622	1 0.0	62 0.26	5 0.368	0.954 0.	613 -0	292 0.4	458 0.094	0.883 0.500	-0.212	0.537	0.003 0.711	0.176 0.412	0.398 0.626	0.095 0.534	0.358 0.	328 0.178
Ni	0.034	-0.158 0	0.204 0.20	06 0.103	0.143 -0.2	200 0.0	091 0.18	1 0.40	3 0.786	0.282 -0.023	-0.260 -0.340	0.138 -0.189	-0.170 -0.324	0.080 0.159	0.340 0.18	9 0.059 0.13	1 -0.429	-0.001	0.062 1	-0.15	6 0.137	0.099 0.	250 -0.	148 0.2	287 0.058	-0.029 -0.039	-0.003	-0.245 -	0.048 0.218	-0.240 0.083	-0.290 0.199	-0.122 0.001	-0.305 -0.	106 0.282
Р	-0.099	0.188 -0	0.184 -0.0	14 -0.079	-0.108 0.3	21 0.0	0.024	4 0.06	7 -0.132	0.001 0.047	0.327 0.340	0.315 0.339	0.395 0.348	0.008 0.089	-0.082 0.12	1 0.156 0.17	7 0.248	0.311	0.265 -0.1	156 1	-0.040	0.179 -0.	097 0.1	190 -0.2	253 -0.045	0.319 0.037	0.220	0.327	0.141 0.035	0.316 0.055	0.290 0.142	0.224 0.064	0.329 0.1	.205 -0.023
Pb	0.060	-0.191	0.505 0.49	0.092	0.363 -0.3	304 0.3	318 0.45 [°]	7 -0.13	1 0.008	0.415 -0.075	5 -0.040 -0.053	3 0.060 -0.145	0.062 -0.055	0.525 0.492	0.411 -0.30	07 -0.007 0.22	7 -0.420	0.162	0.368 0.1	37 -0.04	0 1	0.425 0.	524 -0.	104 0.4	494 -0.119	0.199 0.066	-0.132	-0.009	0.023 0.504	-0.226 0.369	-0.031 0.432	-0.109 0.293	-0.083 0.	.171 0.193
Pr	-0.004	-0.242	0.521 0.74	0.323	0.265 -0.5	514 0.3	315 0.91	0 -0.15	0 -0.041	0.401 -0.029	0.375 0.287	0.543 0.119	0.583 0.333	0.719 0.940	0.452 -0.49	07 0.294 0.514	4 -0.215	0.595	0.954 0.0	099 0.17	9 0.425	1 0.	709 -0.1	303 0.5	530 0.066	0.797 0.448	-0.200	0.415 -	0.038 0.778	0.075 0.458	0.302 0.672	0.011 0.537	0.249 0.1	.288 0.203
Rb	0.006	-0.455 0	0.636 0.84	0.238	0.408 -0.6	<mark>510</mark> 0.3	373 0.78 :	5 -0.30	1 -0.006	0.669 -0.173	-0.192 -0.270	0.038 -0.371	0.046 -0.244	0.886 0.806	0.739 -0.57	7 -0.088 0.360	0 -0.572	0.255	0.613 0.2	.50 -0.09	07 0.524	0.709	1 -0.	186 0.7	749 -0.097	0.396 0.187	-0.058	-0.121 -	0.013 0.845	-0.418 0.558	-0.234 0.696	-0.353 0.434	-0.293 0.	.098 0.190
S	-0.112	0.164 -0	0.152 -0.2	85 -0.136	-0.203 0.4	80 0.2	201 -0.30	01 -0.07	4 0.013	-0.062 0.040	-0.126 -0.059	9 -0.232 -0.042	-0.168 -0.092	2 -0.140 -0.297	-0.172 0.22	5 -0.170 -0.05	64 0.080	-0.232 -	0.292 -0.1	148 0.19	0 -0.104 -	-0.303 -0.	186	1 -0.2	254 -0.001	-0.238 -0.122	0.182	-0.142 -	0.002 -0.286	-0.032 -0.264	-0.062 -0.115	0.032 -0.132	-0.063 0.	.172 -0.022
Sb	0.170	-0.379	0.658 0.70	0.309	0.514 -0.4	<mark>491</mark> 0.2	266 <mark>0.56</mark> 8	8 -0.17	8 0.038	0.604 -0.112	2 -0.246 -0.295	5 -0.055 -0.366	-0.031 -0.277	0.678 0.660	0.675 -0.51	<mark>.6</mark> -0.118 0.21	7 <mark>-0.555</mark>	0.273	<mark>0.458</mark> 0.2	.87 -0.25	53 <mark>0.494</mark>	0.530 0.	<mark>749</mark> -0.1	254	1 -0.124	0.235 0.131	-0.002	-0.175 -	0.012 0.709	-0.330 0.451	-0.263 0.544	-0.278 0.483	-0.341 0.	106 0.119
Sc	-0.016	0.350 -0	0.101 -0.12	27 0.085	-0.155 0.0)57 -0.0	048 0.13	0 0.40	9 0.224	-0.047 0.277	0.288 0.208	0.183 0.437	0.233 0.241	-0.173 0.027	0.071 0.44	6 0.304 0.149	9 0.066	-0.004	0.094 0.0	58 -0.04	5 -0.119	0.066 -0.	097 -0.	001 -0.	124 1	0.205 0.199	0.047	0.261	0.010 -0.074	0.325 -0.098	0.186 0.010	0.509 -0.071	0.178 0.1	214 0.414
Sm	-0.039	-0.020 0	0.207 0.38	81 0.266	0.056 -0.3	322 0.2	203 0.652	2 0.10	9 -0.102	0.076 0.140	0.681 0.574	0.770 0.480	0.816 0.622	0.398 0.659	0.226 -0.27	77 0.493 0.46	1 0.106	0.619	0.883 -0.0	029 0.31	9 0.199	0.797 0.	396 -0.	238 0.2	235 0.205	1 0.602	-0.247	0.723 -	0.013 0.487	0.391 0.262	0.572 0.472	0.257 0.436	0.533 0.4	407 0.179
Sn	0.009	0.053 0	0.096 0.15	56 0.312	-0.080 -0.1	170 0.1	0.332	2 0.14	5 -0.077	-0.037 0.352	0.508 0.442	0.481 0.416	0.508 0.472	0.205 0.364	0.057 -0.13	0.357 0.29	1 0.192	0.505	<mark>0.500</mark> -0.0	039 0.03	7 0.066	0.448 0.	187 -0.	122 0.1	131 0.199	0.602 1	-0.188	0.535	0.047 0.208	0.414 0.067	0.462 0.231	0.271 0.375	0.384 0.	319 0.171
Sr	-0.046	0.325 -0	0.030 0.02	-0.074	0.076 0.5	<mark>70</mark> -0.0	002 -0.17	0.11	3 -0.122	0.245 0.023	-0.332 -0.329	9 -0.303 -0.263	-0.306 -0.325	5 -0.165 -0.121	0.054 0.24	6 -0.242 -0.26	6 0.145	-0.111 -	0.212 -0.0	003 0.22	0 -0.132 -	-0.200 -0.	058 0.1	182 -0.0	002 0.047	-0.247 -0.188	1	-0.347	0.100 -0.085	-0.141 -0.093	-0.343 -0.175	-0.070 -0.094	-0.308 -0.	.031 -0.017
Тb	-0.070	0.275 -0	0.205 -0.0	81 0.173	-0.191 -0.0	043 0.0	0.219	9 0.22	6 -0.129	-0.336 0.282	0.949 0.915	0.848 0.795	0.917 0.927	0.018 0.230	-0.233 0.02	3 0.572 0.264	4 <mark>0.495</mark>	0.529	0.537 -0.2	245 0.32	7 -0.009	0.415 -0.	121 -0.	142 -0.	175 0.261	0.723 0.535	-0.347	1	0.057 0.074	0.667 0.096	0.864 0.159	0.461 0.258	0.862 0.4	<mark>431</mark> 0.054
Te	-0.002	0.074 -0	0.044 -0.0	13 -0.052	0.163 0.1	.03 -0.0	012 -0.06	58 -0.01	4 -0.015	0.039 -0.011	0.029 0.064	0.002 0.047	0.005 0.044	-0.005 0.012	-0.010 0.05	3 -0.033 0.030	6 0.100	0.088	0.003 -0.0	048 0.14	1 0.023 -	-0.038 -0.	013 -0.	002 -0.	012 0.010	-0.013 0.047	0.100	0.057	1 0.046	0.104 0.070	0.066 0.013	0.093 0.010	0.082 0.	008 -0.009
Th	0.012	-0.377	0.55 <mark>4</mark> 0.82	0.252	0.402 -0.5	5 <mark>37</mark> 0.3	314 0.80 :	5 -0.26	3 -0.009	0.562 -0.156	5 -0.007 -0.052	2 0.180 -0.216	0.240 -0.039	0.806 0.856	0.609 -0.54	<mark>5</mark> 0.015 0.410	<mark>6 -0.439</mark>	0.436	0.711 0.2	.18 0.03	5 <u>0.504</u>	0.778 <mark>0</mark> .	845 -0.1	286 0.7	709 -0.074	0.487 0.208	-0.085	0.074	0.046 1	-0.248 0.596	-0.011 0.767	-0.230 0.504	-0.052 0.	115 0.130
Ti	0.007	0.300 -0	0.344 -0.3	22 0.056	-0.241 0.2	218 -0.1	170 -0.12	22 0.35	1 -0.039	-0.427 0.233	0.739 0.712	0.552 0.826	0.571 0.738	-0.301 -0.081	-0.398 0.21	2 0.562 0.13 [°]	7 <mark>0.611</mark>	0.583	0.176 -0.2	240 0.31	6 -0.226	0.075 -0.	<mark>418</mark> -0.	032 -0.3	330 0.325	0.391 0.414	-0.141	0.667	0.104 -0.248	1 -0.178	0.701 -0.125	0.804 0.147	0.702 0.1	324 0.081
П	-0.055	-0.288 0	0.208 0.52	0.242	0.462 -0.4	<mark>410</mark> 0.1	193 0.482	2 -0.20	8 -0.050	0.379 -0.077	0.008 -0.028	3 0.141 -0.143	0.124 0.006	0.593 0.527	0.366 -0.34	0 -0.024 0.274	4 -0.285	0.235	0.412 0.0	0.05	5 0.369	0.458 0.	<mark>558</mark> -0.1	264 0.4	<mark>451</mark> -0.098	0.262 0.067	-0.093	0.096	0.070 0.596	-0.178 1	-0.101 0.547	-0.199 0.323	-0.003 0.	100 0.049
Tm	-0.036	0.342 -0	0.221 -0.14	41 0.068	-0.270 0.1	.02 -0.0	054 0.09	6 0.14	2 -0.110	-0.369 0.189	0.906 0.932	0.740 0.786	0.795 0.916	-0.053 0.123	-0.356 0.11	1 0.512 0.228	8 0.599	0.525	0.398 -0.2	290 0.29	0 -0.031	0.302 -0.	234 -0.	062 -0.2	263 0.186	0.572 0.462	-0.343	0.864	0.066 -0.011	0.701 -0.101	1 0.038	0.513 0.211	0.908 0.1	335 -0.071
U	-0.040	-0.323	0.413 0.63	3 <mark>5</mark> 0.184	0.267 -0.5	513 0.4	410 0.68	7 -0.14	7 0.070	0.451 -0.075	0.097 0.029	0.264 -0.045	0.278 0.056	0.683 0.709	0.607 -0.42	26 0.114 0.524	4 -0.423	0.453	0.626 0.1	99 0.14	2 0.432	0.672 0.	<mark>696</mark> -0.	115 0.5	544 0.010	0.472 0.231	-0.175	0.159	0.013 0.767	-0.125 0.547	0.038 1	-0.116 0.447	0.032 0.1	205 0.293
V	0.027	0.319 -0	0.196 -0.3	17 0.025	-0.218 0.2	29 -0.0	097 -0.11	18 0.45.	5 0.115	-0.264 0.231	0.519 0.521	0.382 0.723	0.389 0.555	-0.315 -0.100	-0.226 0.31	0 0.532 0.18	1 0.373	0.344	0.095 -0.1	0.22	4 -0.109	0.011 -0.	353 0.0	032 -0.2	278 0.509	0.257 0.271	-0.070	0.461	0.093 -0.230	0.804 -0.199	0.513 -0.116	1 0.079	0.519 0.1	271 0.233
W	0.013	-0.167 0).376 0.4.	<u>36</u> 0.231	0.279 -0.2	275 0.2	206 0.44	<mark>6</mark> -0.09	6 -0.054	0.305 0.154	0.218 0.192	0.296 0.090	0.344 0.229	0.456 0.556	0.240 -0.33	6 0.158 0.254	4 -0.070	0.534	0.534 0.0	01 0.06	4 0.293	0.537 0.	434 -0.	132 0.4	483 -0.071	0.436 0.375	-0.094	0.258	0.010 0.504	0.147 0.323	0.211 0.447	0.079 1	0.163 0.1	259 -0.033
Yb	-0.103	0.350 -0	0.351 -0.1	98 0.096	-0.283 0.1	41 -0.0	054 0.03	0 0.20	8 -0.115	-0.412 0.140	0.899 0.923	0.744 0.791	0.783 0.920	-0.117 0.039	-0.395 0.16	7 0.574 0.20	7 0.644	0.500	0.358 -0.3	305 0.32	9 -0.083	0.249 -0.	293 -0.	063 -0.	341 0.178	0.533 0.384	-0.308	0.862	0.082 -0.052	0.702 -0.003	0.908 0.032	0.519 0.163	1 0.	301 -0.091
Zn	-0.104	0.029 0	0.033 0.13	36 0.156	0.066 0.0	014 0.4	454 0.182	2 0.16	0 -0.153	-0.050 0.559	0.402 0.376	0.334 0.360	0.442 0.387	0.131 0.232	0.027 -0.12	0 0.301 0.262	2 0.075	0.332	0.328 -0.1	106 0.20	5 0.171	0.288 0.	098 0.1	172 0.1	106 0.214	0.407 0.319	-0.031	0.431	0.008 0.115	0.324 0.100	0.335 0.205	0.271 0.259	0.301	1 0.080
Zr	0.036	-0.118 0	0.270 0.16	0.017	-0.048 -0.1	191 0.2	248 0.298	8 0.27	/ 0.330	0.103 0.008	0.031 -0.082	2 0.139 0.110	0.071 -0.037	0.131 0.216	0.199 0.01	0 0.270 0.204	4 -0.274	0.146	0.178 0.2	-0.02	.3 0.193	0.203 0.	190 -0.	022 0.1	119 <mark>0.414</mark>	0.179 0.171	-0.017	0.054 -	0.009 0.130	0.081 0.049	-0.071 0.293	0.233 -0.033	-0.091 0.	080 1

سازمان زمینشناسی و اکتشاف معدنی کشور

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

جدول ۲-11- ماتریس همبستگی اسپیرمن محاسبه شده بر اساس مقادیر داده خام در منطقه مطالعاتی

Variables	Au	Al As	Ba	a Be	Bi	Ca	Cd Ce	Co Cr	Cs Cu	Dy Er	Eu Fe	Gd H	o K	La	Li Mg	Mn Mo	Na	Nb	Nd	Ni P	Pb	Pr	Rb S	Sb Sc	Sm Sn	Sr	Ть	Te Th	Ті ТІ	Tm U	v w	Yb Zn Zr
Au	1 .	-0.158 0.10	0.10	03 -0.007	0.000	-0.131	-0.064 0.104	-0.012 0.079	0.062 -0.045	5 -0.032 -0.055	0.058 -0.017	-0.005 -0.0	54 0.068 0).067 0.	082 -0.147	0.005 -0.05	55 -0.07	7 -0.001	-0.031	0.087 -0.03	52 0.032	2 0.012 0	0.033 -0.0	028 0.092 -0.01	2 0.001 0.005	-0.01	7 -0.011	0.051 0.056	0.014 -0.015	-0.040 0.015	0.022 -0.055	-0.083 -0.081 0.119
Al	-0.158	1 <mark>-0.4</mark> 1	12 -0.4	<mark>15</mark> -0.090	-0.370	0.684	-0.206 -0.363	0.331 0.124	-0.286 0.302	0.307 0.340	0.117 0.459	0.168 0.3	09 -0.381 -0	0.372 -0	.277 0.740	0.126 -0.22	0.577	<mark>7</mark> -0.149	-0.234	-0.173 0.23	38 -0.29	2 -0.292 <mark>-(</mark>	0.3 0.3 0.3	88 <mark>-0.466</mark> 0.36	9 -0.038 -0.015	0.262	0.251	0.092 -0.396	6 0.311 -0.270	0.343 -0.372	0.321 -0.211	0.347 -0.006 -0.189
As	0.108	<mark>-0.412</mark> 1	0.60	09 0.090	0.378	<mark>-0.458</mark>	0.282 0.526	-0.154 0.166	0.533 -0.071	-0.224 -0.280	-0.013 -0.319	-0.056 -0.2	.73 0.519 0).532 0.	506 -0.489	0.012 0.26	4 <mark>-0.55</mark> 4	<mark>4</mark> 0.105	0.371	0.369 -0.22	24 0.614	4 0.465 0	<mark>).582</mark> -0.2	257 0.667 -0.10	5 0.182 0.163	-0.02	2 -0.187 -	-0.050 0.514	-0.360 0.191	-0.227 0.438	-0.237 0.312	-0.314 0.091 0.349
Ba	0.103	-0.415 0.60	<mark>)9</mark> 1	0.355	0.550	-0.538	0.334 0.748	-0.268 -0.071	0.664 -0.199	9 -0.134 -0.172	0.064 -0.291	0.078 -0.1	56 0.817 0).821 0.	629 -0.624	0.017 0.39	6 <mark>-0.44</mark>	0.436	0.616	0.336 0.00	0.623	3 0.721 0	.816 -0.3	356 0.714 -0.20	2 0.357 0.265	0.092	-0.088 -	-0.032 0.821	-0.285 0.502	-0.162 0.662	-0.332 0.460	-0.180 0.286 0.172
Be	-0.007 ·	-0.090 0.09	0.35	55 1	0.228	-0.281	0.192 0.455	-0.087 -0.145	5 0.115 0.023	0.342 0.282	0.283 0.197	0.368 0.3	21 0.396 0	<mark>).486</mark> 0.	253 -0.279	0.118 0.22	2 0.073	3 0.464	0.484	-0.018 0.01	0.237	7 <mark>0.482</mark> 0	0.350 -0.2	0.367 0.17	5 0.472 0.510	-0.07	2 0.348 -	-0.042 0.364	0.242 0.332	0.251 0.317	0.079 0.448	0.237 0.489 0.056
Bi	0.000 ·	-0.370 0.37	78 <mark>0.55</mark>	50 0.228	1	-0.410	0.303 0.422	-0.134 -0.027	7 <mark>0.449</mark> -0.049	9 -0.251 -0.301	-0.067 -0.345	-0.079 -0.2	.77 <mark>0.402</mark> 0).504 0.	403 -0.446	-0.089 0.14	7 <mark>-0.50</mark>	0.153	0.342	0.262 -0.22	23 0.540	0 0.396 0	<mark>.470</mark> -0.3	0.14 0.583 0.14	5 0.137 -0.023	0.028	-0.186 -	-0.010 0.519	-0.292 0.640	-0.342 0.422	-0.263 0.361	-0.287 0.177 0.062
Ca	-0.131	0.684 <mark>-0.45</mark>	58 -0.5	<mark>38</mark> -0.281	-0.410	1	-0.339 <mark>-0.611</mark>	0.187 -0.001	-0.393 0.135	0.111 0.200	-0.127 0.208	-0.044 0.1	68 <mark>-0.569</mark> -(0.542 -0	. <mark>490</mark> 0.607	-0.070 <mark>-0.41</mark>	0.602	<mark>2</mark> -0.199	-0.435	-0.333 0.25	54 <mark>-0.44</mark> :	5 -0.503 -0	0.626 0.5	12 -0.583 0.07	7 -0.277 -0.202	0.454	0.043	0.113 <mark>-0.516</mark>	5 0.272 <mark>-0.408</mark>	0.201 -0.549	0.279 -0.304	0.219 -0.155 -0.267
Cd	-0.064	-0.206 0.28	0.33	34 0.192	0.303	-0.339	1 0.340	0.023 0.043	0.214 0.131	-0.021 -0.011	0.070 -0.036	0.097 -0.0	26 0.329 0	0.321 0.	269 -0.263	0.170 0.37	1 -0.31	9 0.204	0.337	0.188 0.00	08 <mark>0.41</mark> 4	<mark>4</mark> 0.336 0	0.371 -0.1	16 0.335 -0.01	0 0.263 0.207	-0.14	0.049	-0.057 0.306	-0.121 0.206	-0.017 0.470	-0.040 0.244	-0.027 0.393 0.321
Ce	0.104	-0.363 0.52	26 0.74	48 0.455	0.422	-0.611	0.340 1	-0.136 0.018	0.530 -0.138	8 0.239 0.147	0.440 0.041	0.432 0.1	87 0.695 C).932 <mark>0.</mark>	505 -0.514	0.230 0.51	<mark>0</mark> -0.30	08 0.514	0.859	0.294 0.07	77 <mark>0.56</mark> 4	<mark>4</mark> 0.926 0	<mark>.704</mark> -0.3	343 0.600 0.05	2 0.698 0.496	-0.12	4 0.289 -	-0.087 0.764	-0.025 0.501	0.136 0.717	-0.089 0.522	0.107 0.391 0.300
Co	-0.012	0.331 -0.15	54 -0.2	68 -0.087	-0.134	0.187	0.023 -0.136	1 0.325	-0.140 0.610	0.265 0.179	0.266 0.499	0.226 0.2	08 <mark>-0.401</mark> -0	0.238 -0	.043 0.555	0.620 0.02	0.126	6 0.029	-0.019	0.341 0.11	-0.17	0 -0.131 -0	0.259 0.0	01 -0.128 0.43	0.133 0.177	0.082	0.271	0.017 -0.216	5 0.349 -0.170	0.164 -0.129	0.496 -0.118	0.249 0.157 0.237
Cr	0.079	0.124 0.16	-0.0	71 -0.145	-0.027	-0.001	0.043 0.018	0.325 1	0.167 0.207	-0.080 -0.101	-0.063 -0.015	-0.090 -0.1	10 -0.067 -0	0.036 0.	216 0.349	0.175 0.08	5 -0.15	-0.087	-0.055	0.619 -0.10	05 0.066	6 -0.058 0	0.035 0.0	71 0.034 0.28	9 -0.104 -0.038	-0.04	3 -0.110 -	-0.003 -0.009	-0.067 -0.050	-0.095 0.109	0.158 -0.111	-0.092 -0.114 0.389
Cs	0.062	-0.286 0.53	<mark>83</mark> 0.66	<mark>64</mark> 0.115	0.449	-0.393	0.214 0.530	-0.140 0.167	1 -0.054	4 -0.343 <mark>-0.425</mark>	-0.164 <mark>-0.408</mark>	-0.145 -0.3	74 0.540 0).575 0.	820 -0.332	-0.171 0.27	7 <mark>-0.59</mark>	0.157	0.378	0.576 -0.00	04 0.484	4 0.447 0	<mark>.717</mark> -0.1	.94 0.584 -0.05	5 0.152 0.061	0.225	-0.303 -	-0.032 0.623	-0.459 0.386	-0.411 0.584	-0.338 0.268	-0.417 0.070 0.231
Cu	-0.045	0.302 -0.07	71 -0.1	99 0.023	-0.049	0.135	0.131 -0.138	0.610 0.207	-0.054 1	0.164 0.099	0.086 0.359	0.130 0.1	35 -0.351 -0	0.177 -0	.013 0.398	0.349 0.01	5 0.005	5 -0.032	-0.072	0.205 0.11	-0.07	6 -0.130 -0	0.224 0.0	93 -0.109 0.44	<mark>8</mark> 0.050 0.136	0.083	0.140	-0.054 -0.249	0.189 -0.190	0.116 -0.135	0.365 -0.022	0.122 0.367 0.182
Dy	-0.032	0.307 -0.22	24 -0.1	34 0.342	-0.251	0.111	-0.021 0.239	0.265 -0.080	-0.343 0.164	1 0.926	0.811 0.839	0.872 0.9	45 -0.066 0).191 -0	.274 0.206	0.559 0.22	0 0.563	3 0.530	0.448	-0.261 0.44	<mark>48</mark> -0.07	0 0.360 -0	0.188 0.0	04 -0.192 0.28	8 0.641 0.530	-0.29	0.938	0.054 0.015	0.793 0.005	0.896 0.075	0.555 0.247	0.897 0.446 0.004
Er	-0.055	0.340 -0.28	80 -0.1	72 0.282	-0.301	0.200	-0.011 0.147	0.179 -0.101	-0.425 0.099	0.926 1	0.731 0.807	0.812 0.9	53 -0.062 0).121 -0	.377 0.224	0.491 0.16	6 0.626	6 0.481	0.365	-0.360 0.50	<mark>)2</mark> -0.08	0.283 -0	0.246 0.0	76 -0.253 0.20	1 0.532 0.432	-0.30	0.903	0.078 -0.009	0.758 -0.030	0.921 0.040	0.541 0.230	0.915 0.407 -0.098
Eu	0.058	0.117 -0.01	13 0.06	64 0.283	-0.067	-0.127	0.070 0.440	0.266 -0.063	-0.164 0.086	0.811 0.731	1 0.681	0.855 0.7	<mark>63</mark> 0.103 0).350 -0	.128 0.006	0.603 0.27	8 0.316	6 <mark>0.481</mark>	0.576	-0.117 0.39	0.120	0 <mark>0.516</mark> 0	0.041 -0.1	43 0.010 0.18	0.715 0.479	-0.27	9 0.826	0.028 0.178	0.584 0.164	0.702 0.245	0.378 0.299	0.719 0.383 0.127
Fe	-0.017	0.459 -0.31	19 -0.2	91 0.197	-0.345	0.208	-0.036 0.041	0.499 -0.015	5 <mark>-0.408</mark> 0.359	0.839 0.807	0.681 1	0.707 0.8	18 -0.207 -0	0.035 -0	.307 0.442	0.670 0.20	6 0.550	0 0.387	0.223	-0.217 0.50	<mark>)3</mark> -0.19	8 0.136 -0	0.319 0.1	06 -0.306 0.42	4 0.466 0.441	-0.25	5 0.806	0.063 -0.167	0.833 - 0.112	0.786 -0.055	0.713 0.075	0.789 0.423 0.054
Gd	-0.005	0.168 -0.05	56 0.07	78 0.368	-0.079	-0.044	0.097 0.432	0.226 -0.090	-0.145 0.130	0.872 0.812	0.855 0.707	1 0.8	48 0.115 0).395 -0	.103 0.044	0.536 0.31	6 0.353	3 <mark>0.539</mark>	0.644	-0.122 0.46	<mark>67</mark> 0.096	6 0.559 0	0.029 -0.0	0.014 0.22	4 0.775 0.546	-0.27	5 0.912	0.042 0.246	0.603 0.131	0.773 0.275	0.396 0.368	0.777 0.486 0.062
Но	-0.054	0.309 -0.27	73 -0.1	56 0.321	-0.277	0.168	-0.026 0.187	0.208 -0.110	-0.374 0.135	0.945 0.953	0.763 0.818	0.848 1	-0.077 0).158 -0	.329 0.215	0.526 0.19	6 0.591	1 0.508	0.408	-0.333 0.48	<mark>36</mark> -0.10	0 0.320 -0	0.232 0.0	29 -0.247 0.24	0.580 0.465	-0.28	5 0.919	0.066 -0.009	0.780 0.005	0.895 0.044	0.579 0.243	0.915 0.441 -0.056
К	0.068	-0.381 0.51	<mark>.9</mark> 0.81	0.396	0.402	-0.569	0.329 0.695	-0.401 -0.067	7 <mark>0.540</mark> -0.351	-0.066 -0.062	0.103 -0.207	0.115 -0.0	77 1 0).744 <mark>0</mark> .	578 -0.558	-0.046 0.40	8 -0.35	64 0.365	0.560	0.207 0.08	35 0.592	2 0.668 C	.868 -0.1	.56 0.659 -0.22	5 0.339 0.280	-0.11	5 -0.002 -	-0.027 0.757	-0.273 0.542	-0.077 0.697	-0.338 0.450	-0.103 0.264 0.132
La	0.067	-0.372 0.53	<mark>82</mark> 0.82	0.486	0.504	-0.542	0.321 0.932	-0.238 -0.036	5 0.575 -0.177	0.191 0.121	0.350 -0.035	0.395 0.1	58 0.744	1 <mark>0</mark> .	520 -0.561	0.113 0.49	0 -0.30	0 0.594	0.860	0.255 0.11	11 0.583	<mark>3 0.927 0</mark>	<mark>.737</mark> -0.3	341 0.636 -0.06	1 0.649 0.466	-0.04	0.235 -	-0.032 0.832	-0.037 0.546	0.105 0.719	-0.126 0.586	0.066 0.416 0.227
Li	0.082	-0.277 0.50	0.62	<mark>29</mark> 0.253	0.403	<mark>-0.490</mark>	0.269 0.505	-0.043 0.216	0.820 -0.013	3 -0.274 -0.377	-0.128 -0.307	-0.103 -0.3	29 <mark>0.578 0</mark>).520	1 -0.292	-0.071 0.31	9 <mark>-0.60</mark> 2	0.169	0.378	0.618 -0.0	77 <mark>0.488</mark>	8 0.421 0	<mark>).749</mark> -0.2	218 0.641 0.05	1 0.193 0.150	0.104	-0.235 -	-0.039 0.609	-0.386 0.367	-0.362 0.625	-0.244 0.234	-0.366 0.147 0.246
Mg	-0.147	0.740 <mark>-0.48</mark>	<mark>89</mark> -0.6	<mark>24</mark> -0.279	<mark>-0.446</mark>	0.607	-0.263 <mark>-0.514</mark>	0.555 0.349	-0.332 0.398	0.206 0.224	0.006 0.442	0.044 0.2	15 <mark>-0.558 -(</mark>	<mark>0.561</mark> -0	.292 1	0.166 -0.22	20 <mark>0.426</mark>	<mark>6</mark> -0.253	-0.384	-0.006 0.19	99 <mark>-0.42</mark> 4	4 -0.465 -0	0.559 0.4	32 -0.555 0.46	<mark>8</mark> -0.193 -0.139	0.113	0.147	0.085 <mark>-0.549</mark>	0.289 -0.337	0.213 <mark>-0.433</mark>	0.414 -0.347	0.257 -0.100 -0.054
Mn	0.005	0.126 0.01	0.01	17 0.118	-0.089	-0.070	0.170 0.230	0.620 0.175	-0.171 0.349	0.559 0.491	0.603 0.670	0.536 0.5	<mark>26</mark> -0.046 0).113 -0	.071 0.166	1 0.32	6 0.207	7 0.352	0.341	0.122 0.25	52 0.053	3 0.275 -0	0.044 -0.1	64 0.014 0.32	2 <mark>0.439 0.433</mark>	-0.19	5 0.557 -	-0.037 0.059	0.517 -0.008	0.479 0.125	0.533 0.168	0.550 0.367 0.242
Мо	-0.055 ·	-0.221 0.26	64 0.39	96 0.222	0.147	<mark>-0.410</mark>	0.371 0.510	0.027 0.085	0.277 0.015	0.220 0.166	0.278 0.206	0.316 0.1	96 <mark>0.408 0</mark>	<mark>).490</mark> 0.	319 -0.220	0.326 1	-0.16	68 <mark>0.474</mark>	0.514	0.250 0.22	0.303	3 0.512 0	<mark>).434</mark> -0.0	091 0.299 0.11	3 <mark>0.450</mark> 0.358	-0.27	0.233	0.012 0.470	0.113 0.261	0.191 0.572	0.157 0.294	0.185 0.393 0.235
Na	-0.077	0.577 -0.55	54 -0.4	<mark>40</mark> 0.073	-0.501	0.602	-0.319 -0.308	0.126 -0.151	-0.597 0.005	0.563 0.626	0.316 0.550	0.353 0.5	<mark>91</mark> -0.354 -(0.300 <mark>-0</mark>	.602 0.426	0.207 -0.16	58 1	0.192	-0.093	-0.539 0.33	32 <mark>-0.53</mark>	<mark>3</mark> -0.168 <mark>-(</mark>	0.5 <mark>34</mark> 0.2	51 <mark>-0.571</mark> 0.12	3 0.125 0.172	0.192	0.481	0.064 -0.385	5 0.682 -0.275	0.588 -0.419	0.444 -0.043	0.616 0.061 -0.301
Nb	-0.001 ·	0.149 0.10)5 <mark>0.43</mark>	36 0.464	0.153	-0.199	0.204 0.514	0.029 -0.087	0.157 -0.032	2 0.530 0.481	0.481 0.387	0.539 0.5	<mark>08</mark> 0.365 <mark>0</mark>	<mark>).594</mark> 0.	169 -0.253	0.352 0.47	<mark>4</mark> 0.192	2 1	0.638	0.059 0.30	0.206	6 0.632 0	0.319 -0.2	0.283 -0.03	3 0.610 0.626	-0.03	0.503	0.015 0.520	0.515 0.281	0.474 0.508	0.265 0.529	0.473 0.517 0.154
Nd	-0.031 -	-0.234 0.37	71 0.61	16 0.484	0.342	<mark>-0.435</mark>	0.337 0.859	-0.019 -0.055	5 0.378 -0.072	2 0.448 0.365	0.576 0.223	0.644 0.4	08 0.560 0). 860 0.	378 -0.384	0.341 0.51	<mark>4</mark> -0.09.	03 0.638	1	0.188 0.25	59 <mark>0.455</mark>	<mark>5 0.946 0</mark>	<mark>).557</mark> -0.2	297 0.480 0.04	6 0.862 0.588	-0.10	7 <mark>0.498</mark> -	-0.003 0.693	0.180 0.443	0.344 0.646	0.049 0.577	0.340 0.495 0.174
Ni	0.087	-0.173 0.36	59 0.33	36 -0.018	0.262	-0.333	0.188 0.294	0.341 0.619	0.576 0.205	-0.261 -0.360	-0.117 -0.217	-0.122 -0.3	33 0.207 0).255 <mark>0</mark> .	<mark>618</mark> -0.006	0.122 0.25	0 <mark>-0.53</mark>	<mark>9</mark> 0.059	0.188	1 -0.1	34 0.295	5 0.198 0	<mark>).432</mark> -0.1	.89 0.398 0.12	9 0.074 0.085	0.035	-0.214 -	-0.024 0.381	-0.341 0.167	-0.328 0.414	-0.158 0.010	-0.313 0.015 0.440
Р	-0.052	0.238 -0.22	24 0.00	08 0.015	-0.223	0.254	0.008 0.077	0.115 -0.105	-0.004 0.117	0.448 0.502	0.394 0.503	0.467 0.4	<mark>86</mark> 0.085 0).111 -0	.077 0.199	0.252 0.22	0.332	2 0.309	0.259	-0.134 1	-0.07	8 0.193 -0	0.051 0.2	94 -0.226 0.01	3 0.353 0.152	0.004	0.445	0.114 0.088	0.407 0.050	0.439 0.186	0.273 0.115	0.475 0.335 -0.055
Pb	0.032 ·	-0.292 0.61	4 0.62	23 0.237	0.540	-0.445	0.414 0.564	-0.170 0.066	0.484 -0.076	5 -0.070 -0.081	0.120 -0.198	0.096 -0.1	00 0.592 0).583 0.	488 -0.424	0.053 0.30	3 <mark>-0.53</mark>	<mark>3</mark> 0.206	0.455	0.295 -0.0	78 1	0.531 0	<mark>).582</mark> -0.2	227 0.651 -0.15	0 0.267 0.154	-0.19	0 -0.017 -	-0.008 0.597	-0.297 0.366	-0.054 0.543	-0.233 0.382	-0.110 0.286 0.184
Pr	0.012	-0.292 0.46	5 <mark>5</mark> 0.72	21 0.482	0.396	-0.503	0.336 0.926	-0.131 -0.058	3 0.447 -0.130	0.360 0.283	0.516 0.136	0.559 0.3	20 0.668 0).927 <mark>0.</mark>	421 -0.465	0.275 0.51	<mark>2</mark> -0.16	68 0.632	0.946	0.198 0.19	93 0.531	1 1 <mark>(</mark>	<mark>).638</mark> -0.3	320 0.546 0.00	2 0.779 0.555	-0.10	5 0.399 -	-0.074 0.756	0.101 0.480	0.274 0.692	-0.013 0.582	0.260 0.460 0.209
Rb	0.033	0.448 0.58	8 <mark>2</mark> 0.81	16 0.350	0.470	-0.626	0.371 0.704	-0.259 0.035	0.717 -0.224	4 -0.188 -0.246	0.041 -0.319	0.029 -0.2	.32 0.868 0).737 0.	749 -0.559	-0.044 0.43	4 -0.53	<mark>4</mark> 0.319	0.557	0.432 -0.03	51 0.582	2 0.638	1 -0.2	236 0.720 -0.16	8 0.345 0.311	-0.00	7 -0.118 -	-0.038 <mark>0.796</mark>	-0.383 0.517	-0.235 0.751	-0.385 0.421	-0.247 0.241 0.233
S	-0.028	0.388 -0.25	57 -0.3	56 -0.208	-0.375	0.512	-0.116 -0.343	0.001 0.071	-0.194 0.093	0.004 0.076	-0.143 0.106	-0.087 0.0	29 -0.156 -0	0.341 -0	.218 0.432	-0.164 -0.09	0.251	1 -0.271	-0.297	-0.189 0.29	-0.22	7 -0.320 -0	0.236 1	-0.347 0.15	3 -0.203 -0.156	6 0.116	-0.033	0.081 -0.344	0.063 -0.279	0.074 -0.230	0.095 -0.283	0.053 -0.009 -0.080
Sb	0.092	-0.466 0.66	67 0.71	14 0.367	0.583	<mark>-0.583</mark>	0.335 0.600	-0.128 0.034	0.584 -0.109	9 -0.192 -0.253	0.010 -0.306	0.014 -0.2	47 0.659 0).636 0.	641 -0.555	0.014 0.29	9 <mark>-0.57</mark>	0.283	0.480	0.398 -0.22	26 0.651	1 0.546 0	<mark>).720</mark> -0.3	47 1 -0.10	8 0.264 0.263	-0.03	0 -0.133 -	-0.094 0.656	-0.305 0.414	-0.259 0.571	-0.297 0.445	-0.284 0.242 0.215
Sc	-0.012	0.369 -0.10	05 -0.2	02 0.176	-0.145	0.077	-0.010 0.052	0.439 0.289	-0.055 0.448	0.288 0.201	0.180 0.424	0.224 0.2	40 -0.225 -0	0.061 0.	051 0.468	0.322 0.11	3 0.123	3 -0.033	0.046	0.129 0.01	-0.15	0.002 -0	0.168 0.1	53 -0.108 1	0.188 0.199	0.023	0.243 -	-0.016 -0.182	0.306 -0.101	0.180 -0.042	0.489 -0.092	0.167 0.256 0.346
Sm	0.001	0.038 0.18	32 0.35	57 <mark>0.472</mark>	0.137	-0.277	0.263 0.698	0.133 -0.104	0.152 0.050	0.641 0.532	0.715 0.466	0.775 0.5	80 0.339 0) <mark>.649</mark> 0.	193 -0.193	0.439 0.45	0.125	5 0.610	0.862	0.074 0.35	53 0.267	7 0.779 0	0.345 -0.2	0.264 0.18	3 1 0.670	-0.15	1 <mark>0.676</mark> -	-0.010 0.474	0.386 0.264	0.518 0.481	0.212 0.467	0.504 0.554 0.165
Sn	0.005	-0.015 0.16	63 0.26	65 <mark>0.510</mark>	-0.023	-0.202	0.207 0.496	0.177 -0.038	8 0.061 0.136	0.530 0.432	0.479 0.441	0.546 0.4	<mark>65</mark> 0.280 <mark>0</mark>) <mark>.466</mark> 0.	150 -0.139	0.433 0.35	8 0.172	2 0.626	0.588	0.085 0.15	52 0.154	4 0.555 0	0.311 -0.1	.56 0.263 0.19	9 <mark>0.670</mark> 1	-0.07	5 <mark>0.524</mark> -	-0.009 0.326	0.429 0.072	0.461 0.299	0.241 0.373	0.419 0.522 0.252
Sr	-0.017	0.262 -0.02	22 0.09	92 -0.072	0.028	0.454	-0.149 -0.124	0.082 -0.048	3 0.225 0.083	-0.299 -0.300	-0.279 -0.255	-0.275 -0.2	.85 -0.116 -0	0.049 0.	104 0.113	-0.195 -0.27	0.192	2 -0.031	-0.107	0.035 0.00)4 -0.19	0 -0.106 -0	0.007 0.1	16 -0.030 0.02	3 -0.151 -0.076	5 1	-0.312	0.033 -0.029	-0.114 -0.102	2 -0.314 -0.142	-0.062 0.003	-0.287 -0.072 -0.008
Tb	-0.011	0.251 -0.18	87 -0.0	88 0.348	-0.186	0.043	0.049 0.289	0.271 -0.110	-0.303 0.140	0.938 0.903	0.826 0.806	0.912 0.9	19 -0.002 0).235 -0	.235 0.147	0.557 0.23	3 0.481	1 0.503	0.498	-0.214 0.44	<mark>45</mark> -0.01	7 0.399 -0	0.118 -0.0	033 -0.133 0.24	3 0.676 0.524	-0.31	2 1	0.074 0.096	0.709 0.093	0.841 0.153	0.484 0.272	0.859 0.457 0.038
Te	0.051	0.092 -0.05	50 -0.0	32 -0.042	-0.010	0.113	-0.057 -0.087	0.017 -0.003	3 -0.032 -0.054	4 0.054 0.078	0.028 0.063	0.042 0.0	66 -0.027 -0	0.032 -0	.039 0.085	-0.037 0.01	2 0.064	4 0.015	-0.003	-0.024 0.11	4 -0.00	8 -0.074 -0	0.038 0.0	81 -0.094 -0.01	6 -0.010 -0.009	0.033	0.074	1 0.017	0.069 -0.001	0.105 0.019	0.017 -0.028	0.062 0.011 -0.075
Th	0.056	-0.396 0.51	<mark>.4</mark> 0.82	0.364	0.519	-0.516	0.306 0.764	-0.216 -0.009	0.623 -0.249	0.015 -0.009	0.178 -0.167	0.246 -0.0	09 0.757 C).832 0.	609 -0.549	0.059 0.47	0 -0.38	35 <mark>0.520</mark>	0.693	0.381 0.08	38 0.597	<mark>7</mark> 0.756 0	<mark>).796</mark> -0.3	344 0.656 -0.18	2 0.474 0.326	-0.02	9 0.096	0.017 1	-0.203 0.577	0.004 0.821	-0.247 0.552	0.000 0.259 0.130
Ti	0.014	0.311 -0.36	60 -0.2	85 0.242	-0.292	0.272	-0.121 -0.025	0.349 -0.067	7 <mark>-0.459</mark> 0.189	0.793 0.758	0.584 0.833	0.603 0.7	80 -0.273 -0	0.037 -0	.386 0.289	0.517 0.11	3 0.682	2 0.515	0.180	-0.341 0.40	<mark>)7</mark> -0.29	7 0.101 -0	0.383 0.0	63 -0.305 0.30	5 0.386 <mark>0.429</mark>	-0.11	4 0.709	0.069 -0.203	3 1 -0.132	2 0.724 -0.130	0.767 0.112	0.743 0.378 0.011
ТІ	-0.015 ·	0.270 0.19	91 0.50	02 0.332	0.640	-0.408	0.206 0.501	-0.170 -0.050	0.386 -0.190	0.005 -0.030	0.164 -0.112	0.131 0.0	05 0.542 0) <mark>.546</mark> 0.	367 -0.337	-0.008 0.26	1 -0.27	5 0.281	0.443	0.167 0.05	50 0.366	6 <mark>0.480 0</mark>) <mark>.517</mark> -0.2	279 0.414 -0.10	1 0.264 0.072	-0.10	2 0.093 -	-0.001 0.577	-0.132 1	-0.114 0.540	-0.197 0.323	0.008 0.181 0.032
Tm	-0.040	0.343 -0.22	27 -0.1	62 0.251	-0.342	0.201	-0.017 0.136	0.164 -0.095	5 <mark>-0.411</mark> 0.116	0.896 0.921	0.702 0.786	0.773 0.8	<mark>95</mark> -0.077 0).105 -0.	.362 0.213	0.479 0.19	1 0.588	8 0.474	0.344	-0.328 0.43	<mark>39</mark> -0.05	4 0.274 -0	0.235 0.0	74 -0.259 0.18	0.518 0.461	-0.31	4 0.841	0.105 0.004	0.724 -0.114	1 0.029	0.511 0.220	0.898 0.363 -0.110
U	0.015	-0.372 0.43	<mark>38</mark> 0.66	62 0.317	0.422	-0.549	0.470 0.717	-0.129 0.109	0.584 -0.135	5 0.075 0.040	0.245 -0.055	0.275 0.0	44 0.697 0).719 0.	625 -0.433	0.125 0.57	2 -0.41	9 0.508	0.646	0.414 0.18	36 0.543	<mark>3</mark> 0.692 0).751 -0.2	230 0.571 -0.04	2 0.481 0.299	-0.14	2 0.153	0.019 0.821	-0.130 0.540	0.029 1	-0.136 0.470	0.043 0.374 0.318
V	0.022	0.321 -0.23	37 -0.3	32 0.079	-0.263	0.279	-0.040 -0.089	0.496 0.158	-0.338 0.365	0.555 0.541	0.378 0.713	0.396 0.5	<mark>79</mark> -0.338 -0	0.126 -0.	.244 0.414	0.533 0.15	7 0.444	4 0.265	0.049	-0.158 0.27	-0.23	3 -0.013 -0	0.385 0.0	95 -0.297 0.48	0.212 0.241	-0.06	2 0.484	0.017 -0.247	0.767 -0.197	0.511 -0.136	1 -0.021	0.543 0.289 0.160
W	-0.055 ·	0.211 0.31	2 0.40	60 0.448	0.361	-0.304	0.244 0.522	-0.118 -0.111	0.268 -0.022	2 0.247 0.230	0.299 0.075	0.368 0.2	43 0.450 0).586 0.	234 -0.347	0.168 0.29	4 -0.04	3 0.529	0.577	0.010 0.11	15 0.382	2 0.582 C) <mark>.421</mark> -0.2	283 0.445 -0.09	2 0.467 0.373	0.003	0.272 -	-0.028 0.552	0.112 0.323	0.220 0.470	-0.021 1	0.228 0.378 -0.058
Yb	0.083	0.347 -0.31	14 -0.1	80 0.237	-0.287	0.219	-0.027 0.107	0.249 -0.092	2 <mark>-0.417</mark> 0.122	0.897 0.915	0.719 0.789	0.777 0.9	15 -0.103 0).066 -0	.366 0.257	0.550 0.18	5 0.616	6 0.473	0.340	-0.313 0.47	<mark>75</mark> -0.11	0 0.260 -0	0.247 0.0	53 -0.284 0.16	7 0.504 0.419	-0.28	0.859	0.062 0.000	0.743 0.008	0.898 0.043	0.543 0.228	1 0.337 -0.136
Zn	0.081	-0.006 0.09	0.28	86 <mark>0.489</mark>	0.177	-0.155	0.393 0.391	0.157 -0.114	0.070 0.367	0.446 0.407	0.383 0.423	0.486 0.4	<mark>41</mark> 0.264 0	<mark>).416</mark> 0.	147 -0.100	0.367 0.39	3 0.061	1 0.517	0.495	0.015 0.33	35 0.286	6 <mark>0.460</mark> 0	0.241 -0.0	009 0.242 0.25	5 <mark>0.554</mark> 0.522	-0.07	2 0.457	0.011 0.259	0.378 0.181	0.363 0.374	0.289 0.378	0.337 1 0.149
Zr	0.119	0.189 0.34	19 0.17	72 0.056	0.062	-0.267	0.321 0.300	0.237 0.389	0.231 0.182	0.004 -0.098	8 0.127 0.054	0.062 -0.0	56 0.132 0	0.227 0.	246 -0.054	0.242 0.23	5 -0.30	0.154	0.174	0.440 -0.0	55 0.184	4 0.209 0	0.233 -0.0	080 0.215 0.34	6 0.165 0.252	-0.00	8 0.038	-0.075 0.130	0.011 0.032	-0.110 0.318	0.160 -0.058	-0.136 0.149 1

سازمان زمینشناسی و اکتشاف معدنی کشور

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمایی

۲-۲-۳-۲ محاسبات و پردازشهای چندمتغیره

محاسبات مربوط به این بخش شامل آنالیز فاکتوری و کلاستر است که بر اساس دادههای نرمال شده انجام پذیرفته است. از آنجاییکه اکثر عناصر مورد مطالعه جزء عناصر سنگ ساز بوده و قابلیت ایجاد پتانسیل کانیسازی را ندارند لذا برای جلوگیری از تضعیف روابط زایشی بین سایر عناصر در تحلیلهای چند متغیره منطقه مطالعاتی از ۲۰ عنصر کانی ساز در این تحلیلها استفاده شده است. این عناصر عبارتند از :

Zn و W ·V ·Ti ·Sr ·Sn ·Sb ·S ·Pb ·Ni ·Mo ·Mn ·Cu ·Cr ·Co ·Cd · Bi ·Ba ·Au ·As.

آناليز فاكتورى

نتایج حاصل از تجزیه و تحلیل فاکتوری انجام گرفته بر روی دادههای خام نرمالشده (در صورت نرمال نبودن تابع توزیع هر عنصری با تبدیل لگاریتمی نرمال شد) بصورت جداول ۲–۱۲ و ۲–۱۳ آورده شده است. نتیجه حاصل یک مدل ۶ مولفه ای است که توانسته ۲۰۱۳٪ از تغییرپذیری را توجیه کند. در این جدول که ۲۰ مولفه بهمراه مقادیر ویژه کل، نقش هر یک در توجیه میزان تغییرپذیری کل و بار فاکتورهای مربوط به ۶ فاکتور اول قبل و بعد از چرخش آورده شده است. همانطور که در جدول ۲–۱۲ ملاحظه می شود مؤلفه اول قادر است حدود ۲۰۱۲٪ از کل تغییر پذیری را توجیه کند. در مؤلفه دوم این مقدار تا جدول ۲–۱۲ ملاحظه می شود مؤلفه اول قادر است حدود ۲۱/۲٪ از کل تغییر پذیری را توجیه کند. در مؤلفه دوم این مقدار تا توجیه کنند. از مؤلفه سوم تا ششم که شامل ۴ مؤلفه می باشد حدود ۳۱/۶ ٪ دیگر به توجیه تغییر پذیری می افزایند و از آن به توجیه کنند. از مؤلفه سوم تا ششم که شامل ۴ مؤلفه می باشد حدود ۳۱/۶ ٪ دیگر به توجیه تغییر پذیری می افزایند و از آن به بعد تغییرات اندک خواهد بود. جدول ۲–۱۳ ماتریس چرخش یافته آنالیز فاکتوری را نشان می دهد. در هر یک از ۶ مؤلفه داده

در مولفهٔ اول حضور بارزتر عناصر Mo, Bi, W, Pb, As, Sb, Ba میتواند بیانگر نوعی فعالیت هیدروترمالی مرتبط با سنگهای اسیدی تر از برونزدهای سنگهای منطقه باشد که احتمالاً رخنمون آنها در خارج از محدودهٔ طرح واقع شده است و متحرک (Mobile) بودن این عناصر و منفی بودن بار فاکتوری عناصر مافیک مؤید نظر فوق میباشد. علاوه بر این موارد مذکور نمایانگر این واقعیت است که احتمالاً در میان تودههای دیوریتی تا گابرویی منطقه ممکن است بخشهای بیشتر تفریق یافته با ترکیبی اسیدی در حد گرانودیوریت و گرانیت نیز وجود داشته باشد.

معدني كشور

فصل دوم- اکتشاف ژئوشیمایی

در مؤلفههای دوم و سوم مقادیر عناصری که بار فاکتوری بیشتری دارند مربوط به کانیهای سنگ ساز محدودهاند که از آنها نمیتوان بعنوان نوعی کانی سازی خاص نام برد. ضمناً حضور عناصر مانند Cu و Zn در این مجموعهها نیز مربوط به بالا بودن مقدار این عناصر در زمینهٔ سنگهای مذکور میباشد. تفاوت مولفهٔ دوم و سوم را باید در تفریق بیشتر سنگهای مولفهٔ دوم نسبت به مولفهٔ سوم دانست بعبارت دیگر معمولاً حضور نیکل و کروم در سنگهای گابرویی بیشتر است (همانگونه که در مولفهٔ سوم دیده میشود) ولی عناصر در زمینهٔ سنگهای مذکور میباشد. تفاوت مولفهٔ دوم و سوم را باید در تفریق بیشتر سنگهای مولفهٔ دوم موم دیده میشود) ولی عناصر در زمینهٔ سنگهای مدکور میباشد. تفاوت مولفهٔ عنصری می اسیدی تر منجمله دیوریتها دیده میشوند. مواففهٔ چهارم، با توجه به نوع عناصر دربردارنده، مهمترین مولفهٔ عنصری میباشد. حضور همزمان Cu Zn و CD در این مولفه میتواند نشانهای از رخدادهای کانه سازی این عناصر باشد. با این حال نبایستی از نظر دور داشت که سنگهای بازیک و حد گرمابی سطحی میتواند باعث تمرکز این عناصر در شگستگیها شوند که با عنوان تیپ آندزیت (نه لزوماً سنگ شناسی آندزیتی، ممکن است از نوع درونی آن باشد) معروف هستند. این نوع کانه سازیها اغلب دارای اهمیت چندانی نیست و معمولاً دنخایری کوچک با عیار پایین میسازند که در شرایط فعلی غیر اقتصادی هستند. نکته جالب توجه بار فاکتوری نسبتاً شاخص و منفی Au میباشد که عدم همراهی این عناصر را با یکدیگر نشان می همیت.

مولفه های پنجم و ششم، در پردازش صورت پذیرفته، شامل به ترتیب عناصر Sr و S میشوند. هر چند با اغماض میتوان عنصر Cu را در مولفه پنجم قرار داد، ولی به نظر میرسد این مولفه ها متأثر از وضعیت سنگ شناسی بوده و ارتباطی با کانه سازی منطقه نداشته باشند. تطبیق نقشه های آنومالی این مولفه ها با پراکندگی لیتولوژیکی تأیید کننده ارتباط سنگ شناسی با تمرکز نواحی ناهنجار این مولفه ها میباشد. به عبارتی میتوان آنومالی های یاد شده را با رخنمون های واحدهای تخریبی شیلی منطبق دانست و آن را ناشی از آلودگی حاصل از فرسایش این واحدها به شمار آورد.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمایی

جدول ۲-۱۲- نتایج آنالیز فاکتوری بر اساس مقادیر نرمال شده داده های خام در منطقه مطالعاتی

Commonant		Initial Eigen	values	Extra	ction Sums of Sq	uared Loadings	Rota	tion Sums of Squ	ared Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.62	23.10	23.10	4.62	23.10	23.10	4.23	21.17	21.17
2	3.83	19.14	42.24	3.83	19.14	42.24	3.71	18.53	39.70
3	2.05	10.23	52.47	2.05	10.23	52.47	2.16	10.80	50.50
4	1.49	7.45	59.92	1.49	7.45	59.92	1.53	7.63	58.13
5	1.25	6.24	66.16	1.25	6.24	66.16	1.37	6.87	65.00
6	1.03	5.14	71.30	1.03	5.14	71.30	1.26	6.30	71.30
7	0.89	4.47	75.76						
8	0.75	3.73	79.50						
9	0.66	3.32	82.82						
10	0.60	2.98	85.80						
11	0.54	2.72	88.53						
12	0.41	2.05	90.58						
13	0.40	1.98	92.56						
14	0.35	1.77	94.33						
15	0.31	1.56	95.89						
16	0.28	1.41	97.30						
17	0.18	0.90	98.21						
18	0.15	0.74	98.95						
19	0.13	0.65	99.60						
20	0.08	0.40	100.00						

جدول ۲-۱۳- ماتریس چرخش یافته آنالیز فاکتوری بر اساس مقادیر نرمال شده داده های خام در منطقه مطالعاتی

]	Rotated Co	omponent]	Matrix(a)		
Variables			Comp	onent		
variables	1	2	3	4	5	6
Ba	0.88	-0.08	-0.01	-0.01	-0.01	-0.15
Sb	0.85	-0.07	0.12	-0.02	0.02	-0.19
As	0.74	-0.08	0.28	-0.11	-0.04	0.03
Pb	0.74	-0.10	0.11	0.19	-0.14	-0.08
W	0.66	0.34	-0.18	0.01	-0.02	-0.03
Bi	0.51	-0.20	0.00	0.21	0.19	-0.50
Mo	0.44	0.36	0.15	0.21	-0.42	0.14
Ti	-0.23	0.86	-0.16	-0.12	-0.06	0.07
V	-0.16	0.82	0.06	-0.07	0.03	0.15
Mn	0.03	0.77	0.23	0.05	-0.20	-0.17
Sn	0.41	0.68	-0.09	0.01	-0.16	0.05
Zn	0.36	0.58	-0.16	0.50	0.12	0.08
Cu	-0.12	0.49	0.16	0.44	0.42	-0.12
Ni	0.29	-0.07	0.88	0.02	0.05	-0.13
Cr	0.06	0.06	0.86	-0.07	-0.13	0.15
Со	-0.28	0.56	0.57	0.13	0.26	-0.22
Cd	0.36	0.05	0.11	0.67	-0.14	0.03
Au	0.17	0.11	0.09	-0.63	0.05	-0.07
Sr	0.00	-0.11	-0.03	-0.10	0.86	0.15
S	-0.20	-0.02	0.00	0.20	0.19	0.85

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

سازمان زمینشناسی و اکتشاف معدنی کشور

فصل دوم- اکتشاف ژئوشیمایی

آنالیز خوشهای دادههای خام

یکی دیگر از روشهای آنالیز چند متغیره استفاده از روش آنالیز خوشهای یا آنالیز کلاستر است. برای آنالیز کلاستر متغیرهای مورد مطالعه از چند روش استفاده شده است. یکی از این چند روش منجر به دندروگرام مناسبتری می گردد که از تقارن بیشتری برخوردار است. در این روش مقادیر نرمال شده (با توجه به تابع توزیع هر متغیر در صورت نرمال نبودن از لگاریتم مقادیر جهت برخوردار است. در این روش مقادیر نرمال شده (با توجه به تابع توزیع هر متغیر در صورت نرمال نبودن از لگاریتم مقادیر جهت نرمالایز کردن است. در این روش مقادیر نرمال شده (با توجه به تابع توزیع هر متغیر در صورت نرمال نبودن از لگاریتم مقادیر جهت نرمالایز کردن استفاده شده است) هر ۲۰ متغیر مورد تحلیل قرار گرفته و دندروگرام همبستگی آنها رسم گردیده است. نتیجه آنالیز کلاستر رسم دندروگرام نمودار ۲–۱۰۵ است. تحلیل داده های این دندروگرام نیز نتایج نسبتاً مشابهی با نتیجهٔ حاصل از تحلیل فاکتوری می رساند. این تحلیل ها شامل موارد زیر است:

نمودار ۲-۱۰۵- دندروگرام ترسیم شده برای مقادیر خام ۲۰ عنصر پرپتانسیل مورد بررسی در منطقه مطالعاتی

آنالیز خوشهای به نوعی تأیید کننده تجزیه و تحلیل مولفههای اصلی (آنالیز فاکتوری) میباشد. در دیاگرام ارایه شده همبستگی خوب و منطقی میان عناصر Cu, Mn, Co, V, Ti و Cu مشخص است. این همبستگی به ویژه همراهی Cu و Zn فرضیه شستشوی این عناصر و تجمع آن در شکستگی به عنوان منشأ آنومالی فاکتور چهار را تقویت مینماید. وجود Cr و Ni نیز مانند آن چه در بخش آنالیز فاکتوری مطرح شد توجیه میشود. همراهی عناصر چهارگانه As, Pb, Sb و Bi با مولفه یک و Sr و S به ترتیب با مولفههای پنج و شش قابل تطابق میباشند. Au در آنالیز خوشهای نیز خود را کاملاً از سایر عناصر جدا میسازد که این موضوع از عدم همراهی معنا دار آن با عناصر دیگر منطقه حکایت میکند.

سازمان زمینشناسی و اکتشاف معدنی کشور

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمایی

۲-۷-ترسیم نقشههای تکمتغیره و چندمتغیره دادههای ژئوشیمیایی

پس از انجام پردازشها و بررسیهای آماری اقدام به تهیه نقشههای تکمتغیره و چندمتغیره گردید. بدین منظور بر اساس ۵۱

متغیر ژئوشیمی دادههای خام و ۶ فاکتور دادههای خام محاسبه شده، نقشه توزیع فضایی متغیرها ترسیم گردید.

جهت ترسیم نقشههای فوقالذکر از یک الگوریتم ثابت به شرح زیر استفاده شده است:

الف- در ابتدا حوضه آبریز مربوط به هر نمونه بصورت یک چندضلعی مشخص گردید.

- ب- سپس بر اساس چندضلعی مشخص شده که محدوده پوششی هر نمونه را مشخص میکند و حدود چهارگانه مقادیر ناهنجار و حدود زمینه، آستانهای و ناهنجاری، نقشه توزیع هر عنصر ترسیم گردید.
- ج- مقادیر فوق با استفاده از حدود زیر رنگ آمیزی گردید تا نقشه نهایی توزیع هر عنصر در محدوده مطالعاتی مشخص گردد:
 - مقادیر بالاتر از X + 3S تا مقدار بیشینه برنگ قرمز.
 - مقادیر بین 3S + X تا 2S + X برنگ نارنجی.
 - مقادیر بین $\overline{X} + S$ تا $\overline{X} + 2S$ برنگ زرد.
 - مقادیر بین \overline{X} + S تا کمینه برنگ آبی.

با توجه به مطالب فوق و از آنجاییکه با در نظر گرفتن مقادیر کلارک هر عنصر و یا مقادیر متعارف آن در ایران همه عناصر مورد مطالعه دارای پتانسیل کانیسازی نیستند لذا در این بخش صرفا نقشه عناصری که دارای پتانسیل کانیسازی در منطقه مورد مطالعه دارای پتانسیل کانیسازی نیستند لذا در این بخش صرفا نقشه عناصری که دارای پتانسیل کانیسازی در منطقه مورد مطالعه دارای پتانسیل کانیسازی نیستند لذا در این بخش صرفا نقشه عناصری که دارای پتانسیل کانیسازی در منطقه مورد مطالعه دارای پتانسیل کانیسازی در منطقه مورد مطالعه دارای پتانسیل کانیسازی نیستند لذا در این بخش صرفا نقشه عناصری که دارای پتانسیل کانیسازی در منطقه مورد می از من اکتشافی دارند شامل عناصر که ای Ni ،Mo ،Mn ،Fe ،Cu ،Cr ،Co ،Ce ،Cd ،Bi ،Be ،Ba ،Au ،As و مورد تعبیر و تفسیر قرار می گیرند. تعداد ۲۸ نقشه ژئوشیمیایی مربوط به دادههای خام با شمارههای ۲–۲۲ الی ۲–۲۸ تحت عنوان نقشههای G21 تا G23 و ۶ نقشه مربوط به مولفههای با ارزش آنالیز فاکتوری دادههای خام با شمارههای ۲–۲۲ الی ۲–۲۴ تحت عنوان نقشههای F01 تا G23 و ۶ نقشه مربوط به مولفههای با ارزش آنالیز فاکتوری دادههای خام با شمارههای ۲–۲۲ الی ۲–۲۴ تحت عنوان نقشههای F01 تا G23 و ۶ نقشه مربوط به مولفههای با ارزش آنالیز مادهای خام با شمارههای ۲–۲۲ الی ۲–۲۴ تحت عنوان نقشههای F01 تا G23 و ۶ نقشه مربوط به مولفههای با ارزش آنالیز مادههای خام با شمارههای ۲–۲۲ الی ۲–۲۴ تحت عنوان نقشههای F01 تا G01 تا G01 تر G4 تر ترمیم گردید که در بخش پیوست دادههای خام با شمارههای ۲–۲۴ الی ۲–۲۴ تحت عنوان نقشههای F01 تا G40 تا G40 تر مربوط به مولفههای با ارزش آنالیز آنالیز ماده مای خام با شمارههای ۲–۲۴ تولی تول تول مای F01 ترام مربوط به مولفههای با ارزش آنالیز مای حول باز مای خام با شمارههای ۲–۲۴ تحت عنوان نقشههای F01 ترام مربوط به مربوط به مرام مای مربوط به مولفهای با از ش

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمایی

مند شي شادر

۲-8-تعبیر و تفسیر نقشههای ژئوشیمیایی

نقشه توزیع عنصر ارسنیک (G01) دلالت بر آن دارد که این متغیر فاقد آنومالی درجه یک میباشد. آنومالیهای درجه دو در جنوب و جنوب شرق مزرعه باباگورگو، شرق مزرعه قلعه لان و شمال غرب سربرزه دیده میشوند.

نقشه توزیع طلا (G02) دلالت بر آن دارد که آنومالیهای درجه یک مربوط به این متغیر در سه محدوده در این منطقه قابل مشاهده است. این آنومالیها در غرب مزرعه قلعه لان و شرق محدوده در شمال چشمه حسین و جنوب رودخانه فصلی کوره مشاهده می شوند. آنومالیهای دیگر این متغیر نیز در غرب پشت کلان، اطراف تپه کاکا علی وشمال چشمه کانی آخوره قرار دارند.

نقشه توزیع باریم (G03) دلالت بر آن دارد که این متغیر فاقد آنومالی درجه یک می باشد. آنومالی های درجه دو در جنوب، جنوب شرق و جنوب غرب مزرعه باباگورگو و مرکز محدوده مورد مطالعه دیده می شوند.

نقشه توزیع برلیم (G04) دلالت بر آن دارد که آنومالیهای مربوط به این متغیر در ۴ محدوده در این منطقه قابل مشاهده است. آنومالی درجه یک این عنصر در ۱ محدوده در حوالی تپه و مزرعه قلعه لان مشاهده می شود. آنومالیهای دیگر این متغیر نیز در جنوب شرق و جنوب غرب سربرزه و مابین چشمههای شیخ میرزا راست و شیخ میرزا چپ قابل مشاهده می باشند.

نقشه توزیع بیسموت (G05) دلالت بر آن دارد که آنومالیهای درجه یک مربوط به این متغیر در سه محدوده در جنوب و جنوب شرق روستای قلعه لان، غرب تپه قلعه لان و جنوب غرب سربرزه قابل مشاهده است. آنومالیهای دیگر این متغیر نیز در جنوب مزرعه باباگورگو قابل مشاهده میباشند.

نقشه توزیع کادمیوم (G06) دلالت بر آن دارد که آنومالیهای مربوط به این متغیر در ۳ محدوده در این منطقه قابل مشاهده است. آنومالی درجه یک این عنصر در شمال مزرعه بابا گورگو مشاهده می شود. آنومالیهای دیگر این متغیر نیز در جنوب شرقی مزرعه قلعه لان و جنوب شرقی چشمه گزنه قابل مشاهده می باشد.

نقشه توزیع سریوم (G07) دلالت بر آن دارد که آنومالی درجه یک مربوط به این متغیر در جنوب مزرعه باباگورگو واقع شده است و دیگر آنومالیهای مربوط به این عنصر در ۵ محدوده در مرکز منطقه، شمال چشمه گزنه، غرب چشمه حسین، غرب چشمه تخته گر و شرق تپه کاکاعلی قابل مشاهده هستند.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

گزارش نهایی

فصل دوم- اکتشاف ژئوشیمایی

نقشه توزیع کبالت (G08) دلالت بر آن دارد که آنومالی درجه یک مربوط به این متغیر در غرب چشمه گزنه واقع شده است. آنومالیهای دیگر این متغیر نیز به صورت پراکنده از غرب به شرق محدوده قابل مشاهده میباشد.

نقشه توزیع کروم (G09) دلالت بر آن دارد که آنومالیهای مربوط به این متغیر در ۴ محدوده در این منطقه قابل مشاهده است. آنومالی درجه یک این عنصر در شمال غرب مزرعه بابا گورگو در حوالی چشمه کوچکینه مشاهده می شود. آنومالیهای دیگر این متغیر نیز در محدوده تپه قلعه لان، شرق چشمه کانی آخوره و در غرب محدوده چشمه گزنه قابل مشاهده می باشند.

نقشه توزیع مس (G10) دلالت بر آن دارد که آنومالیهای درجه یک مربوط به این متغیر در جنوب غرب سربرزه قابل مشاهده است. آنومالیهای دیگر این متغیر نیز در غرب تپه قلعه لان، شمال شرق روستای قلعه لان قابل و جنوب غرب سربرزه قابل مشاهده میباشند.

نقشه توزیع آهن (G011) دلالت بر آن دارد که این متغیر فاقد آنومالی درجه یک میباشد. آنومالیهای درجه دو در شرق چشمه کانی آخوره، محدوده چشمه درازه و جنوب سربرزه واقع شدهاند.

نقشه توزیع منگنز (G12) دلالت بر آن دارد که آنومالیهای مربوط به این متغیر در ۷ محدوده در این منطقه قابل مشاهده است. آنومالی درجه یک این عنصر در محدودهای در جنوب غرب چشمه شیخ میرزا چپ مشاهده می شود. آنومالیهای دیگر این متغیر نیز در غرب منطقه در غرب مزرعه باباگورگو و به صورت پراکنده در شرق منطقه قابل مشاهده می باشند.

نقشه توزیع مولیبدن (G13) دلالت بر آن دارد که این متغیر فاقد آنومالی درجه یک میباشد. آنومالیهای درجه دو در جنوب روستای سربرزه و جنوب شرق مزرعه قلعه لان واقع شده است.

نقشه توزیع نیکل (G14) دلالت بر آن دارد که آنومالیهای درجه یک مربوط به این متغیر در ۲ محدوده در شمال غرب مزرعه باباگورگو و محدوده مزرعه و تپه قلعه لان قابل مشاهده است. آنومالیهای دیگر این متغیر در شمال شرق روستای قلعه لان، اطراف قلعه لان و شرق محدوده قابل مشاهده میباشد.

نقشه توزیع سرب (G15) دلالت بر آن دارد که آنومالی درجه یک مربوط به این متغیر در جنوب چشمه کانی آخوره قابل مشاهده است. آنومالی دیگر این متغیر نیز در محدودهای بین تپه قلعه لان و تپه کاکاعلی مشاهده می شود.

فصل دوم- اکتشاف ژئوشیمایی

مند شي شادر

نقشه توزیع روبیدیوم (G016) دلالت بر آن دارد که آنومالیهای درجه یک مربوط به این متغیر در جنوب شرق محدوده مورد مطالعه و جنوب مزرعه باباگورگو قرار گرفتهاند. آنومالیهای دیگر این عنصر نیز در محدوده آنومالیهای درجه یک آن و همچنین در غرب مزرعه باباگورگو و مرکز منطقه مورد مطالعه مشاهده شدهاند.

نقشه توزیع گوگرد (G17) دلالت بر آن دارد که آنومالیهای درجه یک مربوط به این متغیر در ۳ محدوده در این منطقه قابل مشاهده هستند. این آنومالیها در شرق سربرزه، شمال غرب مزرعه باباگورگو و جنوب مزرعه قلعه لان در محدوه چشمههای کلک و گوزه کوره قابل ملاحظه میباشد. آنومالیهای دیگر این متغیر نیز به طور پراکنده از شرق تا غرب محدوده پراکنده می-باشند.

نقشه توزیع آنتیموان (G18) دلالت بر آن دارد که آنومالی اصلی مربوط به این متغیر در محدودهای مابین تپه قلعه لان و تپه کاکاعلی متمرکز شده است. آنومالهای دیگر آن در محدوده آنومالی اصلی و همچنین در جنوب غربی چشمه حسین واقع شدهاند.

نقشه توزیع اسکاندیوم (G019) دلالت بر آن دارد که آنومالیهای درجه یک این عنصر در سه محدوده در جنوب شرق منطقه مورد مطالعه، جنوب مزرعه قلعهلان و شرق چشمه کانی آخوره قابل مشاهده هستند. آنومالیهای دیگر این متغیر در محدودههایی در جنوب، جنوب شرق تا شمال شرق محدوده گسترش یافتهاند.

نقشه توزیع قلع (G20) دلالت بر آن دارد که آنومالیهای مربوط به این متغیر در ۳ محدوده در این منطقه قابل مشاهده است. محدودههای آنومال درجه یک این متغیر در جنوب غرب سربرزه و پشت کلان قرار دارند. محدوده آنومال دیگر این متغیر در جنوب تپه کاکاعلی قابل مشاهده است.

نقشه توزیع استرانسیم (G21) دلالت بر آن دارد که آنومالیهای درجه یک این متغیر در شمال شرق روستای قلعه لان، محدوده مزرعه باباگورگو، شمال تپه قلعه لان و جنوب چشمه شیخ میرزا راست قرار دارد. آنومالیهای دیگر این متغیر نیز در اطراف روستای قلعه لان، قابل مشاهده میباشند.

نقشه توزیع تلور (G022) دلالت بر آن دارد که این متغیر فاقد آنومالی درجه یک میباشد و آنومالیهای درجه دو این عنصر از غرب به شرق در هفت محدوده گسترش یافتهاند. گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمایی

نقشه توزیع تیتانیم (G23) دلالت بر آن دارد که آنومالی درجه یک مربوط به این متغیر در جنوب شرق سربرزه قابل مشاهده است. آنومالیهای دیگر این متغیر نیز در جنوب روستای سربرزه، شرق و شمال شرق روستای قلعه لان و اطراف چشمه درازه واقع شدهاند.

نقشه توزیع اورانیوم (G024) دلالت بر آن دارد که آنومالی درجه یک مربوط به این متغیر در یک محدوده مابین چشمههای شیخ میرزا چپ و شیخ میرزا راست قرار گرفته است. آنومالیهای دیگر آن نیز جنوب مزرعه باباگورگو و غرب مزرعه و تپه قلعهلان واقع شدهاند.

نقشه توزیع وانادیم (G25) دلالت بر آن دارد که آنومالیهای درجه یک مربوط به این متغیر در شرق محدوه از جنوب تا شمال پراکنده شدهاند. آنومالیهای دیگر آن نیز در قسمتهای غربی منطقه مورد مطالعه قابل مشاهده هستند.

نقشه توزیع تنگستن (G26) دلالت بر آن دارد که این متغیر فاقد آنومالیهای درجه یک میباشد. آنومالیهای درجه دو مربوط به این متغیر بین روستا و تپه قلعه لان، در محدوده سربرزه و به صورت پراکنده در شرق محدوده قرار دارند.

نقشه توزیع روی (G27) دلالت بر آن دارد که آنومالیهای درجه اول این متغیر در جنوب شرق و جنوب غرب سربرزه و شمال مزرعه باباگورگو قرار دارند. سایر آنومالیها نیز غالبا در جنوب غرب روستای سربرزه قابل مشاهده میباشند.

نقشه توزیع زیرکنیوم (G028) دلالت بر آن دارد که این متغیر فاقد آنومالی درجه یک میباشد و آنومالیهای دیگر این عنصر در سه محدوده در غرب منطقه مورد مطالعه و شرق چشمه کانی آخوره واقع شدهاند.

نقشه توزیع مؤلفه اول آنالیز فاکتوری دادههای خام (F01) که شامل عناصر As ،Sb ،Ba ، و Mo و Bi ،W ،Pb ،As ،Sb ،Ba و میباشد دلالت بر آن دارد که آنومالیهای اصلی مربوط به این متغیر در غرب تپه قلعه لان قابل مشاهده است. سایر محدوده-های آنومال این متغیر در جنوب مزرعه باباگورگو قرار دارند.

نقشه توزیع مؤلفه دوم آنالیز فاکتوری دادههای خام (F02) که شامل عناصر Zn ،Sn ،Mn ،V ،Ti و Zn میباشد دلالت بر آن دارد که این متغیر فاقد آنومالیهای درجه یک میباشد. محدودههای آنومال این منطقه در غرب مزرعه باباگورگو، جنوب شرق و جنوب غرب روستای سربرزه و شرق چشمه کانی آخوره قرار دارند.

نقشه توزیع مؤلفه سوم آنالیز فاکتوری دادههای خام (F03) که شامل عناصر Ni ،Cr و Co میباشد دلالت بر آن دارد که آنومالیهای اصلی مربوط به این متغیر در شمال غرب محدوده در شمال روستای قلعه لان و محدوده چشمه کوچکینه قابل

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

مشاهده است. دیگر محدودههای آنومال این متغیر در محدوده تپه قلعه لان و جنوب غرب آن و در شرق و جنوب چشمه کانی آخوره واقع می شوند.

نقشه توزیع مؤلفه چهارم آنالیز فاکتوری دادههای خام (F04) که شامل عناصر Zn ،Cd و Cu میباشد دلالت بر آن دارد که آنومالیهای اصلی مربوط به این متغیر در جنوب و جنوب غرب سربرزه و در محدوده مزرعه باباگورگو قرار دارد.

نقشه توزیع مؤلفه پنجم آنالیز فاکتوری دادههای خام (F05) که شامل عنصر Sr میباشد دلالت بر آن دارد که آنومالی اصلی این متغیر در شمال تپه قلعه لان قابل مشاهده است. دیگر محدودههای آنومال این متغیر در غرب تپه قلعه لان، شمال مزرعه باباگورگو، شمال شرق روستای قلعه لان و غرب و جنوب چشمه کلک قابل مشاهده میباشد.

نقشه توزیع مؤلفه ششم آنالیز فاکتوری دادههای خام (F06) که شامل عنصر S میباشد دلالت بر آن دارد که آنومالیهای اصلی مربوط به این متغیر بصورت پراکنده در ۳ محدوده یعنی شمال مزرعه باباگورگو، شمال چشمه گوزه کوره و شرق روستای سربرزه قرار دارند. سایر آنومالیهای این متغیر نیز در حوالی مزرعه شیخ میرزای پایین و نیز به صوریت پراکنده در مرکز محدوده مشاهده می شوند.

4-9-معرفي مناطق اميدبخش ژئوشيميايي

با مطالعه نقشههای تک متغیره و چند متغیره تشریح شده در بخش ۲–۸ میتوان وجود برخی مناطق امیدبخش به لحاظ کانی-سازی را در منطقه مطالعاتی متذکر شد. در این بخش محدودههای آنومال و پرپتانسیل ژئوشیمیایی معرفی میشود تا پس از تلفیق با نتایج حاصل از مطالعات کانیسنگین (بخش سوم)، نواحی مقدماتی جهت کنترلهای صحرایی معرفی گردد. با توجه به نتایج حاصل از پردازشهای آماری انجامشده و نقشههای ترسیم شده اقدام به معرفی محدودههای امیدبخش ژئوشیمیایی میگردد، که در نقشه ۲–۳۵ تحت عنوان نقشه GA آورده شده است. ۲۰ محدوده ناهنجار ژئوشیمیایی با اطلاعاتی در مورد عناصر ناهنجار، نمونههای ناهنجار و مساحت در سطور زیر آورده شده است:

محدوده امیدبخش ژئوشیمیایی G1 در شمال غربی منطقه مورد مطالعه با مساحت تقریبی ۰/۳۲ کیلومترمربع که
 دربرگیرنده حوضه دو نمونه ژئوشیمیایی ۱۳۱و ۱۳۲ میباشد نسبت به عناصر Co، Co و Ni ناهنجاری نشان میدهد.

فصل دوم- اکتشاف ژئوشیمایی

- محدوده امیدبخش ژئوشیمیایی G2 در شمال غرب منطقه مورد مطالعه با مساحت تقریبی ۰/۲۱ کیلومترمربع که دربرگیرنده حوضه نمونه ژئوشیمیایی ۱۲۳ میباشد نسبت به عناصر Cu ،Sr ، S و Cd ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیای G3 در غرب منطقه مورد مطالعه با مساحت تقریبی ۰/۱۷ کیلومترمربع که دربرگیرنده
 محوضه دو نمونه ژئوشیمیایی ۱۴۶ و ۱۵۴ میباشد نسبت به عناصر Nb و Sr ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیای G4 در غرب منطقه مورد مطالعه با مساحت تقریبی ۰/۳۸ کیلومترمربع که دربرگیرنده
 محوضه نمونه ژئوشیمیایی ۱۵۱ میباشد نسبت به عنصر Bi ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G5 در جنوب شرق منطقه مورد مطالعه با مساحت تقریبی ۰/۲۷ کیلومترمربع که
 دربرگیرنده حوضه نمونه ژئوشیمیایی ۲۱۱ میباشد نسبت به عنصر Nd ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G6 در جنوب غربی منطقه مورد مطالعه با مساحت تقریبی ۰/۲۸ کیلومترمربع که
 دربرگیرنده حوضه نمونه ژئوشیمیایی ۱۸۱ و ۱۸۳ میباشد نسبت به عنصر Te ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G7 در جنوب غربی منطقه مورد مطالعه با مساحت تقریبی ۰/۱ کیلومترمربع که
 دربرگیرنده حوضه نمونه ژئوشیمیایی ۱۸۴ میباشد نسبت به عنصر Mn ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G8 در مرکز منطقه مورد مطالعه با مساحت تقریبی ۰/۲۵ کیلومترمربع که دربرگیرنده
 Mo و Mo و No ،Bi ،W ،Pb ،As ،Sb ،Ba میاضد نسبت به عناصر No ،Bi ،W ،Pb ،As ،Sb ،Ba و inc
 ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G9 در مرکز منطقه مورد مطالعه با مساحت تقریبی ۱/۱۵ کیلومترمربع که دربرگیرنده
 محوضه نمونههای ژئوشیمیایی ۹۶، ۹۷، ۹۸ و ۱۰۹ میباشد نسبت به عناصر Sr ،Bi ،Be ،Au و Ni ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G10 در جنوب منطقه مورد مطالعه با مساحت تقریبی ۰/۳۹ کیلومترمربع که
 دربرگیرنده حوضه دو نمونه ژئوشیمیایی ۱۸۸ و ۱۹۱ میباشد نسبت به عنصر Sr ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G11 در جنوب منطقه مورد مطالعه با مساحت تقریبی ۰/۶۴ کیلومترمربع که
 دربرگیرنده حوضه نمونه های ژئوشیمیایی ۱۹۳، ۱۹۶ و ۱۹۷ می باشد نسبت به عنصر S ناهنجاری نشان می دهد.

فصل دوم- اکتشاف ژئوشیمایی

- محدوده امیدبخش ژئوشیمیایی G12 در مرکز منطقه مورد مطالعه با مساحت تقریبی ۰/۶۸ کیلومترمربع که دربرگیرنده حوضه نمونههای ژئوشیمیایی ۵۵، ۵۹، ۶۱، ۶۱ و ۶۸ میباشد نسبت به عناصر Bi ،Sn ،Zn ،Cu و Cd ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G13 در شمال منطقه مورد مطالعه با مساحت تقریبی ۰/۴۱ کیلومترمربع که
 دربرگیرنده حوضه نمونه ژئوشیمیایی ۵۲ میباشد نسبت به عنصر S ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G14 در مرکز به سمت شرق منطقه مورد مطالعه با مساحت تقریبی ۰/۱۷
 کیلومترمربع که دربرگیرنده حوضه نمونه ژئوشیمیایی ۵۱ میباشد نسبت به عنصر Zn ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G15 در مرکز به سمت شرق منطقه مورد مطالعه با مساحت تقریبی ۰/۵۳
 کیلومترمربع که دربرگیرنده حوضه نمونه های ژئوشیمیایی ۷ و ۱۲ می باشد نسبت به عناصر V، Ti و Au ناهنجاری نشان می دهد.
- محدوده امیدبخش ژئوشیمیایی G16 در شرق منطقه مورد مطالعه با مساحت تقریبی ۰/۱۳ کیلومترمربع که
 دربرگیرنده حوضه نمونه ژئوشیمیایی ۲۳۴ میباشد نسبت به عنصر Sn ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G17 در جنوب منطقه مورد مطالعه با مساحت تقریبی ۰/۲۸ کیلومترمربع که
 دربرگیرنده حوضه نمونه ژئوشیمیایی ۲۰۷ میباشد نسبت به عنصر Pb دارای مقادیر ناهنجار میباشد.
- محدوده امیدبخش ژئوشیمیایی G18 در جنوب منطقه مورد مطالعه با مساحت تقریبی ۰/۱۱ کیلومترمربع که
 دربرگیرنده حوضه نمونه ژئوشیمیایی ۳۴ میباشد نسبت به عنصر V ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G19 در جنوب منطقه مورد مطالعه با مساحت تقریبی ۰/۲۱ کیلومترمربع که
 دربرگیرنده حوضه نمونه ژئوشیمیایی شماره ۴۱ میباشد نسبت به عنصر V ناهنجاری نشان میدهد.
- محدوده امیدبخش ژئوشیمیایی G20 در جنوب شرق منطقه مورد مطالعه با مساحت تقریبی ۰/۰۹ کیلومترمربع که دربرگیرنده حوضه نمونه ژئوشیمیایی ۲۲۹ میباشد نسبت به عنصر Au ناهنجاری نشان میدهد.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل دوم- اکتشاف ژئوشیمایی

نقشه ۲-۳۵- محدودههای امیدبخش ژئوشیمیایی در منطقه مطالعاتی (GA)

سازمان زمینشناسی و اکتشاف معدنی کشور

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل سوم- اكتشافات كانىسنگين

3- اکتشافات کانیسنگین

۳-۱-روش نمونهبرداری و اهداف آن (بند ۱-۲ شرح خدمات)

همانطور که پیش از این نیز بدان اشاره شد با توجه به وسعت نسبتا زیاد منطقه مطالعاتی استفاده از روش نمونـه.برداری از رسوبات آبراههای میتواند مناسبترین روش مطالعاتی در نظر گرفته شود. در این بخش برخلاف روش مطالعات ژئوشـیمیایی و برداشت نمونههای ژئوشیمی که در آن هدف بررسی میزان تغییرپذیری عناصر بصورت کمی است از نمونههای رسوبات آبراهه-ای با هدف مطالعه کانیهای موجود در هر منطقه استفاده شده است. با استفاده از این روش میتوان نسبت به تعیین منـاطق ناهنجار، نوع کانیهای درگیر در منطقه، تیپهای احتمالی کانیسازی شده و روابط زایشی کانیشناسی در منطقه اقدام نمود. البته این روش محدودیتهایی را دارا میباشد که از آن جمله میتوان به نیمه کمی و حتی کیفی بودن این روش اشاره نمود. در واقـع کیفیت و ارزش نتایج حاصل از این روش ارتباط مستقیم به توانایی و دانش افراد مختلف از مرحله برداشت نمونه و آمادهسازی تا مرحله مطالعه و شناسایی کانیهای موجود در نمونهها دارد. بطور مثال عدم وجود توانایی و تجربه کافی نزد فردی که وظیفه لاوکشویی نمونه را دارد میتواند باعث از دست رفتن قسمت عمدهای نمونه از طریق روش شستشوی نامناسب نمونه گردد. تا مرحله مطالعه و شناسایی کانیهای موجود در نمونهها دارد. بطور مثال عدم وجود توانایی و تجربه کافی نزد فردی که وظیفه دون نقطه برداشت نمونه را دارد میتواند باعث از دست رفتن قسمت عمده ای نمونه از طریق روش شستشوی نامناسب نمونه گردد. در نقطه ای در نان مونه در این بین بر نتیجه مطالعات تاثیرگذار است بطوریکه میزان و نوع کانیهای هر نمونه از نقطهای به نقطه دیگر در محل نمونهبرداری متغیر است.

۲-۲- طراحی شبکه نمونهبرداری و نحوه نمونهبرداری و کدگذاری نمونهها

جهت طراحی شبکه نمونهبرداری بر اساس شرح خدمات (بند ۱–۲) استفاده شده است. با توجه به شرح خدمات مذکور تعداد ۱ نمونه به ازاء هر کیلومترمربع در نظر گرفته شده است. چگالی مذکور تقریبا حدود یک پنجم چگالی نمونهبرداری ژئوشیمیایی است. با توجه به مطالب فوق نقشه نمونهبرداری کانیسنگین طراحی و در اختیار ناظر محترم قرار گرفت. پس از اعمال نقط ه-نظرات ناظر محترم نقشه نهایی نمونهبرداری کانیسنگین تهیه شد که در آن تعداد ۴۹ نمونه کانیسنگین طراحی گردید.

در بخش اجراء عملیات نمونهبرداری با استفاده از الک ۲۰ مش و مطابق با شرح خدمات اقدام به جدایش ذرات کمتر از ۲۰ مش رسوبات هر محل نمونهبرداری گردید. نمونههای برداشت شده با حجم ۵ تا ۱۰ لیتر برداشت گردید. کلیه نمونهها دارای یک شماره منحصربفرد و شامل سه کد به شرح زیر میباشد:

فصل سوم- اكتشافات كانىسنگين

- کد اول معرف نام محل انجام پروژه است که برای کلیه نمونه ها (MR) در نظر گرفته شده است.
- کد دوم معرف شماره محل نمونه بردای که در فاز طراحی تعیین و به همراه مختصات مربوط و در اختیار کارشناسان نمونه بردار قرار گرفته است.
- کد سوم معرف نوع نمونه برداشت شده است. برای مشخص کردن نمونه های کانی سنگین از کد (H) استفاده شده است. به طور مثال شماره نمونه شماره MR-22-H معرف نمونه کانی سنگین مربوط به محل شماره ۲۲ در منطقه میانراهان دو می باشد.

پس از اتمام عملیات نمونهبرداری در مجموع ۴۹ نمونه کانیسنگین طراحی شده، در این فاز برداشت گردید. محل برداشت نمونههای نهایی کانیسنگین در نقشه ۳–۱ تحت عنوان نقشه S02 نشان داده شده است. شماره و مختصات محل برداشت نمونه های کانیسنگین نیز در جدول ۳–۱ در بخش پیوست گزارش ارائه گردیده است.

۳-۳- نحوه آمادهسازی نمونههای کانیسنگین

کلیه نمونههای کانیسنگین در کمپ کنترل و به لحاظ حجم نمونه، صحت بستهبندی و شماره نمونه کنترل شده و پس از کنترل تحویل تکنسین نمونهشور مستقر در محل کمپ شد. نمونهها پس از طی مراحل حجم سنجی، گلشویی، لاوکشویی و خشک کردن در بسته بندی های مناسب به تهران و آزمایشگاه مربوطه منتقل گردید. نمونههای منتقل شده بر اساس شرح خدمات (بند۱–۳) مراحل آمادهسازی را طی کرده و سپس در اختیار کارشناس مطالعهکننده قرار گرفت. مراحل مطالعه نیـز بـر طبق شرح خدمات (بند ۳–۵) انجام شده و فایل رقومی آن با فرمت اکسل در اختیار مشاور قرار گرفت.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل سوم- اكتشافات كانىسنگين

نقشه 3-1- نقشه محل برداشت 49 نمونه کانی سنگین در منطقه مطالعاتی (S02)

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل سوم- اكتشافات كانىسنگين

۳-۴- بررسی آماری دادهها

۳-۴-۴ بررسی پارامترهای آماری و رسم دیاگرامهای آماری دادهها

بر اساس نتایج حاصل از مطالعات انجامشده بر روی ۴۹ نمونه کانیسنگین برداشتشده، تعداد ۴۱ مورد کانی مشاهده و گزارش شده که بصورت یک فایل رقومی با فرمت اکسل در اختیار مشاور قرار گرفته است. نتایج کامل مطالعات کانیسنگین انجامشده طی جدول ۳-۲ در بخش پیوست آورده شده است. در جدول شماره ۳-۳ نام کانیهای مشاهده شده و همچنین تعداد موارد مشاهده شده مشخص شده است. مقدار ۹ عدد از کانیها در کل نمونهها برابر با صفر بوده است. در نمونه ها سه کانی حاوی پیریت موجود بوده است که جمع آنها تحت عنوان Total Pyrite مورد بررسی قرار گرفتهاند. اطلاعات آماری مربوط به ۱۳ پارامتر آماری محاسبهشده برای ۳۰ کانی مورد مطالعه در جدول ۳–۴ آورده شده است. پارامترهای آماری آمده در ایـن جدول شامل تعداد نمونههای معتبر بکار رفته در تحلیل، تعداد نمونههای حذفشده از تحلیل، مقدار میانگین، میانه، مد، انحراف معیار، چولگی، کشیدگی، مقدار کمینه، مقدار بیشینه و مقادیر نظیر ۲۵٪، ۵۰٪ و ۷۵٪ فراوانی آورده شده است. از أنجاییکه مقدار ۵۰٪ فراوانی معادل مقدار میانه می باشد لذا می توان گفت که در این جدول ۱۲ پارامتر آماری محاسبه شده است. همانطورکه در این جدول مشاهده می شود اغلب کانیهای مورد مطالعه به لحاظ تعداد موارد مشاهده شده در حدی نیستند ک.ه بتوان از آنها در تحلیلهای آماری استفاده کرد لذا برای هر چه معنیدارتر و معتبرشدن نمودارهای هیستوگرام و فراوانی تجمعی و تحلیلهای آماری از متغیرهایی استفاده شده است که تعداد موارد مشاهده شده در آنها در حد قابل قبول و مناسبی باشد. بنابراین تنها براي ۲۰ متغير كاني شناسي Epidot ، Chlorite ، Biotite ، Barite ، Apatite ، Amphibole ، Alteard Silicates ، Sericite Pyroxene Magnetite Limonite Ilmenite Hematite Goethite Garnet Feldspar-Quartz Titanomagnetite ،Zircon ،Sphene و Pyrite(Sum) امکان ترسیم نمودارهای مذکور وجود دارد که در نمودارهای ۳–۱ تا ۳-۲۰ بخش پیوست آورده شده است. با توجه به نمودارهای رسم شده و نتایج پارامترهای آماری مشاهده می شود که تمام متغیرهای مورد مطالعه دارای تابع توزیع نزدیک به لاگنرمال و L دارند که خود می تواند شاهدی بر پتانسیل کانی سازی نسبی این کانیها در منطقه باشد. همانطورکه پیش از این نیز بدان اشاره شده است استنباطها و تحلیلهای آماری انجامشده بر روی این دادهها بعلت ماهیت کیفی و نیمه کمی آنها چندان معتبر نیستند لذا در این بخش صرفا به تحلیل نسبی مقادیر حاصله به تفکیک عنصر معرف در هر کانی پرداخته خواهد شد:

فصل سوم- اكتشافات كانىسنگين

۱– کانیهای باریمدار: با توجه به نتایج حاصل، تنها کانی باریمدار گزارش شده کانی باریت می باشد که در ۱۵ نمونه مشاهده شده است. مقدار گزارش شده متفاوت بوده و از مقادیر بزرگ تا بصورت یک ذره است. مقدار بیشینه گزارش شده برای این کانی معادل PPM ۱۰/۸ است که در نمونه کانی سنگین شماره ۴۵ گزارش شده است.
 ۲– کانیهای آهندار: با توجه به نتایج حاصل، ۵ کانی آهندار شامل گوتیت با ۱۳ مورد، هماتیت با ۴۹ مورد، لوکوکس با ۲ مورد، لیمونیت با ۹۲ مورد، مورد، مورد، لوکوکس با ۲ مورد، لیمونیت با ۲۰ مورد، لوکوکس با در ایران شده است.
 ۲– کانیهای آهندار: با توجه به نتایج حاصل، ۵ کانی آهندار شامل گوتیت با ۱۳ مورد، هماتیت با ۴۹ مورد، لوکوکس با ۲ مورد، لیمونیت با ۲۰ مورد و منیتیت با ۴۹ مورد، مورد و گزارش شده در نمونه کانی معادل ۲۰ مورد و منیتیت با ۲۰ مورد، مشاهده و گزارش شده است.
 ۲ مورد، لیمونیت با ۱۶ مورد و منیتیت با ۴۹ مورد، مشاهده و گزارش شده است. اغلب کانیهای آهندار گزارش شده دارای توزیع لاگنرمال و L می باشند. بیشترین مقدار تمرکز مربوط به کانی هماتیت با ۲۸ ۲۲۲/۱۲۵ گرم بر تن در نمونه کانی سنگین شماره کانی شماره ۲۰ می باشد. بیشنده مقدار منیتیت نیز برابر ۲۶۵۲/۱۶ گرم بر تن در نمونه کانیسنگین شماره ۴۰ می باشد. بیشینه مقدار منیتیت نیز برابر ۲۶۵۲/۱۶ گرم بر تن در نمونه شماره ۴۰ می باشد. بیشینه مقدار منیتیت نیز برابر ۲۶۵۲/۱۶ گرم بر تن در نمونه شماره ۴۸ می باشد. بیشینه مقدار منیتیت نیز برابر ۲۶۵۲/۱۶ گرم بر تن در نمونه شماره ۴۰ می باشد. بیشینه مقدار منیتیت نیز برابر ۲۶۵۲/۱۶ گرم بر تن در نمونه شماره ۴۰ می باشد. بیشینه مقدار منیتیت نیز برابر ۲۵۵/۱۶۰ گرم بر تن در نمونه شماره ۸۰ می باشد.

Mineral Observed Mineral Observed Row Row Altreadsillicate Leucoxene Limonite Amphibols Anatase Magnetite Andalusite Malachite Martite Apatite Barite Monazite **Biotite** Nigrine Carbonates Oligiste Celestite Pyrite Cerussite Pyritelimonite Chlorite **PyriteOxide** Cinnabar Pyroxens Epidots Rutile Fluorite Sapphir FQ Scheelite Galena Sericite Garnets Silver Goethite Sphene Gold Titanomagnetite Hematite Zircon Ilmenite

جدول ۳-۳-کانیهای مشاهده شده در مطالعات نمونه های کانی سنگین به همراه تعداد نمونه های حاوی هر کانی در منطقه مطالعاتی

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۵۰۰۰\$۲۰۱ در محدوده اکتشافی میانراهان ۲

فصل سوم- اكتشافات كانىسنگين

، سنگین در منطقه مطالعاتی	مقادیر کانی	ی شدہ بر اساس	، آماری م حا سب	جدول 3-4- یارامترهای	•
---------------------------	-------------	----------------------	------------------------	----------------------	---

Varial	ble	Altreadsillicate	Amphibols	Anatase	Andalusite	Apatite	Barite	Biotite	Carbonates	Cerussite	Chlorite	Epidots	FQ	Galena
J	Valid	49	49	1	4	26	15	10	2	2	44	49	49	2
۲ <u>ــــــــــــــــــــــــــــــــــــ</u>	Missing	0	0	48	45	23	34	39	47	47	5	0	0	47
Aean		1523.814	355.27	0.406	0.346	2.573	1.966	2.976	0.369	0.346	4.960	78.554	52.903	0.396
Aedian		1319.76	268.8	0.4056	0.3712	0.64872	1.296	0.324	0.36856	0.34584	0.372	70.72	58.14	0.396
td. Deviatio	on	998.776	404.496		0.123	4.815	2.725	5.878	0.061	0.400	7.743	63.088	34.498	0.458
ariance		997554.125	163616.7		0.02	23.183	7.424	34.551	0.004	0.160	59.946	3980.13	1190.080	0.210
skewness		0.987	3.185		-1.015	2.870	2.778	2.025			1.469	1.178	0.040	
Kurtosis		0.896	13.985		0.578	8.563	8.574	3.101			0.970	1.394	-1.018	
Ainimum		1.296	0.03072	0.4056	0.1792	0.17808	0.0432	0.0288	0.3252	0.06288	0.0576	0.03264	0.02736	0.072
Aaximum		4471.2	2432	0.4056	0.4608	20.988	10.8	16.8	0.41192	0.6288	27.6	272	123.12	0.72
	25	734.4	105.984	0.4056	0.2176	0.33072	0.468	0.252	0.3252	0.06288	0.288	24.48	25.65	0.072
Percentiles	50	1319.76	268.8	0.4056	0.3712	0.64872	1.296	0.324	0.36856	0.34584	0.372	70.72	58.14	0.396
	75	2023.92	460.8	0.4056	0.448	1.46916	2.52	2.97	0.41192	0.6288	10.2	110.568	80.94	0.72
Varial	ble	Garnets	Goethite	Hematite	Ilmenite	Leucoxene	Limonite	Magnetite	Monazite	Total pyrite	Pyroxens	Rutile	Sapphir	Sericite
-	Valid	6	13	49	33	2	16	49	1	33	49	3	2	22
N	Missing	43	36	0	16	47	33	0	48	16	0	46	47	27
Aean	8	3.206	22.58	293.799	641.317	0.322	7.688	347.790	0.480	10.415	391.764	0.405	0.560	1.791
Aedian		0.17472	17.6	151.488	74.448	0.322	0.4104	261.072	0.48	0.61	358.4	0.40512	0.56	0.275
td. Deviatio	on	7.373	32.463	742.624	960.994	0.178	16.284	457.036		39.441	239.060	0.034	0.204	4.966
ariance		54.356	1053.8	551490.620	923508.58	0.032	265.168	208881.69		1555.578	57149.60	0.001	0.041	24.664
skewness		2.447	2.502	6.342	1.390		2.706	3.043		5.474	0.395	0.000		3.114
Kurtosis		5.990	7.290	42.610	0.546		7.808	12.937		30.783	-0.774			8.627
Ainimum		0.03744	0.3872	0.67328	0.09024	0.196	0.09728	0.132608	0.48	0.09	1.536	0.37136	0.416	0.0264
Aaximum		18.252	119.68	5222.128	3045.6	0.448	60.8	2652.16	0.48	226.68	921.6	0.43888	0.704	18.7
	25	0.08424	0.4752	42.2904	9.7384	0.196	0.342	9.1168	0.48	0.43	216.32	0.37136	0.416	0.22
Percentiles	50	0.17472	17.6	151.488	74.448	0.322	0.4104	261.072	0.48	0.61	358.4	0.40512	0.56	0.275
	75	4.9374	28.16	279.832	1184.4	0.448	8.3448	470.344	0.48	1.735	537.6	0.43888	0.704	0.396
Varial	ble	Silver	Sphene	Titanomagnetite	Zircon		•	•	•	•			•	•
T	Valid	1	20	13	49									
N	Missing	48	29	36	0									
Aean		0.588	4.53	121.177	16.762									
Aedian		0.588	1.37808	51.376	2.02176									
std. Deviatio	on		9.352	172.948	35.454									
ariance			87.5	29910.974	1256.98									
Skewness			3.674	2.472	2,568									
Kurtosis			14.672	6.787	5.920									
		0.588	0.116928	0.82992	0.044928									
Ainimum		0.588	41.76	632.32	157.248									
Ainimum Aaximum		0.566				-								
Ainimum Aaximum	25	0.588	0.36192	19.266	0.48672									
Minimum Maximum Percentiles	25 50	0.588	0.36192	19.266 51.376	0.48672 2.02176	-								

فصل سوم- اكتشافات كانىسنگين

- ۳- کانیهای نقره دار: یک نمونه با شماره ۲۱ حاوی ۰/۵۸۸ ppm نقره مشاهده شده است.
- ۴- کانیهای سربدار: با توجه به نتایج حاصل، ۲ کانی سربدار، سروزیت با ۲ مورد و گالن با ۲ مورد مشاهده شده، گزارش شده است. بیشینه مقدار مشاهده شده برای کانی سروزیت معادل ۰/۶۲۸۸ گرم بر تن در نمونه ۴۵ و برای کانی گالن معادل ۰/۷۲ گرم بر تن در نمونه کانی سنگین شماره ۴۵ میباشد .
- ۵– کانیهای تیتانیمدار: با توجه به نتایج حاصل، ۵ کانی تیتانیمدار تیتانومگنتیت با ۱۳ مورد، آناتاز با ۱ مورد، ایلمنیت با ۳۳ مورد، روتیل با ۳ مورد و اسفن با ۲۰ مورد مشاهده شده گزارش شده است. تعداد مقدار ذرات مشاهده شده متفاوت بوده و از تعداد یک ذره تا مقادیر بزرگتر متغیر است. بیشینه مقدار این کانیها به ترتیب برای کانی تیتانومگنتیت با ۶۳۲/۳۲ و از تعداد یک ذره تا مقادیر بزرگتر متغیر است. بیشینه مقدار این کانیها به ترتیب برای کانی تیتانومگنتیت با ۶۳۲/۳۲ و از تعداد یک ذره تا مقادیر بزرگتر متغیر است. بیشینه مقدار این کانیها به ترتیب برای کانی تیتانومگنتیت با ۶۳۲/۳۲ گرم بر گرم بر تن مربوط به نمونه ۸، برای کانی ایلمنیت با ۶۰/۴۰۹ گرم بر تن مربوط به نمونه ۲۴، برای کانی ایلمنیت با ۶۰/۴۰۳ گرم بر تن مربوط به نمونه ۹ میانی ایلمنیت با ۶۱/۲۶ گرم بر تن مربوط به نمونه ۹ میان یا دارای کانی اسفن با ۶۱/۷۶ گرم بر تن مربوط به نمونه ۸ میان یا در نمونه ۸ میرای کانی اسفن با ۶۱/۷۶ گرم بر تن مربوط به نمونه ۹ میان یا در نمونه ۸ میرای کانی اسفن با ۶۱/۷۶ گرم بر تن مربوط به نمونه ۹ میرای کانی ایلمنیت با ۶۱/۹۷ گرم بر تن مربوط به نمونه ۹ مونه ۹ میرای کانی ایلمنیت با ۶۱/۹۷ گرم بر تن مربوط به نمونه ۹ میرای کانی اسفن با ۶۱/۷۶ گرم بر تن مربوط به نمونه ۹ مرای کانی اسفن با ۱۹/۱۹۶ گرم بر تن مربوط به نمونه ۹ میرای کانی اسفن با ۱۹/۱۹ کرم بر تن مربوط به نمونه ۹ میرای کانی اسفن با ۱۹/۱۹ کرم بر تن مربوط به نمونه ۸ میراشد.
- ۶- کانی فسفردار: با توجه به مطالعات انجام گرفته تنها کانی حاوی فسفر کانی آپاتیت است. این کانی در ۲۶ نمونه کانیسنگین مشاهده شده که بیشینه مقدار آن با ۲۰/۹۸۸ گرم بر تن مربوط به نمونه ۳۱ میباشد.
- ۷- کانیهای معرف فعالیتهای دگرگونی: با توجه به نتایج حاصل، ۶ کانی معرف فعالیتهای دگرگونی آندالوزیت با ۴ مورد، اپیدوت با ۴۹ مورد، گارنت با ۶ مورد، بیوتیت با ۱۰ مورد ، کلریت با ۴۴ مورد و سریسیت با ۲۲ مـورد مشـاهدهشـده گزارش شده است. مقادیر مشاهده شده متفاوت است بطوریکه بیشینه مقدار مشاهده شده بـرای کـانی آنـدالوزیت با گزارش شده است. مقادیر مشاهده شده متفاوت است بطوریکه بیشینه مقدار مشاهده شده بـرای کـانی آنـدالوزیت با الا محرف محرف محرف معادیر مشاهده شده متفاوت است بطوریکه بیشینه مقدار مشاهده شده بـرای کـانی آنـدالوزیت با گزارش شده است. مقادیر مشاهده شده متفاوت است بطوریکه بیشینه مقدار مشاهده شده بـرای کـانی آنـدالوزیت با کارت ۱۸/۴۶۰۸ گرم بر تن مربوط به نمونه ۲۷، برای کانی اپیدوت با ۲۷۲ گرم بر تن مربوط به نمونه ۲۸، برای کانی گارنت با ۱۸/۲۵۲ گرم بر تن مربوط به نمونه ۳۷، برای کانی بیوتیت با ۱۶/۸ گرم بر تن مربوط بـه نمونـه ۴۶، بـرای کـانی کلریت برابر ۲۷/۶ گرم بر تن مربوط به نمونه ۲۲ و برای سریسیت با ۱۸/۷ گرم بر تن مربوط به نمونه ۴۷ میباشد.
- ۸- کانی پیریت: با توجه به نتایج حاصل، ۳ نوع پیریت در این گزارش آمده است. این سه نوع پیریت عبارتند از پیریت، پیریتلیمونیت و پیریت اکسیدی که به ترتیب در ۵ ، ۸ و ۳۲ نمونه مشاهده شده است. مقادیر مشاهده شده متفاوت بوده و بیشینه مقدار این کانیها بصورت کانی پیریت اکسیدی در نمونه کانیسنگین شماره ۴ با مقدار ۲۱۶ گرم بر تن گزارش شده است. از آنجاییکه انواع کانیهای پیریت مشاهده شده بعنوان ردیاب مناسب کانیسازیها عمل میکنند لـذا

فصل سوم- اكتشافات كانىسنگين

یک متغیر جدید که از مجموع انواع کانیهای پیریت تشکیل شده میتواند بسیار مفید واقع شود. مقدار بیشینه و میانگین این متغیر جدید که دارای تابع توزیع لاگنرمال میباشد به ترتیب برابر ۲۲۶/۶۸ و ۱۰/۴۱۵ گرم بر تن میباشد.

مند شي شادر

3-4-2- تعیین ضرایب همبستگی

همانطور که از پارامترهای آماری کانیهای سنگین مشخص است اغلب کانیها بواسطه کم بودن موارد مشاهده شده از اعتبار تحلیلهای آماری می کاهند لذا تنها ۲۰ متغیر اشاره شده در بخش ۳–۴–۱ بهمراه ۱ متغیر جدید M Sum-Ore NM (مجموع باریت و فلوئورین) در تحلیلهای آماری دومتغیره و چندمتغیره شرکت داده شدهاند. در این متغیر جدید مقدار فلوئورین بسیار کم و در حد صفر بود، ولی با این حال در تحلیلهای آماری آز آن استفاده گردید. M Sum-Ore M (مجموع کانههای فلزی گرارش شده) نیز محاسبه شدند، اما از آنجاییکه تعداد دادههای موجود در آنها به انداره کافی نبود در تحلیلهای آماری شرکت داده نشدند و بدین ترتیب ضرایب همبستگی پیرسون و اسپیرمن متغیرهای ۲۱ گانه محاسبه شد که نتایج آن به ترتیب در جداول ۳–۵ و ۳–۶ آورده شده است. جهت سهولت در تفکیک ضرایب همبستگی، این مقادیر طبق بازههای زیر رنگآمیزی شدهاند:

- رنگ قرمز برای مقادیر ضریب همبستگی بالای ۰/۸
- رنگ نارنجی برای مقادیر ضریب همبستگی بین ۶/۰ و ۸/۰
 - رنگ زرد برای مقادیر ضریب همبستگی بین ۴/۰ و ۶/۰

براساس برونزد سنگهای آذرین نفوذی با ترکیبی از دیوریت تا گابرو و نیز بر مبنای جداول شماره ۳–۵ و ۳–۶ که ضرایب همبستگی کانیهای سنگین محدوده مورد مطالعه را مشخص میسازد میتوان چنین نتیجه گرفت که عمده ترین کانیهای سنگین اندازه گیری شده مربوط به کانیهای معمول در تودههای نفوذی با ترکیب متوسط تا بازیک میباشد و یا کانیهای حاصل دگرسانی کانیهای اولیه این سنگها هستند. براساس ضرایب همبستگی بین کانیها میتوان دریافت بیشترین مقادیر همبستگی معمولاً بین کانیهای اصلی سازنده سنگها وجود دارد، مثل بیوتیت و سیلیکاتهای آلتره، آمفیبول و بیوتیت، سریسیت و سیلیکاتهای آلتره، زیرکن و آپاتیت.

همبستگی بین سریسیت با سیلیکاتهای آلتره، بیوتیت، آمفیبول و کوارتز فلدسپار با توجه به حضور تودههای با ترکیب حـد واسط (دیوریتی) و احتمالاً بخشهای اسیدی تر (شاید با ترکیب سینیتی یا گرانیتی) بیانگر یک توده نفوذی با ترکیب اسیدی تـا متوسط است.

وجود همبستگی بین تیتانومنیتیت و کانیهایی از قبیل هماتیت، ایلمینیت، لیمونیت، منیتیت، پیریت و اسفن معرف حضور تودههای بازیک تا حد واسط (سنگهای گابرویی تا دیوریتی) میباشد.

به طور کلی با بررسی این جدول و ضرایب همبستگی بین کانیها نمی توان به تنهایی و بر مبنای کانیهای سنگین بررسی شده کانی سازی خاصی را مورد توجه قرار داد.

کانیهای سنگین مطالعه شده عموماً گویای نوعی تفریق سنگ شناسی از قطب بازیک تا متوسط (و حتی اسیدی) میباشد به عبارت دیگر عموماً کانیهای مشاهده شده جزء سازندههای اصلی سنگهای منطقه و یا حاصل دگرسانی و هوازدگی آنها می-باشند. تنها کانی سازی که میتواند احتمال حضور در بین این سنگها بویژه سنگهای بازیک را داشته باشد کانیسازی تیتان و فسفات آذرین است که همبستگی نسبتاً خوب بین تیتانومنیتیت با ایلمنیت، لیمونیت، منیتیت، پیریت و تا حدودی آپاتیت می-تواند منتج شده از آن باشد.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۵۰۰۵\$۱۰ در محدوده اکتشافی میانراهان ۲

1:12

1.1

فصل سوم- اكتشافات كانىسنگين

Variable	Altre adsillicate	Amphibols	Apatite	Barite	Biotite	Chlorite	Epidots	FQ	Garnets	Goethite	Hematite	Ilme nite	Limonite	Magnetite	Total pyrite	Pyroxens	Sericite	Sphe ne	Titanomagnetite	Zircon	OreNM
Altreadsillicate	1	0.110	-0.378	-0.299	0.318	0.292	0.272	0.257	0.246	-0.297	-0.167	-0.579	-0.160	-0.256	-0.114	0.095	0.264	-0.405	-0.449	-0.365	-0.299
Amphibols	0.110	1	-0.052	-0.129	0.620	0.468	0.252	0.176	0.395	-0.233	-0.109	-0.305	-0.282	-0.066	-0.169	0.474	0.488	-0.192	-0.392	-0.027	-0.129
Apatite	-0.378	-0.052	1	0.878	-0.226	-0.099	-0.029	-0.116	1.000	-0.460	-0.063	0.163	0.704	0.119	-0.117	0.179	-0.190	0.052	0.033	0.665	0.878
Barite	-0.299	-0.129	0.878	1	0.436	-0.285	-0.098	-0.152	1.000	-0.381	0.035	0.907	-0.435	0.783	-0.207	0.071	0.084	1.000	1.000	0.898	1.000
Biotite	0.318	0.620	-0.226	0.436	1	0.364	0.452	0.193	1.000	-0.500	-0.226	-0.327	-0.517	-0.163	0.065	-0.001	0.825	-0.203	-0.232	-0.020	0.436
Chlorite	0.292	0.468	-0.099	-0.285	0.364	1	0.444	0.274	-0.299	0.116	-0.056	-0.297	0.256	-0.259	0.085	0.103	0.156	-0.193	-0.175	-0.173	-0.285
Epidots	0.272	0.252	-0.029	-0.098	0.452	0.444	1	0.291	0.028	-0.304	-0.163	-0.452	0.690	-0.192	-0.080	0.465	0.009	-0.307	-0.278	-0.165	-0.098
FQ	0.257	0.176	-0.116	-0.152	0.193	0.274	0.291	1	0.628	-0.135	0.106	0.362	0.036	0.425	-0.251	0.490	0.113	0.404	0.363	0.013	-0.152
Garnets	0.246	0.395	1.000	1.000	1.000	-0.299	0.028	0.628	1	1.000	0.646	0.996	-0.245	0.987	-0.246	-0.191	0.971	1.000	1.000	0.999	1.000
Goethite	-0.297	-0.233	-0.460	-0.381	-0.500	0.116	-0.304	-0.135	1.000	1	0.905	0.100	0.208	-0.137	-0.138	-0.363	-0.099	-0.430	-	-0.218	-0.381
Hematite	-0.167	-0.109	-0.063	0.035	-0.226	-0.056	-0.163	0.106	0.646	0.905	1	0.395	-0.106	0.064	-0.085	-0.159	0.145	0.646	0.602	-0.036	0.035
Ilme nite	-0.579	-0.305	0.163	0.907	-0.327	-0.297	-0.452	0.362	0.996	0.100	0.395	1	-0.189	0.747	-0.253	-0.079	-0.287	0.628	0.569	0.579	0.907
Limonite	-0.160	-0.282	0.704	-0.435	-0.517	0.256	0.690	0.036	-0.245	0.208	-0.106	-0.189	1	-0.011	0.660	-0.192	-0.260	-0.313	0.994	-0.175	-0.435
Magnetite	-0.256	-0.066	0.119	0.783	-0.163	-0.259	-0.192	0.425	0.987	-0.137	0.064	0.747	-0.011	1	-0.131	0.182	-0.202	0.903	0.937	0.350	0.783
Total pyrite	-0.114	-0.169	-0.117	-0.207	0.065	0.085	-0.080	-0.251	-0.246	-0.138	-0.085	-0.253	0.660	-0.131	1	-0.125	-0.189	-0.283	0.525	-0.101	-0.207
Pyroxens	0.095	0.474	0.179	0.071	-0.001	0.103	0.465	0.490	-0.191	-0.363	-0.159	-0.079	-0.192	0.182	-0.125	1	-0.097	0.050	-0.169	0.124	0.071
Sericite	0.264	0.488	-0.190	0.084	0.825	0.156	0.009	0.113	0.971	-0.099	0.145	-0.287	-0.260	-0.202	-0.189	-0.097	1	-0.260	0.003	-0.166	0.084
Sphene	-0.405	-0.192	0.052	1.000	-0.203	-0.193	-0.307	0.404	1.000	-0.430	0.646	0.628	-0.313	0.903	-0.283	0.050	-0.260	1	0.899	0.251	1.000
Titanomagnetite	-0.449	-0.392	0.033	1.000	-0.232	-0.175	-0.278	0.363	1.000	-	0.602	0.569	0.994	0.937	0.525	-0.169	0.003	0.899	1	0.136	1.000
Zircon	-0.365	-0.027	0.665	0.898	-0.020	-0.173	-0.165	0.013	0.999	-0.218	-0.036	0.579	-0.175	0.350	-0.101	0.124	-0.166	0.251	0.136	1	0.898
OreNM	-0.299	-0.129	0.878	1.000	0.436	-0.285	-0.098	-0.152	1.000	-0.381	0.035	0.907	-0.435	0.783	-0.207	0.071	0.084	1.000	1.000	0.898	1

جدول 3-4- ماتریس همبستگی پیرسون محاسبه شده بر اساس مقادیر کانی سنگین در منطقه مطالعاتی

5

Variable	Altre ads illicate	Amphibols	Apatite	Barite	Biotite	Chlorite	Epidots	FQ	Garnets	Goethite	Hematite	Ilmenite	Limonite	Magnetite	Total pyrite	Pyroxens	Sericite	Sphene	Titanomagnetite	Zircon	OreNN
Altreadsillicate	1	0.383	-0.474	0.020	0.687	0.321	0.366	0.340	0.886	-0.259	-0.243	-0.512	0.027	-0.151	0.031	0.207	0.787	-0.303	-0.462	-0.133	0.020
Amphibols	0.383	1	0.055	0.092	0.625	0.458	0.530	0.305	0.829	-0.135	-0.036	-0.282	-0.112	0.128	-0.138	0.573	0.441	0.214	-0.355	0.356	0.092
Apatite	-0.474	0.055	1	0.714	-0.566	0.224	-0.076	0.121	1.000	-0.126	0.192	0.478	0.933	0.412	-0.046	0.094	-0.437	0.831	0.479	0.757	0.714
Barite	0.020	0.092	0.714	1	0.500	-0.245	0.201	0.318	1.000	-0.205	0.193	0.370	0.029	0.761	0.428	0.425	0.149	1.000	1.000	0.489	1.000
Biotite	0.687	0.625	-0.566	0.500	1	0.226	0.675	0.624	1.000	0.154	0.000	-0.485	-1.000	0.164	0.523	0.426	0.744	-0.470	-0.029	0.024	0.500
Chlorite	0.321	0.458	0.224	-0.245	0.226	1	0.426	0.524	0.500	0.527	0.109	-0.117	0.458	-0.105	0.169	0.255	0.269	0.090	0.224	0.086	-0.245
Epidots	0.366	0.530	-0.076	0.201	0.675	0.426	1	0.318	0.714	-0.263	-0.140	-0.419	0.321	-0.067	0.076	0.520	-0.041	-0.277	-0.352	-0.033	0.201
FQ	0.340	0.305	0.121	0.318	0.624	0.524	0.318	1	0.943	-0.177	0.308	0.325	0.332	0.431	0.168	0.500	0.528	0.303	0.328	0.477	0.318
Garnets	0.886	0.829	1.000	1.000	1.000	0.500	0.714	0.943	1	1.000	0.029	0.500	0.000	0.714	0.300	0.657	1.000	1.000	1.000	0.943	1.000
Goethite	-0.259	-0.135	-0.126	-0.205	0.154	0.527	-0.263	-0.177	1.000	1	0.537	-0.050	0.378	-0.327	0.084	-0.366	0.159	-0.419	-	-0.096	-0.20
Hematite	-0.243	-0.036	0.192	0.193	0.000	0.109	-0.140	0.308	0.029	0.537	1	0.374	0.444	0.192	-0.082	-0.093	0.209	0.324	0.593	0.344	0.193
Ilmenite	-0.512	-0.282	0.478	0.370	<mark>-0.485</mark>	-0.117	-0.419	0.325	0.500	-0.050	0.374	1	-0.261	0.714	-0.145	0.032	0.001	0.524	0.718	0.721	0.370
Limonite	0.027	-0.112	0.933	0.029	-1.000	0.458	0.321	0.332	0.000	0.378	0.444	-0.261	1	0.314	0.431	-0.007	-0.341	-0.452	1.000	0.025	0.029
Magnetite	-0.151	0.128	0.412	0.761	0.164	-0.105	-0.067	0.431	0.714	-0.327	0.192	0.714	0.314	1	0.163	0.420	0.215	0.425	0.857	0.709	0.761
Total pyrite	0.031	-0.138	-0.046	0.428	0.523	0.169	0.076	0.168	0.300	0.084	-0.082	-0.145	0.431	0.163	1	0.055	-0.160	-0.198	0.690	-0.092	0.428
Pyroxens	0.207	0.573	0.094	0.425	0.426	0.255	0.520	0.500	0.657	-0.366	-0.093	0.032	-0.007	0.420	0.055	1	0.263	0.425	-0.264	0.390	0.425
Sericite	0.787	0.441	-0.437	0.149	0.744	0.269	-0.041	0.528	1.000	0.159	0.209	0.001	-0.341	0.215	-0.160	0.263	1	0.210	0.036	0.128	0.149
Sphene	-0.303	0.214	0.831	1.000	-0.470	0.090	-0.277	0.303	1.000	-0.419	0.324	0.524	-0.452	0.425	-0.198	0.425	0.210	1	0.462	0.755	1.000
Titanomagnetite	-0.462	-0.355	0.479	1.000	-0.029	0.224	-0.352	0.328	1.000	-	0.593	0.718	1.000	0.857	0.690	-0.264	0.036	0.462	1	0.369	1.000
Zircon	-0.133	0.356	0.757	0.489	0.024	0.086	-0.033	0.477	0.943	-0.096	0.344	0.721	0.025	0.709	-0.092	0.390	0.128	0.755	0.369	1	0.489
OreNM	0.020	0.092	0.714	1.000	0.500	-0.245	0.201	0.318	1.000	-0.205	0.193	0.370	0.029	0.761	0.428	0.425	0.149	1.000	1.000	0.489	1

جدول ۳-6- ماتریس همبستگی اسپیرمن محاسبه شده بر اساس مقادیر کانی سنگین در منطقه

پروژه اکتشاف ژئوشیمیایی ۵۰۰۰، ۲۵ در محدوده اکتشافی میانراهان ۲

فصل سوم- اكتشافات كانىسنگين

سازمان زمینشناسی و اکتشاف معدنی کشور

0 0

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل سوم- اکتشافات کانیسنگین

3-4-3- آنالیز خوشهای

از جمله روشهایی که روابط زایشی ملموسی را بین متغیرها مشخص میکند آنالیز خوشهای میباشد. برای ترسیم نمودار شاخه درختی این تحلیل از ۲۰ متغیر کانی سنگین که دارای تعداد قابل قبول نمونه مشاهده شده در گزارش میباشند استفاده شده و با چند روش نمودار شاخهدرختی ترسیم شده است. یکی از چندین روش که منجر به یک نمودار مناسبتر به لحاظ روابط زایشی گردیده است در نمودار ۳–۲۱ آمده است. با توجه به نمودار مذکور در منطقه ۵ زیر شاخه اصلی مشاهده می شود.

- ۱- مجموعه اول شامل کانیهای گوتیت و هماتیت است که هر دو آنها را میتوان به نوعی از کانیهای حاصل از دگرسانی برخی کانیهای فرومنیزین دانست. در واقع این کانیها را میتوان کانیهای دگرسان و اپاک سنگهای آذرین منطقه دانست.
- ۲- مجموعه دوم شامل کانیهای میکا و سریسیت است. اینها نیز از جمله کانیهای سنگ سازند. بدین ترتیب که میکاها از جمله بیوتیت معمولاً در سنگهای حد واسط و اسیدی حضور دارند (یا بصورت اولیه یا در اثر دگرسانی آمفیبولها) و سریسیت نیز حاصل تجزیه فلدسپاتهای نوع پلاژیوکلاز و یا محصول نهایی دگرسانی بیوتیتها هستند.
- ۳– مجموعه سوم شامل کانیهای اصلی و سازنده سنگهای آذرین حد وسط تا بازیک میباشد که شامل کانیهای فلدسپار کوارتز، سیلیکاتهای آلتره، کلریت، آمفیبول و پیروکسن میباشد. این مجموعه کانی سازندههای اصلی سنگهای آذرین نفوذی منطقه میباشد.
- ۵- مجموعه آخر گروه کانیهای اسفن، تیتانومنیتیت، ایلمنیت و منیتیت است که بیانگر حضور سنگهای بازیک در منطقه از جمله است. به عبارتی دیگر این گروه نماینده کانههای آهن و تیتاندار در سنگهای متوسط بازیک منطقه از جمله سنگهای دیوریت گابرو میباشد. بر این اساس شاید بتوان احتمال نوعی کانی سازی تیتان آذرین را که کانیهایی از قبیل ایلمنیت و تیتانومنیتیت به عنوان کانیهای اصلی آن میباشد در سنگهای حد واسط تا بازیک محدوده داد.

نمودار 3-21- نمودار شاخه درختی ترسیمشده بر اساس نتایج مطالعات کانیسنگین در منطقه
پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل سوم- اكتشافات كانىسنگين

مند شي شادر

۳-۵- روش و تهیه نقشههای کانیسنگین

پس از انجام پردازشها و بررسیهای آماری اقدام به تهیه نقشههای کانیسنگین گردید. بدین منظور بر اساس ۴۱ متغیر کانیشناسی مطالعه شده، متغیرهای Ti Minerals ،Pb Minerals ،Fe Minerals، (Sum)، (Sum)، Barite، Pyrite، کانیشناسی مطالعه شده، متغیرهای Sphene و Ilmenite، Leucoxene محاسبه و در نهایت تعداد ۸ نقشه توزیع فضایی متغیرهای محاسبه شده بر اساس تعداد ذرات ترسیم گردید.

- ترسیم نقشهها در سه مرحله به شرح زیر انجام پذیرفت: الف – در ابتدا حوضه آبریز مربوط به هر محل برداشت نمونه کانیسنگین بصورت یک چندضلعی مشخص گردید. ب – سپس بر اساس چندضلعی مشخص شده که محدوده پوششی هر نمونه را مشخص میکند و مقادیر کمینه، بیشینه و میانگین تعداد ذرات، نقشه توزیع هر متغیر ترسیم گردید.
- ج- مقادیر فوق با استفاده از حدود زیر رنگ آمیزی گردید تا نقشه نهایی توزیع هر عنصر در محدوده مطالعاتی مشخص گردد:
 - مقادیر بالاتر از میانگین تا مقدار بیشینه برنگ قرمز.
 مقادیر پایین تر از میانگین تا کمینه برنگ زرد.

۳-۶- تعبیر و تفسیر نقشههای کانیسنگین

با توجه به روش فوق تعداد ۶ نقشه به شمارههای ۳–۲ الی ۳–۹ تحت عنوان نقشههای H01 تا H08 مربوط به متغیرهای کانیسنگین تعیین شده مورد تعبیر و تفسیر قرار می گیرند که در زیر آمده است. (این نقشهها در بخش پیوست آورده شده است) نقشه توزیع متغیر کانی باریت با شماره H01 دلالت بر آن دارد که در ۱۵ نمونه بین ۰/۰۱٪ تا ۰/۲۵٪ از ذرات این کانی مشاهده شده است.

نقشه توزیع کانیهای آهن Fe Minerals با شماره H02 دلالت بر آن دارد که در تمامی ۴۹ نمونه برداشت شده در منطقه ذراتی از این متغیر موجود بوده و مقادیر آنها نیز بین ۰/۵۵٪ تا ۹۵/۰۵٪ می باشد.

نقشه توزیع متغیر کانی لکوکسن با شماره H03 دلالت بر آن دارد که داردکه در دو نمونه مقدار ۰/۰۱٪ از ذرات این متغیر مشاهده شده است.

نقشه توزیع متغیر کانیهای پیریت (Pyrite (Sum با شماره H04 دلالت بر آن دارد که در ۳۳ نمونه بین ۰/۰۱٪ تا ۱۰/۵٪ از ذرات این کانی مشاهده شده است.

نقشه توزیع کانی های سرب Pb Minerals با شماره H05 دلالت بر آن داردکه در دو نمونه مقدار ۰/۰۲٪ از ذرات این متغیر مشاهده شده است.

نقشه توزیع متغیر کانی های تیتانیوم Ti Minerals با شماره H06 دلالت بر آن دارد که در ۳۴ نمونه بین ۰/۰۱٪ تا ۶۰/۱۵٪ از ذرات این کانی مشاهده شده است.

نقشه توزیع متغیر کانی ایلمنیت با شماره H07 دلالت بر آن دارد که در ۳۳ نمونه بین ۰/۰۱٪ تا ۵۶٪ از ذرات این کانی مشاهده شده است.

نقشه توزیع متغیر کانی اسفن با شماره H08 دلالت بر آن دارد که در ۲۰ نمونه بین ۰/۰۱٪ تا ۰/۷۵٪ از ذرات این کانی مشاهده شده است.

۳-۷- معرفی مناطق امیدبخش کانیسنگین

با مطالعه نقشههای ۸ گانه تشریحشده در بخش ۳–۶ میتوان وجود برخی مناطق امیدبخش به لحاظ کانیسازی محتمل در منطقه مطالعاتی متذکر شد. در این بخش محدودههای آنومال و پرپتانسیل کانیسنگین معرفی میشود (نقشه ۳–۱۰۰ تحت عنوان نقشه HA) تا پس از تلفیق با نتایج حاصل از مطالعات انجامشده نمونههای ژئوشیمیایی (بخش دوم)، نواحی مقدماتی جهت کنترلهای صحرایی معرفی گردد. با توجه به نتایج حاصل از پردازشهای آماری انجام شده و نقشههای ترسیم شده، منطقه مورد مطالعه تنها دارای ۲ محدوده آنومالی محاسباتی میباشد که با توجه به مقادیر مطالعات، این دو محدوده فاقد ارزش بوده و در تلفیق با محدودههای امید بخش ژئوشمیایی از آنها صرفنظر شد.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل سوم- اكتشافات كانىسنگين

نقشه **3-10- محدودههای امیدبخش کانیسنگین در منطقه مطالعاتی (HA)**

سازمان زمین شناسی و اکتشاف معدنی کشور

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

۴- تعبیر و تفسیر دادهها

بر اساس بند ۳–۸ شرح خدمات و با توجه به نتایج حاصل از مطالعات انجام شده در فصول گذشته نسبت به معرفی مناطق آنومال جهت کنترل صحرایی اقدام گردید. با توجه به مطالب فوق تعداد ۲۰ محدوده ناهنجار نهایی به شرح جدول ۴–۱ آورده شده است. کل مساحت ارائه شده بعنوان مناطق ناهنجار معادل ۶/۷۷ کیلومترمربع می باشد. نقشه ۴–۱ تحت عنوان نقشه FAD موقعیت مناطق ناهنجار ۲۰ گانه را نشان می دهد.

11 - 11 - 12 - 12 - 13	مساحت محدوده	
موقعیت محدوده انومال	أنومال (كيلومتر مربع)	نام محدوده
این أنومالي در شمال غرب محدوده مورد مطالعه و شمال روستاي قلعه لان واقع شده است.	0.32	MR1
این آنومالی در شمال غرب محدوده مورد مطالعه و شمال مزرعه باباگورگور واقع شده است.	0.21	MR2
این أنومالی در غرب منطقه مورد مطالعه و شرق روستای قلعه لان واقع شده است.	0.17	MR3
این آنومالی در غرب منطقه مورد مطالعه و جنوب روستای قلعه لان و محدوده تپه کاکاعلی قرار گر فته است.	0.38	MR4
این آنومالی در جنوب شرق محدوده مورد مطالعه و جنوب غرب روستای پشت کلان قرار گرفته است.	0.27	MR5
این آنومالی در جنوب غرب محدوده مورد مطالعه و شرق مزرعه شیخ میرزا پایین واقع شده است.	0.28	MR6
این آنومالی در جنوب منطقه مورد مطالعه و شرق مزرعه مراد آباد واقع شده است.	0.1	MR7
این أنومالی در مرکز محدوده مورد مطالعه و شرق روستای قلعه لان و جنوب مزرعه باباگورگور قرار گر فته است.	0.25	MR8
این آنومالی در مرکز محدوده مورد مطالعه و حوالی مزرعه و تپه قلعه لان قرار گر فته است.	1.15	MR9
این أنومالی در جنوب منطقه مورد مطالعه و جنوب مزرعه و تپه قلعه لان واقع شده است.	0.39	MR10
این أنومالی در جنوب منطقه مورد مطالعه و جنوب مزرعه و تپه قلعه لان واقع شده است.	0.64	MR11
این آنومالی در مرکز محدوده مورد مالعه و جنوب غرب روستای سربرزه قرار گر فته است.	0.68	MR12
این آنومالی در شمال محدوده مورد مطالعه و جنوب روستای سربرزه قرار گر فته است.	0.41	MR13
این آنومالی در مرکز محدوده مورد مطالعه و جنوب روستای سربرزه واقع شده است.	0.17	MR14
این آنومالی در شمال شرق محدوده مورد مطالعه و جنوب شرق روستای سربرزه واقع شده است.	0.53	MR15
این آنومالی در شرق محدوده مورد مطالعه و غرب روستای پشت کلان قرار گر فته است.	0.13	MR16
این آنومالی در جنوب منطقه مورد مطالعه و جنوب چشمه کانی آخوره قرار گر فته است.	0.28	MR17
این آنومالی در محدوده جنوب و جنوب شرقی منطقه مورد مطالعه و شرق چشمه کانی اَخوره واقع شده است.	0.11	MR18
این أنومالی در محدوده جنوب و جنوب شرقی منطقه مورد مطالعه و شرق چشمه کانی أخوره واقع شده است.	0.21	MR19
این آنومالی در جنوب شرق محدوده مورد مطالعه و جنوب غرب روستای پشت کلان قرار گرفته است.	0.09	MR20

جدول 4-1- موقعیت محدودههای آنومال بهمراه مساحت هر کدام

فصل چهاره– تعبير و تفسير

۴-۱- کنترل صحرایی (بند ۳-۹ شرح خدمات)

بعد از مشخص شدن محدودههای ناهنجار ۲۰ گانه، مرحله کنترل صحرایی مناطق ناهنجار مذکور طبق بند ۳-۹ شرح خدمات انجام گردید. در این مرحله گروه نمونه برداری وکنترل أنومالی ها در تاریخ ۱۳۸۷/۰۵/۰۱ در شهرستان کامیاران واقع در غرب محدوده مستقر گردید و کار کنترل آنومالیها و نمونه برداری را شروع نموده و در تاریخ ۱۳۸۷/۰۵/۱۰ به پایان رسانید. محل استقرار اکیپ مذکور مهمانپذیر ارام در شهرستان کامیاران بوده است. در انتها تعداد ۵۱ نمونه مینرالیزه از زونهای کانی سازی شده احتمالی، تعداد ۲۴ نمونه کانی سنگین، ۹ نمونه آلتره و نمونه هایی برای تهیه مقاطع میکروسکوپی برداشت گردید. بر اساس نقشههای مقدماتی تهیه شده مناطقی به عنوان محدودههای آنومال تعیین شد و برای کنترل انتخاب گردید. در روی ابراهههای درون این محدودهها نقاطی برای برداشت نمونههای کانی سنگین تعیین شد و نقشههای مناطقی که باید کنترل می شد در اختیار اکیپ نمونه برداری وکنترل قرار گرفت. اکیپ مذکور درون هر محدوده أنومال به بررسی وضعیت سنگ شناسی، ساختاری، کانی سازی و آلتراسیون پرداخته و نمونههای لازم را برداشت نمود. شماره نمونههای کانیسنگین، آلتره، مینرالیزه و مقاطع نازک و صیقلی برداشت شده در این مرحله بهمراه مختصات آنها بـه ترتیـب در جـداول ۴-۲، ۴-۴، ۴-۴ و ۴-۵ اورده شده است. نتایج مطالعات کانیسنگین و آنالیز نمونههای مینرالیزه برداشت شده در مرحله کنترل صحرایی طی دو جدول ۴-۶ و ۴-۷ در بخش پیوست آورده شده است. لازم به ذکر است در نامگذاری نمونهها از یک کد پنج تایی استفاده شده است. دو رقم اول همه نمونهها MR2 است به نشانه محدوده میانراهان ۲ و سه رقم بعدی شـماره نمونـه و حرف آخر برای نمونههای کانی سنگین H، برای نمونههای اَلتره A، برای نمونههای مینرالیزه M و بـرای نمونـههـای مقطـع نازک و صیقلی به ترتیب T و P است.

كوشكرن

مندخ شادر

K C E

فصل چهاره– تعبير و تفسير

Row	Sample No	X	Y	Z	Row	Sample No.	X	Y	Z
1	MR2-1-H	702443	3844487	2312	13	MR2-13-H	693267	3849397	2086
2	MR2-2-H	702876	3845793	2162	14	MR2-14-H	693283	3849723	2098
3	MR2-3-H	702787	3847154	1920	15	MR2-15-H	693652	3850715	2016
4	MR2-4-H	702075	3848328	1863	16	MR2-16-H	694238	3850969	2051
5	MR2-5-H	701230	3848284	1919	17	MR2-17-H	694531	3851701	2213
6	MR2-6-H	700967	3848933	1889	18	MR2-18-H	694088	3852726	2208
7	MR2-7-H	700169	3848368	2032	19	MR2-19-H	695861	3851720	2162
8	MR2-8-H	699596	3849245	2052	20	MR2-20-H	696304	3850930	2181
9	MR2-9-H	700420	3846968	2052	21	MR2-21-H	696537	3850068	2166
10	MR2-10-H	699350	3846178	2155	22	MR2-22-H	697559	3850774	2036
11	MR2-11-H	697266	3847232	2167	23	MR2-23-H	697155	3850205	2016
12	MR2-12-H	697258	3847558	2191	24	MR2-24-H	698128	3850551	2106

جدول 4-4- شماره و مختصات (UTM) نمونههای کانیسنگین برداشت شده مرحله کنترل صحرایی در محدوده مطالعاتی

محدوده مطالعاتي	ار صحر ایس د.	حله کنت ا	، داشت شده م	آلته د) نمونههای	UTM)	، مختصات	۲- شما. ه	.۴_	حدة
Gan an a	ے صفر ایکی قار	1 700 400				UINI	C Contras y	-		_ <u> </u>

Row	Sample No.	X	Y	Z
1	MR2-17-A	701550	3847845	
2	MR2-51-A	701115	3848335	1932
3	MR2-68-A1	699522	3849347	2031
4	MR2-68-A2	699594	3849241	2053
5	MR2-68-A3	699490	3849398	2024
6	MR2-96-A	697692	3850235	2054
7	MR2-98-A2	697171	3850334	2139
8	MR2-153-A1	694245	3850967	2051
9	MR2-207-A	699352	3846193	2156

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

جدول 4-4- شماره و مختصات (UTM) نمونههای مینرالیزه برداشت شده در محدوده مطالعاتی

Row	Sample No.	X	Y	Z	Row	Sample No.	X	Y	Z
1	MR2-17-M1	701840	3848419	1860	27	MR2-109-M2	697504	3851006	2034
2	MR2-17-M2	701852	3848449	1853	28	MR2-211-M1	702617	3844967	2314
3	MR2-17-M3	701866	3848468	1836	29	MR2-211-M2	702621	3844964	2313
4	MR2-17-M4	701883	3848451	1860	30	MR2-211-M3	702597	3844821	2302
5	MR2-34-M1	700420	3846968	2056	31	MR2-229-M1	702868	3845801	2164
6	MR2-34-M2	700412	3846953	2051	32	MR2-229-M2	702861	3845788	2170
7	MR2-34-M3	700436	3846972	2061	33	MR2-229-M3	702862	3845783	2169
8	MR2-51-M1	701211	3848289	1923	34	MR2-234-M1	702773	3847186	1913
9	MR2-51-M2	701190	3848269	1924	35	MR2-234-M2	702728	3847058	1971
10	MR2-51-M3	701115	3848335	1932	36	MR2-234-M3	702701	3847123	1968
11	MR2-51-M4	701235	3848308	1941	37	MR2-234-M4	702681	3847134	1964
12	MR2-55-M1	701048	3848936	1881	38	MR2-234-M5	702703	3847151	1928
13	MR2-55-M2	701014	3848840	1899	39	MR2-7-M1	702182	3848053	1804
14	MR2-55-M3	700969	3848932	1883	40	MR2-207-M1	699352	3846193	2156
15	MR2-62-M1	700216	3848282	2061	41	MR2-207-M2	699367	3846186	2159
16	MR2-62-M2	700187	3848295	2055	42	MR2-207-M3	699379	3846180	2165
17	MR2-62-M3	700149	3848369	2028	43	MR2-197-M1	697193	3847167	2134
18	MR2-62-M4	700115	3848367	2034	44	MR2-181-M1	693273	3849728	2096
19	MR2-62-M5	700167	3848379	2025	45	MR2-153-M1	694237	3850967	2052
20	MR2-68-M1	699491	3849411	2015	46	MR2-153-M2	694241	3850966	2052
21	MR2-96-M1	698092	3850536	2013	47	MR2-153-M3	694245	3850967	2051
22	MR2-96-M2	697715	3850264	2052	48	MR2-131-M1	694032	3852782	2212
23	MR2-104-M1	696540	3850043	2158	49	MR2-123-M1	695878	3851730	2165
24	MR2-104-M2	696581	3850139	2170	50	MR2-118-M1	696377	3851112	2151
25	MR2-104-M3	696548	3850199	2188	51	MR2-118-M2	696386	3851123	2164
26	MR2-109-M1	697529	3851061	2046					

جدول 4-5- شماره و مختصات (UTM) نمونههای مقطع نازک و صیقلی برداشت شده در محدوده مطالعاتی

Row	Sample No.	X	Y	Z
1	MR2-34-P	700420	3846968	2056
2	MR2-62-T	700040	3848344	
3	MR2-96-P	698092	3850536	2013
4	MR2-104-T	696540	3850043	2158
5	MR2-109-T	697529	3851061	2046

فصل چهاره– تعبير و تفسير

4-1-1- نتایج نمونههای کانیسنگین

در این مرحله اقدام به برداشت ۲۴ نمونه کانیسنگین با هدف تایید ناهنجاریهای کانیسنگین قبلی و استفاده از اطلاعات بیشتر در مناطق آنومال جهت بالا بردن اعتبار تعبیر و تفسیر انجام شده گردید. بعد از برداشت ۲۴ نمونه کانیسنگین در مرحله کنترل صحرایی (جدول۴–۲) که شرح آنالیز آن طی جدول شماره ۴–۶ در بخش پیوست آورده شده است اقدام به تلفیق اطلاعات جدید با اطلاعات کانیسنگین مرحله اول گردید. بعد از تلفیق داده ها متغیرهای محاسبه و در نهایت تعداد ۸ نقشه اطلاعات جدید با اطلاعات کانیسنگین مرحله اول گردید. بعد از تلفیق داده ها متغیرهای محاسبه و در نهایت تعداد ۸ نقشه اطلاعات معنیرهای محاسبه شده بر اساس تعداد ذرات مجددا ترسیم گردید. جهت ترسیم نقشههای مذکور از همان توزیع فضایی متغیرهای محاسبه شده بر اساس تعداد ذرات مجددا ترسیم گردید. جهت ترسیم نقشههای مذکور از همان الگوریتم مشروح در بند ۳–۵ این گزارش استفاده شد که نتیجه آن نقشههای جدید کانیسنگین با شمارههای ۴–۱۲ الی ۴–۹ آمده است.

نقشه توزیع کانی باریت با شماره H09 دلالت بر آن دارد که در ۲۲ نمونه بین ۰/۰۱٪ تا ۰/۲۵٪ از ذرات این کانی مشاهده شده است.

نقشه توزیع کانیهای آهن Fe Minerals با شماره H10 دلالت بر آن دارد که در تمامی ۷۳ نمونه برداشت شده در منطقه ذراتی از این متغیر موجود بوده و مقادیر آنها نیز بین ۰/۵۵٪ تا ۹۵/۰۵٪ می باشد.

نقشه توزیع متغیر کانی لکوکسن با شماره H11 دلالت بر آن دارد که داردکه در سه نمونه مقدار ۰/۰۱٪ از ذرات این متغیر مشاهده شده است.

نقشه توزیع متغیر کانیهای پیریت (Pyrite (Sum با شماره H12 دلالت بر آن دارد که در ۴۵ نمونه بین ۰/۰۱٪ تا ۱۰/۵٪ از ذرات این کانی مشاهده شده است.

نقشه توزیع کانههای سرب Pb Minerals با شماره H13 دلالت بر آن داردکه در دو نمونه مقدار ۰/۰۲٪ از ذرات این متغیر مشاهده شده است.

نقشه توزیع متغیر کانههای تیتانیوم Ti Minerals با شماره H14 دلالت بر آن دارد که در ۵۰ نمونه بین ۰/۰۱٪ تا ۶۱/۱۵٪ از ذرات این کانی مشاهده شده است.

فصل چهاره– تعبير و تفسير

نقشه 4-1- محدودههای امیدبخش ۲۰ گانه نهایی در منطقه مطالعاتی (FAD)

نقشه توزیع متغیر کانی ایلمنیت با شماره H15 دلالت بر آن دارد که در ۴۷ نمونه بین ۰/۰۱٪ تا ۵۶٪ از ذرات این کانی مشاهده شده است.

نقشه توزیع متغیر کانی اسفن با شماره H16 دلالت بر آن دارد که در ۲۹ نمونه بین ۰/۰۱٪ تا ۰/۷۵٪ از ذرات این کانی مشاهده شده است.

۲-1-4 نتایج نمونههای مینرالیزه

با توجه بـه اطلاعـات حاصـل از جـدول ۴–۷ (پیوست) مـیتـوان بـه ایـن نکتـه اشـاره کـرد کـه نمونـههـای مینرالیـزه برداشت شده دارای مقـادیر ناهنجـار تنهـا از عناصـر Bi ،Cn ،Cu و W در منـاطق آنومـال کنتـرل شـده مـیباشـد. بعنـوان مثال میتوان بـه تعـداد یـک نمونـه حـاوی مـس بـا مقـدار بـالای ۱۰۰۰ ppm اشـاره کـرد کـه بیشـینه مقـدار آن معـادل ppm ۷۶۱۸ میباشـد. در خصـوص Zn نیـز یـک نمونـه دارای مقـدار بـالای ۱۰۰۰ ppm مـیباشـد. بیشـینه مقـدار ایـن عنصـر معـادل محادل محادل میباشـد. در مـورد Bi نیـز بیک نمونـه دارای مقـدار مـالای محادل میباشـد. بیشـینه مقـدار ایـن بیشینه مقدار معادل محادل محادل میباشـد. در مـورد مـورد مـورد مـورد مـدار بـالای مـدار مـدود ۹۴/۹

جهت بررسی پتانسیل محتمل کانیسازی در منطقه و مقایسه عیار اقتصادی مقادیر آنالیزشده اقدام به استفاده از حدود استانداردی مانند حدود ژینزبرگ (Ginsburg) گردید. در این بین برای حصول نتایج مناسب علاوه بر حدود فوقالذکر از حدود تجربی بدست آمده از دادههای اطلس ژئوشیمیایی استفاده شد تا از این طریق حدود و نوع کانیسازیهای محتمل تعیین گردد. در نتیجه عملیات فوق، سه طبقه کانیسازی به شرح زیر تعریف گردید:

الف– کانیسازی عقیم ب– کانیسازی پراکندہ ۳– کانیسازی غنیشدہ

پس از اعمال تقسیم بندی فوق برای ارزش گذاری مقادیر آنالیزشده از اعداد ۰، ۱ و ۲ به ترتیب برای سه طبقه کانی سازی فوق استفاده گردید. بر اساس نتایج حاصل از آنالیز ویژگی ⁽ انجام شده بر روی نمونه های مینرالیزه، پرپتانسیل ترین نمونه به لحاظ کانی سازی در منطقه مطالعاتی بدست آمد. جدول ۴–۸ نتایج حاصل برای نمونه های مینرالیزه و ارزش هرکدام را نشان می دهد.

^{· -} کتاب تحلیل داده های اکتشافی، تجزیه و تحلیل ویژگی، صفحه ۳۷۰

فصل چهاره– تعبير و تفسير

بر اساس جدول مذکور نـمونههای MR2-17-M3 و MR2-62-M2 تنها نمونههای با پتانسیال کانیسازی

در منطقه میباشند. سایر نمونهها با مقدار معادل صفر فاقد ارزش کانیسازی میباشند.

جدول ۴-8- شماره نمونههای مینرالیزه بهمراه ارزش کانیسازی هرکدام حاصل از آنالیز ویژگی در منطقه مطالعاتی

Row	Element	Rank	Row	Element	Rank
1	MR2-17-M3	7.280	27	MR2-109-M1	0
2	MR2-62-M2	4.472	28	MR2-109-M2	0
3	MR2-7-M1	0	29	MR2-118-M1	0
4	MR2-17-M1	0	30	MR2-118-M2	0
5	MR2-17-M2	0	31	MR2-123-M1	0
6	MR2-17-M4	0	32	MR2-131-M1	0
7	MR2-34-M1	0	33	MR2-153-M1	0
8	MR2-34-M2	0	34	MR2-153-M2	0
9	MR2-34-M3	0	35	MR2-153-M3	0
10	MR2-51-M1	0	36	MR2-181-M1	0
11	MR2-51-M2	0	37	MR2-197-M1	0
12	MR2-51-M3	0	38	MR2-207-M1	0
13	MR2-51-M4	0	39	MR2-207-M2	0
14	MR2-55-M1	0	40	MR2-207-M3	0
15	MR2-55-M2	0	41	MR2-211-M1	0
16	MR2-55-M3	0	42	MR2-211-M2	0
17	MR2-62-M1	0	43	MR2-211-M3	0
18	MR2-62-M3	0	44	MR2-229-M1	0
19	MR2-62-M4	0	45	MR2-229-M2	0
20	MR2-62-M5	0	46	MR2-229-M3	0
21	MR2-68-M1	0	47	MR2-234-M1	0
22	MR2-96-M1	0	48	MR2-234-M2	0
23	MR2-96-M2	0	49	MR2-234-M3	0
24	MR2-104-M1	0	50	MR2-234-M4	0
25	MR2-104-M2	0	51	MR2-234-M5	0
26	MR2-104-M3	0			

عملیات مشابهی نیز برای عناصر آنالیزشده در منطقه مطالعاتی انجام پذیرفت که نتایج آن در جدول ۴–۹ آورده شده است. با توجه به این جدول مشخص می شود که پرپتانسیل ترین عنصر در منطقه به لحاظ کانی سازی به ترتیب عناصر Bi، Zu، Cu و W می باشند. در این جدول نیز با کاهش مقادیر محاسبه شده برای هر عنصر از ارزش کانی سازی آن نیز کاسته می شود.

گرفته

فصل عِهاره– تعبير و تفسير

الیز ویژگی در منطقه مطالعاتی	انیسازی هرکدام حاصل از آن	نمونههای مینرالیزه بهمراه ارزش ک	جدول 4-9- عناصر مهم آنالیزشده در
------------------------------	----------------------------------	----------------------------------	----------------------------------

Row	Element	Rank	Row	Element	Rank
1	Cu (ppm)	5.568	10	Cr (ppm)	0
2	Zn (ppm)	5.292	11	Mn (ppm)	0
3	Bi (ppm)	2.645751	12	Mo (ppm)	0
4	W (ppm)	2.645751	13	Ni (ppm)	0
5	Au (ppb)	0	14	Pb (ppm)	0
6	As (ppm)	0	15	Sb (ppm)	0
7	Ba (ppm)	0	16	Sn (ppm)	0
8	Cd (ppm)	0	17	Sr (ppm)	0
9	Co (ppm)	0	18	V (ppm)	0

3-1-3- مطالعات میکروسکوپی

نمونههای برداشت شده برای تهیه مقاطع میکروسکوپی منجر به تهیه ۲ مقطع میکروسکوپی و ۳ مقطع نازک گردید که پس از مطالعه در تعبیر و تفسیر و مدلسازی از آن استفاده گردید. شرح هریک از مطالعات میکروسکوپی انجام شده در بخش شرح أنوماليها (بخش ۴-۴) أورده شده است.

۲-۴-مطالعه رابطه آنومالیها با ساختارهای تکتونیکی

4-2-1- روش مطالعه

در این پروژه روش مطالعه دانسیته شکستگیها، که می توان آن را متناسب با دانسیته شکستگیها فرض کرد به شرح زیر بوده است:

فصل چهاره– تعبير و تفسير

می شود. زیرا اثر آنها در ایجاد شکستگی ها مشابه فرض می شود. این حاصل جمع طول شکستگیها به مرکز همان واحد شبکه نسبت داده می شود.

- ۵- مطالعه أمارى مجموع طول شكستگيها و سپس رسم نقشه توزيع أن در هر برگه.
 - ۶- رسم نقشه توزيع متغير دانسيته شكستگيها از طريق تخمين كريجينگ.
 - ۷- کاربرد نقشه توزیع سیستم شکستگیها در مدل سازی آنومالیها.

۲-۲-۴ تحلیل داده شکستگی ها

پس از انجام مراحل مشروح در بندهای ۱، ۲، ۳ و ۴ فوق، نتایج مربوط به مجموع طول شکستگیها در هر واحد شبکه، بدست آمد.

نمودار ۴–۱ هیستوگرام توزیع دانسیته شکستگیها را بر حسب متر بر کیلومترمربع نشان میدهد. همانطورکه ملاحظه میشود این کمیت توزیع فراوانی نزدیک به لاگ نرمال با چولگی مثبت دارد. با توجه به جدول ۴–۱۰۰ که مربوط به پارامترهای آماری متغیر دانسیته شکستگیها میباشد، متوسط دانسیته شکستگیهای موجود در واحدهای شبکه دارای شکستگی، ۲۲۲/۱ متر بر کیلومترمربع میباشد. حداکثر مقدار دانسیته موجود در یک واحد شبکه ۸۳۰ متر بر کیلومترمربع و حداقل آن ۱۰ متر بر کیلومترمربع بوده است.

نمودار 4-1-هیستوگرام توزیع دانسیته شکستگیها بر حسب متر(شکستگی) بر کیلومترمربع(مساحت) در منطقه مطالعاتی

N	Valid	281
1	Missing	0
Mean		222.100
Median		240
Std. Deviation	n	125.372
Variance		15718.076
Skewness		0.862
Kurtosis		2.177
Minimum		10
Maximum		830
	25	130
Percentiles	50	240
	75	280

منطقه مطالعاتي	شکستگیها در	ماری دانسیته	- پارامترهای آ ه	جدول 4-10-
----------------	-------------	--------------	-------------------------	------------

فصل چهاره– تعبير و تفسير

۲-۲-۴ تخمین و ترسیم نقشه دانسیته شکستگیها

با استفاده از منطق کریجینگ اقدام به تخمین توزیع مقادیر متغیر دانسیته شکستگیها با یک مدل کروی با مشخصات جدول ۴–۱۱ گردید که واریوگرام آن در نمودار ۴–۲ آمده است.

Nugget	Sill	Range
12300	15100	1500

جدول 4-11- مشخصات مدل برازش شده

نمودار 4-۲- واریوگرام مربوط به مدل کروی مورد استفاده جهت تخمین مقادیر متغیر دانسیته شکستگیها

۲-۲-۴ انطباق محدوده آنومالیهای نهایی با محدوده زونهای با شکستگی زیاد

نقشه ۴–۱۰ تحت عنوان نقشه FD چگونگی انطباق محدوده مناطق آنومال با زونهای شکستگی را در منطقه مورد بررسی نشان می دهد. در این شکل محدوده های سبزرنگ که معرف ۲۵٪ فوقانی مقادیر تخمینی متغیر دانسیته نشان داده شده است. همانطور که از نقشه ژئوفیزیک هوایی میتوان وجود پدیدههای زمینشناسی از قبیل گسل را با روند شمالغرب – جنوبشرق شاهد

فصل چهاره– تعبير و تفسير

بود، همین استنباط نیز از نقشه توزیع مقادیر دانسیته شکستگیها قابل نتیجه گیری است. در واقع بیشترین چگالی شکستگیها در

منطقه منطبق بر روند تکتونیکی مذکور میباشد. اغلب آنومالیهای معرفی شده نیز انطباق کمی با این روند تکتونیکی دارند.

فصل چهاره– تعبير و تفسير

نقشه 4-10- محدودههای امیدبخش ۲۰ گانه نهایی و ارتباط آن با شکستگیها در منطقه مطالعاتی (FD)

فصل چهاره– تعبير و تفسير

۴-۳- مطالعه رابطه آنومالیها با لیتولوژی و پدیدههای دگرسانی منطقه مطالعاتی

هر چند اصول اولیه اکتشافات ژئوشیمیایی بر حضور و گستردگی هالههای ثانویه و یا اولیه عناصر بنا نهاده شده است، اما تجربیات و مطالعات زمین شناسی اثبات نموده که هر تیپ کانسار با نوعی خاص از محیطهای زمین شناسی و تکتونیکی رخداد مییابد و به صرف حضور آنومالی از یک عنصر خاص نمیتوان به کانه زایی آن امید بست.

ورقهٔ ۱:۱۰۰,۰۰۰ میانراهان شامل سه زون ساختاری زاگرس چین خورده، زون دگرگونی سنندج – سیرجان و کمربند آتشفشانی ارومیه دختر میباشد که ایجاد هر سه ساختار به بسته شدن نئوتتیس نسبت داده میشود. بخش فعلی مورد مطالعه در محدوده واحدهای آذرین مافیک و اولترامافیک این ورقه قرار دارد. مطالعه و کنکاش در نواحی مشابه زمین شناسی نشان میدهد که محتمل ترین نوع کانهسازیهای این محدوده کانسارهای کرومیت و عناصر همراه وابسته به تودههای افیولیتی هستند. این کانسارها اغلب ممکن است با عناصر ارزشمندی هم چون پلاتین همراهی شوند اما حضور سایر عناصر مثل طلا با تردید همراه است.

به علاوه واحدهای مافیک و اولترامافیک حاوی مقادیر نسبتاً بالایی از عناصری هم چون مس و روی در خود میباشند که فعالیت گرمابی میتواند باعث تمرکز موضعی آنها و بعضاً ارزشمندی اقتصادی شود.

نوع دیگر از کانسارهای همراه با چنین محیط هایی احتمال وجود دارند که کانسارهای رسوبی از نوع پلاسری هستند. تیتانیوم نمونه بارز چنین کانسارهایی است.

از سه نوع کانسار فوق تنها کانسارهای مس هستند که با ساختارهای تکتونیکی در ارتباط هستند. در واقع شکستگیهای تکتونیکی ضمن امکان چرخش آبهای جوی حتی میتوانند منبع حرارتی مناسبی جهت افزایش دمای سیال و بالتبع بالا رفتن حلالیت آن شوند.

به طور کلی آنومالیهای تشخیصی در منطقه میانراهان ۲ با ساختارهای تکتونیکی و شکستگی ها همراهی نمی شود. بعلاوه دگرسانی شاخصی نیز گزارش نشده است. ضمناً شواهد صحرایی و حتی نتایج مطالعه کانی سنگین نیز عدم وجود دگرسانی را تأیید می نماید. لذا به طور کلی می توان شرایط زمین ساختی را جهت ایجاد کانسارهای ارزشمند نامطلوب ارزیابی نمود. در نقشه شماره ۴–۱۰ (FD) نیز به وضوح می توان دریافت که عمدتاً تمرکز ساختارهای خطی بویژه گسله ها هم اهنگی و همپوشانی نسبتاً کمی با آنومالیهای تشخیص داده شده دارند.

فصل چهاره– تعبير و تفسير

۴-۴- شرح مناطق ناهنجار ۲۰ گانه

در این بخش اقدام به معرفی مناطق ناهنجار ۲۰ گانه میگردد. بدین ترتیب در هر منطقه آنومال نمونههای ژئوشیمی، کانی-سنگین و مینرالیزه، عناصر و کانیهای غنیشده، تصویر ماهوارهای از منطقه و شرح مطالعاتی میکروسکوپی بهمراه شکلها و تصاویر مربوطه آورده شده است.

MR1 محدوده آنومال شماره MR1

همانطور که در تصویر ۴–۱ مشاهده می شود این محدوده آنومالی در منطقه نسبتاً ناهمواری واقع شده است که از سمت شرق و جنوب به ارتفاعات و از غرب به دره منتهی می شود. مساحت این حوضه بالغ بر ۰/۳۲ کیلومترمربع است. این آنومالی در شمال غربی محدودهٔ اکتشافی و در شمال روستای قلعه لان واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۱۲ نشان داده شده است.

تصویر ۴-1- تصویر ماهوارهای محدوده آنومال MR1 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

فصل مِهاره– تعبير و تفسير

دو نمونهٔ ژئوشیمی آبراههای برداشتی از محدوده با کدهای ۱۳۱ و ۱۳۲ از نظر عناصر Co, Ni و Cr آنومال هستند. از محدوده فوق یک نمونه کانی سنگین به شرح زیر برداشت گردیده است:

– نمونه کانی سنگین شماره MR2-18-H2 که حوضه آبریز آنومالی را پوشش می دهد، فاقد کانیهای متعارف عناصر فوق الذکر است.

براساس نقشه زمین شناسی گابروها سنگ شناسی اصلی منطقه را تشکیل میدهند که بررسیهای صحرایی نیز این مسأله را تأیید مینماید. وفور کانیهای سنگ ساز مافیک هم چون آمفیبول، اپیدوت و پیرکسن در نمونه کانی سنگین مطالعه شده به همین دلیل میباشد. با توجه به اهمیت این واحدهای سنگی در میزبانی کانسارهای کرومیت نوع انبانهای بررسی محدوده در دستور کار قرار گرفت.

طی بررسی های صحرایی پدیدهٔ ویژهای که بتواند آنومالی مذکور را توجیه نماید یافت نگردید.

همچنین یک نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-131-M از مختصات جهانی (۳۸۵۲۷۸۲ و ۶۹۴۰۳۲) و از گابرو برداشت شده است. برداشت این نمونه از بالادست نمونه رسوب آبراههای ۱۳۱ نشانگر عدم غنی شدگی عناصر کانساری به ویژه طلا، کروم، نیکل و حتی منگنز و تیتان در سنگهای مشکوک به کانه سازی است. این مقادیر حتی از آن چه در نمونه آبراههای اندازه گیری شده کمتر است. این امر با توجه به تمایل آزاد سازی عناصر یاد شده طی چرخه فرسایش و تجمع و تغلیظ آن در نزدیکی منشأ و متأثر از فرآیندهای رسوبی امری طبیعی و قابل پذیرش است. سازمان زمین شناسی و اکتشاف معدنی کشور

پروژه اکتشاف ژئوشیمیایی ۵۰۰,Δ4:۱در محدوده اکتشافی میانراهان

كزارش نهايي

فصل مِهاره- تعبير و تفسير

Sheet 1/25,000 : Mianrahan II Anomaly No. : MR1 Geochemical Anomal Samples: (Raw Data in ppm) LISPT 1/PN Airborne Geoph.: Shallow Magnetic Bodies: Sample No. Anomaly Raw Data Geoph Faults: 131 Ni 271.8 di,gb2 42.37 131 51.09 di,gb2 2.25 Altration: vugi.Q Sillicification Qz.Carbonate Chloritization Potasic Co Propilitic Argilic Listy. Goetite Siderite Graizen Shear zone Philic 132 424.5 di,gb2 42.37 Cr Hematite 42.37 132 Ni 360.5 digh2 Limonite 132 Со 45.43 di,gb2 0.18 Fault: Fracture: Weathering : Gossan : Other : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types Heavy Mineral Variables Pegmatitic Granit Travertan H2-18 131-MI Granit Biotite Granit Basalt Altreadsillicate 476.28 Au (ppb) <1 Amphibols 89.60 Al (ppm) 93218 Granodiorite Microgranodiorit Diabase Philite Microdiorite Gabro 0.00 Ca (ppm) 39629 Anatase Plagic Limeston Conglomerate Sandstone Andalusite 0.00 57260 Andesite Limestone Shalv limestone Fe (ppm) 0.00 19414 Apatite K (ppm) Barite 0.00 22402 Marl Diorite Gabro Diorite Gabro Diorite Mg (ppm) 0.00 17602 Biotite Na (ppm) 4.8 0.00 Marble Schist Dolomite Carbonate As (ppm) Dacite Slate Shale Tormaline 477 Cerussite 0.00 Ba (ppm) 4.20 Minerals Chlorite Be (ppm) 1 Epidots 95.20 Bi (ppm) 0.92 Malachite Montmorillonite Ilmenite Albite Tourmaline 19.95 Cd (ppm) 0.6 F.Q. Galena 0.00 Ce (ppm) 24 Hombland Actinolite Orthoclase Hematit Chlorite Calcite Quartz Garnets 0.00 Co (ppm) 23 Goethite 0.00 Magnetite Mg-Oxides Iron-Oxides Pyrite Cr (ppm) 98 Limonite Ľ Ċ 44.18 Hematite Cs (ppm) 6.4 6.58 18 Ilmenite Cu (ppm) Fillings Hematite& Manganez vein 0.00 Silice vein Calcite Vein Quartz Vein Leucoxene La (ppm) 8 0.00 28 Limonite Li (ppm) Magnetite 58.02 Mn (ppm) 1537 0.00 Mo (ppm) 1.29 Martite Nb (ppm) 0.00 20 Monazite Ni (ppm) Pyrite 0.00 52 Pyrite limonite 0.00 857 P (ppm) 12 Pyrite oxide 0.00 Pb (ppm) 57 134.40 Pyroxens Rb (ppm) Rutile 0.00 167 S (ppm) 0.00 Sb (ppm) 1.62 Sapphir Sericite 0.00 24.1 Sc (ppm) Silver 0.00 1.9 Sn (ppm) 0.00 326 Sphene Sr (ppm) 0.00 Te (ppm) 0.19 Titano-magnetite 0.39 6.9 Zircon Th (ppm) Ti (ppm) 7639 0.57 Tl (ppm) 3.5 U (ppm) V (ppm) 152 W (ppm) 6.7 35 Y (ppm) 3.3 Yb (ppm) Zn (ppm) 367 Zr (ppm) 217

جدول **4-11-** شناسنامه محدوده آنومال MR1

 $\stackrel{>}{>}$

فصل مِهاره– تعبير و تفسير

MR2 محدوده آنومال شماره -۲-۴

با توجه به تصویر ۴–۲ مشاهده می شود که این محدوده آنومالی نیز در منطقه ناهمواری واقع شده است که از سمت شمال به ارتفاعات منتهی می شود. مساحت این حوضه بالغ بر ۰/۲۱ کیلومترمربع است. این آنومالی در بخشهای شمال غربی محدوده اکتشافی و شمال مزرعه گورگور واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۱۳ نشان داده شده است.

عناصر Cd، Cd و Sr، S، Cu، Cd و Zn در این منطقه أنومال بوده اند، با این حال مقادیر مطلق کادمیوم و مس در این نمونهها چندان قابل توجه نیست. سنگشناسی منطقه که براساس نقشه محدوده و تأیید صحرایی شامل گابرو و دیوریت گابرو میباشد، میتواند بالا بودن نسبی مقدار استرانسیوم را در منطقه توجیه نماید. همچنین در این منطقه گسلش مشاهده شده است. در پی جویی مقدماتی صورت پذیرفته تنها پدیده ای که میتوانست با کانه سازی در ارتباط باشد حضور زونهای آغشته به اکسید آهن بود. لذا از این محدوده یک نمونه کانی سنگین به شرح زیر برداشت گردیده است:

- نمونه کانی سنگین شماره MR2-19-H2 که از محل نمونه ژئوشیمیایی۱۲۳ برداشت شده است و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمی دهد.

همچنین یک نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-123-M1 از مختصات جهانی (۳۸۵۱۷۳۰ و ۶۹۵۸۷۸) و از گابرو برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومالی نشان نمی دهد.

نمونهٔ اخذ شده از این زونها مؤید مقادیر ناچیز عناصر ارزشمند اقتصادی به ویژه طلا، مس و سرب در آن میباشد. بالا بودن عیار عناصری هم چون Ti, V, Zn و Mn و همچنین حضور کانیهای سنگین مافیک مانند پیروکسن، مگنتیت، آمفیبول، اپیدوت و کلریت میتواند به دلیل زمینه بالای عناصر و وجود این کانیها در سنگهای رخنمون یافته در منطقه باشد.

فصل چهاره– تعبير و تفسير

تصویر 4-4- تصویر ماهوارهای محدوده آنومال MR2 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

	ۋە اكتشاف ۋئوشيميايى • •
بزارش	\$,5
ب	1:10
Ŀ	ş
	, 6 00
	اكتشافي
	مانك
	اهان

>

فمل ₹**₽**)(a)-تعبير و تفسير

يرو

Sheet 1/25,000 :

123

123

123

123

123

Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data

Cd 1.431

321.402

65.45

285.45

S 2656

Sr

Cu

Zn

H	No.	No.	No.	No.	No.	No.	No.	N
Heavy Mineral	H2-19							
Altreadsillicate	602.64							
Amphibols	57.60							
Anatase	0.00							
Andalusite	0.00							
Apatite	0.00							
Barite	0.00							
Biotite	0.00							
Carbonate	0.00							
Cerussite	0.00							
Chlorite	5.40							
Epidots	61.20							
F.Q.	0.31							
Galena	0.00							
Garnets	0.14							
Goethite	0.16							
Hematite	94.68							
Ilmenite	0.00							
Leucoxene	0.00							
Limonite	0.00							
Magnetite	65.27							
Martite	0.00							
Monazite	0.00							
Pyrite	0.00							
Pyrite limonite	0.00							
Pyrite oxide	0.00							
Pyroxens	230.40							
Rutile	0.00							
Sapphir	0.00							
Sericite	0.00							
Silver	0.00							
Sphene	0.00							
Titano-magnetite	0.00							
Zircon	0.17							

Anomaly No. :

1/PN

42.37

16.94

0.09

42.37

15.00

Mianrahan II

LISPT

dg,gb2

dg,gb2

dg,gb2

dg,gb2

dg,gb2

MR2

جدول 4-17- شناسنامه محدوده آنومال MR2

Airborne Geoph. : Shallow Magnetic Bodies: Geoph. Faults: Altration: vugi.Q Sillicification Qz.Carbonate hloritization Potasic Propilitic Argilic Listv. Goetite Siderite Graizen Shear zone Philic Limonite Hematite Fault: Fracture: Weathering : Gossan : Other : Observed Rock Types , Minerals And Fillings In Anomaly Checking : Mineralized Samples Taken form Anomal Arera : No. No. No. No. No. No. Rock types Variables 123-M1 Pegmatitic Granit Biotite Granit Travertan Basalt Granit Au (ppb) <1 93218 Granodiorite Microgranodiorit Philite Microdiorite Gabro Al (ppm) Diabase 39629 Ca (ppm) 57260 Andesite Plagic Limeston Conglomerate Sandstone Limestone Shaly limestone Fe (ppm) K (ppm) 19414 22402 Mg (ppm) Marl Diorite Gabro Diorite Gabro Diorite Na (ppm) 17602 4.8 Marble Schist Dolomite Dacite Slate Shale Tourmaline As (ppm) Ba (ppm) 477 Be (ppm) 1 Minerals Bi (ppm) 0.92 Malachite M ontmorillonite Ilmenite Albite Tourmaline Cd (ppm) 0.6 Ce (ppm) 24 Hornbland Actinolite Orthoclase Hematit Chlorite Calcite Quartz \square 23 Co (ppm) 98 Limonite Cr (ppm) Magnetite Mg-Oxides Iron-Oxides Pyrite Cs (ppm) 6.4 Cu (ppm) 18 Fillings La (ppm) 8 Hematite& Manganez vein Silice vein Calcite Vein Quartz Vein Li (ppm) 28 Mn (ppm) 1537 Mo (ppm) 1.29 Nb (ppm) 20 52 Ni (ppm) P (ppm) 857 Pb (ppm) 12 Rb (ppm) 57 S (ppm) 167 Sb (ppm) 1.62 Sc (ppm) 24.1 Sn (ppm) 1.9 Sr (ppm) 326 Te (ppm) 0.19 Th (ppm) 6.9 Ti (ppm) 7639 Tl (ppm) 0.57 U (ppm) 3.5 V (ppm) 152 W (ppm) 6.7 Y (ppm) 35 Yb (ppm) 3.3 367 Zn (ppm) 217 Zr (ppm)

<

فصل چهاره– تعبير و تفسير

MR3 محدوده آنومال شماره -۳-۴

با توجه به تصویر ۴–۳ مشاهده می شود که این محدوده آنومالی نیز در منطقه نسبتاً ناهمواری واقع شده است که از شمال به ارتفاعات و از جنوب به دره منتهی می شود. مساحت این حوضه بالغ بر ۰/۱۷ کیلومترمربع است. این آنومالی در شرق روستای قلعه لان واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۱۴ نشان داده شده است.

حوضه آبریز نمونههای ۱۴۶ و ۱۵۴ در برداشتهای آبراههای به ترتیب جهت عناصر Sr و Nb، نسبت به سایر نمونههای آنالیز گردیده مقادیر عیاری ناهنجاری دارند. بایستی توجه نمود که به ویژه عنصر نیوبیوم در مراحل نهایی ماگمایی و در سیالات پسین ماگمایی یا Late magmatic غنی شدگی نشان می دهد. لذا نمی توان به راحتی حضور ناهنجاری های از این عنصر را در منطقه پذیرفت. زیرا اصولاً واحدهای آذرین مافیک موجود در منطقه پتانسیل های اقتصادی مناسب از این عنصر نیستند. با این حال ویژگی ردیابی این عنصر باعث می گردد تا پی جویی کانه سازی های رگه ای هیدروترمال در محدوده در دستور کار باشد.

بررسی صحرایی حضور زونهای هماتیتی را در حوضههای آبریز ناهنجار نشان می دهد که به برداشت از آن ها اقدام گردید. از محدوده فوق دو نمونه کانی سنگین به شرح زیر برداشت گردیده است:

– نمونه کانی سنگین شماره MR2-16-H2 که از محل نمونه ژئوشیمیایی ۱۵۴ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمی دهد.

– نمونه کانی سنگین شماره MR2-17-H2 که از محل نمونه ژئوشیمیایی ۱۴۶ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمی دهد.

همچنین سه نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-153-M1 از مختصات جهانی (۳۸۵۰۹۶۷ و ۶۹۴۲۳۷) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومالی نشان نمیدهد.

-نمونه مینرالیزه شماره MR2-153-M2 از مختصات جهانی (۶۹۴۲۴۱ و ۶۹۴۲۴۱) برداشت شده است. این نمونه نسبت به عنصر منگنز آنومالی نشان میدهد.

فصل چهاره– تعبير و تفسير

-نمونه مینرالیزه شماره MR2-153-M3 از مختصات جهانی (۳۸۵۰۹۶۷ و ۶۹۴۲۴۵) برداشت شده است. این نمونه نسبت به عناصر As ،Au و Th آنومالی نشان میدهد.

تصویر 4-3-تصویر ماهوارهای محدوده آنومال MR3 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

بررسی عیار این نمونهها عدم غنی شدگی آنها از عناصر کانسار ساز را نشان میدهد. در عین حال نمونه شماره MR2-153-M2 دارای عیار نامتعارف منگنز نسبت به دو نمونه دیگر میباشد. این موضوع در سنگهای مافیکی به ویژه در ارتباط با رخداد دگرسانی رودنگیتی امری طبیعی بوده و بعلاوه مقدار این عنصر علیرغم آنومال بودن به حد اقتصادی و قابل قبول نمیرسد.

سازمان زمین شناسی و اکتشاف معدنی کشور

> گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۵۰۰,∆۲:1در محدوده اکتشافی میانراهان

فمل چهارم– تعبير و تفسير

MR3 Sheet 1/25,000 : Mianrahan II Anomaly No. : Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data Airborne Geoph. : Shallow Magnetic Bodies: LISRT 1/PN Geoph, Faults: Nb 25.311 42.37 146 gb2 154 Sr 299.602 gb2 5.09 vugi.Q Sillicification Altration: Argilic Qz.Carbonate . hloritization Propilitic Listv. Potasic Limonite Graizen Shear zone Philic Goetite Siderite Hematite Fault: Fracture: Weathering : Gossan : Other : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : Observed Rock Types , Minerals And Fillings In Anomaly Checking No. Rock types No. No. Heavy Mineral Variables H2-16 H2-17 153-M1 153-M2 153-M3 Granit Pegmatitic Granit Biotite Granit Travertan Basalt 82.08 1062.72 2 Altreadsillicate Au (ppb) <1 1 194.56 460.80 84699 59952 69046 Granodiorite Microgranodiorit Diabase Philite Microdiorite Gabro Amphibols Al (ppm) 0.00 0.00 75655 80174 4487 Anatase Ca (ppm) 0.00 0.00 Andalusite Fe (ppm) 33186 47098 40076 Andesite Plagic Limeston Conglomerate Sandstone Limestone Shaly limeston 2.42 0.92 33630 1595 Apatite K (ppm) 11456 Gabro Diorite 0.00 0.00 11355 12372 2407 Marl Diorite Gabro Diorite Barite Mg (ppm) Biotite 0.23 0.00 Na (ppm) 10146 11507 22800 Carbonate 0.62 0.26 6 52 20.3 Marble Schist Dolomite Dacite Slate Shale Tormaline As (ppm) 0.00 0.00 502 332 41 Cerussite Ba (ppm) Minerals Chlorite 0.23 14.40 Be (ppm) 1.5 1.1 2.8 20.67 97.92 1.18 Malachite Montmorillonite Epi dots Bi (ppm) 0.66 0.75 Ilmenite Albite ourmaline 97.47 131.33 0.22 F.Q. Cd (ppm) 0.28 0.26 0.00 0.00 58 41 1 Hornbland Actinolite Orthoclase Chlorite Galena Ce (ppm) Hematit Calcite Quartz Ì 0.00 0.00 11 12 5 Garnets Co (ppm) 0.00 21.12 13 Mg-Oxides Iron-Oxides Pyrite Goethite Cr (nnm) 64 29 Limonite Magnetite 319.81 7.9 6.2 Hematite 252.48 Cs (ppm) 8.6 1143.04 0.00 20 10 138 Fillings Ilmenite Cu (ppm) 22 0.00 0.00 31 <1 Hematite& Manganez vein Silice vein Calcite Vein Ouartz Vein Leucoxene La (ppm) 0.00 18.24 Limonite Li (ppm) 22 7 5 708.62 Magnetite 223 78 Mn (ppm) 443 3044 57 0.00 0.00 1.8 1.87 2.09 Martite Mo (ppm) 0.00 0.00 22 <1 Monazite Nb (ppm) 16 Pyrite 0.00 0.00 Ni (ppm) 43 29 18 Pyrite limonite 0.00 0.43 626 1145 133 P (ppm) 0.43 15 11 0.00 16 Pyrite oxide Pb (ppm) 389.12 921.60 145 49 36 Pyroxens Rb (ppm) 0.00 Rutile 0.00 266 185 248 S (ppm) Sb (ppm) 0.00 0.00 0.83 0.64 0.78 Sapphir 0.21 0.00 2 Sericite Sc (ppm) 13.9 14.6 0.00 0.00 Sn (ppm) 2.9 2.4 2.3 Silver 0.79 Sphene 0.00 Sr (ppm) 302 281 114 Titano-magnetite 375.44 0.00 Te (ppm) 0.14 0.15 0.11 Zircon 8.89 6.74 13.4 77 34.5 Th (ppm) 4854 3616 520 Ti (ppm) TI (ppm) 0.97 0.68 1.22 2.5 3.2 4 U(ppm) 154 V (ppm) 118 64 W (ppm) 59 4.8 4 Y (ppm) 34 30 4 0.8 Yb (ppm) 3.5 3.2 78 198 32 Zn (ppm) Zr (ppm) 81 119 73

جدول 4-14- شناسنامه محدوده آنومال MR3

イ

فصل چهاره– تعبير و تفسير

MR4 محدوده آنومال شماره -4-4

با توجه به تصویر ۴-۴ مشاهده می شود که این محدوده آنومالی نیز در منطقه نسبتاً ناهمواری واقع شده است. مساحت این حوضه بالغ بر ۰/۳۸ کیلومترمربع است. این آنومالی در جنوب روستای قلعه لان، در منطقه با نام تپه کاکا علی واقع در غرب منطقه اکتشافی واقع است. شناسنامه این محدوده در جدول شماره ۴-۱۵ نشان داده شده است.

تنها عنصر دارای عیار ناهنجار در نمونه آبراههای برداشتی Bi میباشد که مقدار آن ۰/۶۳۳ گرم بر تن است که با آن که چندان بالا نیست اما نسبت به عیار سایر نمونههای برداشتی نامتعارف است. سنگهای موجود در بالا دست آن عبارتند از: دیوریت گابرو، گابرو دیوریت و گابرو. از محدوده فوق دو نمونه کانی سنگین به شرح زیر برداشت گردیده است:

- نمونه کانی سنگین شماره MR2-42-H که از محل نمونه ژئوشیمیایی ۱۵۱ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمیدهد.

- نمونه کانی سنگین شماره MR2-15-H2 که نسبت به کانی بیوتیت غنی شدگی نشان میدهد.

این دو نمونه کانی سنگین برداشتی از محدوده در مرحله کنترل ناهنجاری هیچ کانی ارزشمندی را در خود نشان نمی دهد و تقریباً تمامی کانی های تشخیصی مربوط به سنگ غالب محدوده می باشد. کاوش های صورت گرفته به صورت چکشی منجر به شناسایی پدیده ای که احتمال کانی سازی داشته باشد نگردید. لذا با توجه به این نتایج این محدوده فاقد ارزش اکتشافی می باشد.

فصل چهاره– تعبير و تفسير

تصویر 4-4- تصویر ماهوارهای محدوده آنومال MR4 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

جدول **4-10-** شناسنامه محدوده آنومال MR4 سازمان زمين شناسي و اكتشاف معدني كشور MR4 Sheet 1/25,000 : Mianrahan II Anomaly No. : Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data 151 Bi 0.633 1/PN 11.54 USRT Airborne Geoph. : Shallow Magnetic Bodies: Geoph. Faults: gd,dg Listy. Inloritization Potasic Altration: vugi.Q Sillicification Propilitic Argilic Oz Carbonate Graizen Shear zone Philic Limonite Hematite Goetite Siderite پروژه اکتشاف ژئوشیمیایی ۵۰۰۰۵۲:۱۷ر محدوده اکتشافی میانراهان Fault: Fracture: Weathering : Gossan : Other: Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types No. Variables Heavy Mineral H2-15 H-42 Pegmatitic Granit Biotite Granit Travertan Basalt Granit 535.68 635.04 Altreadsillicate Au (ppb) 614 40 250.88 Al (ppm) Amphibols Granodiorite Microgranodiorit Diabase Philite Microdiorite Gabro 0.00 0.00 Ca (ppm) Anatase 0.00 0.00 Fe (ppm) Andesite Plagic Limeston Conglomerate Sandstone Shaly limestone Andalusite Limestone فطل Apatite 0.20 0.00 K (ppm) 0.00 0.00 Gabro Diorite Barite Mg (ppm) Marl Diorite Gabro Diorite Biotite 19.20 0.34 Na (ppm) - (a)-Carbonate 0.17 0.00 As (ppm) Marble Schist Dolomite Dacite Slate Shale Tormaline Cerussite 0.00 0.00 Ba (ppm) Chlorite 9.60 0.34 Minerals Be (ppm) Epidots 10.88 13.33 Bi (ppm) M alachite M ontmorillonite Albite Tourmaline Ilmenite تعبير و تفسير F.Q. 0.91 95.76 Cd (ppm) Galena 0.00 0.00 Ce (ppm) Hornbland Actinolite Orthoclase Hematit Chlorite Calcite Quartz È 0.00 0.00 Co (ppm) Garnets Cr (ppm) Goethite 0.00 0.00 Mg-Oxides Iron-Oxides Pyrite Limonite Magnetite Ľ Hematite 168.32 123.72 Cs (ppm) Ilmenite 150.40 1842.40 Cu (ppm) Fillings Leucoxene 0.00 0.00 La (ppm) Hematite& Manganez vein Silice vein Calcite Vein Quartz Vein Limonite 0.00 0.00 Li (ppm) Magnetite 149.18 1044.29 Mn (ppm) Martite 0.00 0.00 Mo (ppm) 0.00 Monazite 0.00 Nb (ppm) Pvrite 0.00 0.00 Ni (ppm) Pyrite limonite 0.00 0.00 P (ppm) Pyrite oxide 0.00 0.00 Pb (ppm) 409.60 376.32 Pyroxens Rb (ppm) 0.00 0.00 Rutile S (ppm) 0.00 0.00 Sapphir Sb (ppm) 0.18 Sericite 0.31 Sc (ppm) 0.00 0.00 Silver Sn (ppm) 0.22 Sphene 0.00 Sr (ppm) 0.00 110.66 Titano-magnetite Te (ppm) Zircon 1.50 2.62 Th (ppm) Ti (ppm) TI (ppm) U (ppm) V (ppm) W (ppm) Y (ppm) Yb (ppm) Zn (ppm) Zr (ppm)

٢

<

كزارش نهايي

فصل چهاره– تعبير و تفسير

MR5 محدوده آنومال شماره -4-4

با توجه به تصویر ۴–۵ مشاهده می شود که این محدوده آنومالی نیز در منطقه ناهمواری واقع شده است که از سمت جنوب به دره منتهی می شود. مساحت این حوضه بالغ بر ۰/۲۷ کیلومترمربع می باشد. این آنومالی در جنوب شرق محدوده مورد مطالعه و جنوب غرب روستای پشت کلان قرار گرفته است. شناسنامه این محدوده در جدول شماره ۴–۱۶ نشان داده شده است.

عنصر Nd تنها عنصری است که در نمونههای آبراههای برداشتی از این محدوده با کد ۲۱۱ ناهنجار میباشد. دیوریت گابرو و شیستهای خاکستری با سن کرتاسه واحدهای اصلی رخنمون یافته حوضه آبریز این نمونه هستند. طبق مشاهدات صحرایی سنگهای موجود در بالادست آبراهه شیل خاکستری و دیوریت گابرو گزارش شده و آثار کانی سازی به صورت آغشتگی اکسیدهای آهن در سطح نمونهها دیده شده است. از محدوده فوق یک نمونه کانی سنگین به شرح زیر برداشت گردیده است:

- نمونه کانی سنگین شماره MR2-1-H2 که از محل نمونه ژئوشیمیایی ۲۱۱ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی ندارد.

همچنین سه نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-211-M1 از مختصات جهانی (۳۸۴۴۹۶۷ و ۷۰۲۶۱۷) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

-نمونه مینرالیزه شماره MR2-211-M2 از مختصات جهانی (۳۸۴۹۶۴ و ۷۰۲۶۲۱) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

-نمونه مینرالیزه شماره MR2-211-M3 از مختصات جهانی (۳۸۴۴۸۲۱ و ۷۰۲۵۹۷) برداشت شده است. این نمونه نیز نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

مطالعهٔ کانی سنگین برداشتی، مانند نمونههای کانی سنگین دیگر که تاکنون مورد تشریح قرار گرفتند، فاقد کانی مهمی است و تنها حضور باریت نسبت به نمونههای دیگر آن را شاخص مینماید. عیار باریم در نمونههای اخذ شده از زونهای مشکوک به کانه سازی از عدم غنی شدگی آن نسبت به سنگهای مافیک حکایت دارد. لذا میتوان حضور باریت را بیشتر حاصل آلودگیهای شیلها در منطقه دانست. سایر عناصر نیز در منطقه مورد پیجویی فاقد عیارهای قابل توجه میباشد. با توجه به این مسایل به نظر نمیتوان امیدی به حضور پتانسیلهای معدنی در این محدوده نیز داشت.

فصل چهاره– تعبير و تفسير

گزارش نهایی

تصویر4-4- تصویر ماهوارهای محدوده آنومال MR5 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

پروژه اکتشاف ژئوشیمیایی **200. المحدودة اكتشافي ميانراهان** كزارش نهايي

ß
3
3
ିତ୍
່ລ
g
6
Ę
_

Sheet 1/25,000 : Mianrahan II Anomaly No. : MR5 Geochemical Anomal Samples: (Raw Data in ppm) Airborne Geoph.: Shallow Magnetic Bodies: Sample No. Anomaly Raw Data 1/PN Geoph. Faults: LISRT 211 Nd 44.787 42.37 dg kf2 Altration: vugi.Q Sillicification Propilitic Argilic Qz.Carbonate Listy. Inforitization Potasic Graizen Shear zone Philic Goetite Siderite Limonite Hematite Fault: Fracture: Weathering : Gossan : Other : Observed Rock Types , Minerals And Fillings In Anomaly Checking Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : No. Rock types Heavy Mineral Variables Pegmatitic Granit H2-1 211-MI 211-M2 211-M3 Biotite Granit Travertan Granit Altreadsillicate 12.96 Au (ppb) <1 <1 0.00 58637 74238 84761 Microgranodiorit Philite Microdiorite Amphibols Al (ppm) Granodiorite Diabase 0.00 82924 61470 Anatase Ca (ppm) 61420 0.00 41088 69540 63398 Conglomerate Sandstone Andalusite Fe (ppm) Andesite Plagic Limeston Limestone 0.03 16191 19110 8871 K (ppm) Apatite 0.04 6412 12491 22630 Marl Diorite Gabro Diorite Barite Mg (ppm) 0.00 14872 16595 Biotite Na (ppm) 4663 0.03 9.5 7.3 4.8 As (ppm) Schist Dolomite Grev Shale Carbonate Marble Dacite Slate Ba (ppm) 226 0.00 240 323 Cerussite 0.00 0.7 Minerals Chlorite Be (ppm) 1.1 1.3 Epi dots 0.03 Bi (ppm) 0.58 0.75 0.68 Malachite Montmorillonite Ilmenite Albite 0.14 Cd (ppm) 0.25 0.28 0.25 F.Q. Galena 0.00 85 57 28 Hornbland Actinolite Orthoclase Hematit Chlorite Calcite Ce (ppm) Garnets 0.00 Co (ppm) 9 21 32 Goethite 42.24 Cr (ppm) 39 15 81 Limonite Magnetite Mg-Oxides Iron-Oxides 353.47 9.7 9.4 9.9 Ď Hematite Cs (ppm) 0.00 Cu (ppm) 20 22 58 Ilmenite Fillings Ŧ 0.03 Hematite& Manganez vein Calcite Vein Leucoxene La (ppm) 45 26 10 Silice vein Limonite 18.24 Li (ppm) 50 17 24 Magnetite 0.05 Mn (ppm) 1111 1465 1091 0.00 Mo (ppm) 3.56 2.01 1.54 Martite Nb (ppm) Monazite 0.00 11 19 26 Pyrite 0.00 Ni (ppm) 32 13 55 0.04 689 2109 1200 Pyrite limonite P (ppm) 8.64 19 23 14 Pyrite oxide Pb (ppm) 1.54 Rb (ppm) 93 83 42 Pyroxens Rutile 0.00 S (ppm) 187 412 196 0.00 < 0.5 Sapphir Sb (ppm) 0.65 0.66 0.00 Sc (ppm) 9.8 14.6 28.3 Sericite Silver 0.00 Sn (ppm) 2.3 2.3 2.3 222 224 Sphene 0.00 Sr (ppm) 113 Titano-magnetite 0.00 Te (ppm) 0.14 0.25 0.23 Zircon 0.22 Th (ppm) 11.2 9.2 4.1 Ti (ppm) 3170 13928 10425 Tl (ppm) 1.03 0.45 0.52 U (ppm) 2.6 37 3.6 201 V (ppm) 94 169 W (ppm) 5.2 4.6 5 Y (ppm) 17 63 56 Yb (ppm) 5.6 2.1 6.1 83 130 100 Zn (ppm) 357 283 Zr (ppm) 102

جدول 4-16- شناسنامه محدوده آنومال MR5

٦ <

Basalt

Gabro

Shalv limestone

Tormaline

Tourmaline

Quartz

 \sim

Pyrite

Quartz Vein

Gabro Diorite

فصل چهاره– تعبير و تفسير

MR6 محدوده آنومال شماره

همانطور که در تصویر ۴–۶ مشاهده می شود این محدوده آنومالی در ارتفاعات قرار گرفته است. مساحت این حوضه بالغ بر ۰/۰۹ کیلومترمربع است. این آنومالی در شرق مزرعه شیخ میرزای پایین و در جنوب غربی محدوده اکتشافی واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۱۷ نشان داده شده است.

این محدوده منطبق با حوضهٔ آبریز نمونههای شماره ۱۸۱ و ۱۸۳ و ۱۸۳ میباشد که هر دو جهت عنصر Te ناهنجاری نشان دادهاند. اهمیت این عنصر در اکتشاف طلا باعث پی جویی مقدماتی چکشی در این محدوده گردید. گابرو دیوریت مهمترین گروه سنگی این حوضه آبریز است و اکسیدهای آهن تنها کانیهایی هستند که میتوانند حاصل دگرسانیهای هیپوژن و یا سوپرژن باشند. از محدوده فوق ۲ نمونه کانی سنگین به شرح زیر برداشت گردیده است:

– نمونه کانی سنگین شماره MR2-13-H2 که از محل نمونه ژئوشیمیایی ۱۸۳ برداشت شده و نسبت به کانیهای مارتیت، تیتانومگنتیت و زیرکن غنی شدگی نشان میدهد.

– نمونه کانی سنگین شماره MR2-14-H2 که از محل نمونه ژئوشیمیایی ۱۸۱ برداشت شده و نسبت به کانی زیرکن غنی شدگی نشان میدهد.

همچنین یک نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-181-M از مختصات جهانی (۶۹۳۲۷۳ و ۶۹۳۲۷۳) برداشت شده است. این نمونه نسبت به عنصر Au آنومال میباشد.

نتیجهٔ مطالعهٔ غالب کانیهای سنگین نشان از حضور کانیهای متأثر از لیتولوژی مافیک منطقه و یا دگرسانیهای غالب آنها، که احتمالاً پروپیلیتی میباشد، دارد. به علاوه در یکی از نمونهها مقدار تیتانومگنتیت بالا است. عیار به نسبت بالا، اما فاقد ارزش اقتصادی، در نمونه سنگی برداشتی ناهنجاری تیتان را در منطقه تأیید مینماید.

به جز عنصر تیتان سایر عناصر مهم فاقد عیارهای قابل توجه هستند. لذا محدودهٔ آنومالی را نمی توان چندان قابل توجه دانست.

فصل چهاره– تعبير و تفسير

تصویر 4-6- تصویر ماهوارهای محدوده آنومال MR6 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

پروژه اکتشاف ژئوشیمیایی ۵۰۰۰(۲۵:۱در محدوده اکتشافی میانراهان ۲ گزارش نهایی

فمل عِهاره- تعبير و تفسير

1.1

1.1.1

Sheet 1/25,000 :	Mi	anraha	n II	Anoma	aly No. :	Μ	R6										
Geochemical Anomal S	amples: (Ra	w Data in j	ppm)														
Sample No. Anomaly	Raw Data		USRT		1/PN			Airborne	Geoph. :	Shallow Mag	netic Bodies:		Geo	oph. Faults:			1
181 Te 182 To	0.48		dg		0.40			Altration	, unai O	Silligification	Propilitio	Argilia	Or Carbonata	Listy	hloritizatio	Potosia	7
165 16	0.44		ug		0.29			Aitt atton	vugi.Q			Argine		Listv.		rotasic	
										Limonite	Hematite	Goetite	Siderite	Graizen	Shear zone	Philic	
								Fault	Fracture								
								-		Weathering	:	Gossan :		Other :			7
										-							-
Heavy Mineral Samples	Taken Fro	m Anomal	Area : (Dat	ta in ppm)	Ne	N	N	N	1	Mineralized	Samples Tak	en form Anom	al Arera :	Ne	Na	Ne	Observed Rock Types , Minerals And Fillings In Anomaly Checking :
Heavy Mineral	H2-13	H2-14	NO.	INO.	No.	INO.	INO.	140.		Variables	181-M1	190.	190.	INO.	140.	190.	Granit Pegmatitic Granit Biotite Granit Travertan Basal
Altreadsillicate	120.96	324.00			1				1	Au (ppb)	2			1			
Amphibols	50.18	345.60						İ	1	Al (ppm)	90692						Granodiorite Microgranodiorit Diabase Philite Microdiorite Gabro
Anatase	0.00	0.00]	Ca (ppm)	61756						
Andalusite	0.00	0.00								Fe (ppm)	63418			<u> </u>			Andesite Plagic Limeston Conglomerate Sandstone Limestone Shaly lime
Apatite	3.56	1.14							1	K (ppm)	8707						
Barite	0.00	0.00							1	Mg (ppm)	19223						Mari Dionte Gabro Dionte Gabro Dionte
Carbonate	0.34	0.33								As (ppm)	5.4			+			Marble Schist Dolomite Dacite Slate Shale Tormali
Cerussite	0.00	0.00								Ba (ppm)	230						
Chlorite	0.00	0.36								Be (ppm)	0.8						Minerals
Epidots	0.38	36.72								Bi (ppm)	0.67						Malachite Montmorillonite Ilmenite Albite Tourmal
F.Q.	15.96	44.46								Cd (ppm)	0.27						
Galena	0.00	0.00								Ce (ppm)	31			-			Hornbland Actinolite Orthoclase Hematit Chlorite Calcite Quart
Garnets	0.00	0.00								Co (ppm)	29						Limonite Magnetite Mg-Ovides Iron-Ovides Purite
Hematite	589.12	568.08								Cr (ppm)	9.3			1			
Ilmenite	2368.80	2030.40								Cu (ppm)	42			1			Fillings
Leucoxene	0.00	0.00								La (ppm)	13						Hematite& Manganez vein Silice vein Calcite Vein Quartz Vein
Limonite	0.00	0.00								Li (ppm)	17						
Magnetite	1218.34	497.28								Mn (ppm)	1287						
Martite	19.60	0.60								Mo (ppm)	1.21						
Pyrite	0.00	0.00								Ni (ppm)	25						-
Pyrite limonite	0.00	0.00			1				1	P (ppm)	1331			1			1
Pyrite oxide	0.00	0.00						I	1	Pb (ppm)	27]
Pyroxens	75.26	691.20								Rb (ppm)	42						
Rutile	0.00	0.00								S (ppm)	205			<u> </u>			4
Sapphir	0.00	0.00							1	Sb (ppm)	< 0.5						4
Sericite	0.31	0.33							1	Sc (ppm)	26.9						4
Sphene	5.85	4,18								Sr (nnm)	312			1			1
Titano-magnetite	885.25	88.92							1	Te (ppm)	0.24			1			1
Zircon	209.66	196.56							1	Th (ppm)	4.7]
									-	Ti (ppm)	11540						
										Tl (ppm)	0.59			<u> </u>			4
										U (ppm)	4			 			4
										V (ppm)	209						4
										V (ppm)	4.5 54			+	-		1
										Yb (ppm)	5.2			t			1
										Zn (ppm)	106						1
										Zr (ppm)	88						1

جدول 4-17- شناسنامه محدوده آنومال MR6

۹۲

MR7 محدوده آنومال شماره −۲-۴

با توجه به تصویر ۴–۷، مشاهده می شود که این محدوده آنومالی نیز در ارتفاعات منطقه واقع شده است. مساحت این حوضه بالغ بر ۰/۱ کیلومترمربع می باشد. این آنومالی در شرق مزرعه مراد آباد و در جنوب منطقه اکتشافی واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۱۸ نشان داده شده است.

در این حوضه نمونه شماره ۱۸۴ برای عنصر Mn آنومال بوده است. سنگ شناسی غالب منطقه را دیوریت گابرو تشکیل می دهد که خود نیز به طور متعارف دارای زمینهای بالا از عنصر منگنز می باشد. پی جویی در حوضه مورد بحث منجر به یافت کانهسازی شاخصی از عنصر منگنز و یا سایر عناصر همراه آن نگردید. بدین جهت اقدام به برداشت یک نمونه کانی سنگین در این محدوده گردید تا در صورت وجود کانه سازی آثار آن به صورت کانه های فلزی ارزشمند در مطالعات مشخص گردد:

- نمونه کانی سنگین شماره MR2-47-H که از محل نمونه ژئوشیمیایی ۱۸۴ برداشت شده و نسبت به کانی سریسیت غنی شدگی دارد.

آن گونه که در نتایج حاصل از مطالعه این نمونه دیده می شود هیج کانی منگنز داری در نمونه برداشتی گزارش نگردیده این موضوع می تواند به دلیل حضور منگنز در ساختمان کانی های سنگ ساز باشند. در صورت قبول این نظریه حتی در صورتی که عیار منگنز در برخی از بخشهای واحد سنگی بالاتر هم باشد فاقد ارزش اکتشافی است.

تصویر 4-7- تصویر ماهوارهای محدوده آنومال MR7 بهمراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

پروژه اکتشاف ژئوشیمیایی ۵۰۰۰۵۲:۱۷ر محدوده اکتشافی میانراهان كزارش نهايي

فمل ۋە)(ھ-تعبير و تفسير

Anomaly No. : Sheet 1/25,000 : Mianrahan II MR7 Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data 184 Mn 2226.99 USRT 1/PN Airborne Geoph.: Shallow Magnetic Bodies: Geoph. Faults: 4.65 Listy. Chloritization Potasic Altration: vugi.Q Sillicification Propilitic Argilic Oz.Carbonate Limonite Hematite Goetite Siderite Graizen Shear zone Philic Fault: Fracture: Weathering : Other: Gossan : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types Variables Heavy Mineral H-47 Pegmatitic Granit Biotite Granit Granit Travertan Basalt Altreadsillicate 2717.28 Au (ppb) Philite Amphibols 652.80 Al (ppm) Granodiorite Microgranodiorit Diabase Microdiorite Gabro 0.00 Ca (ppm) Anatase 0.00 Plagic Limeston Andalusite Fe (ppm) Andesite Conglomerate Sandstone Limestone Shaly limestone Apatite 0.43 K (ppm) Barite 0.00 Mg (ppm) Marl Diorite Gabro Diorite Gabro Diorite 0.00 Riotite Na (ppm) Carbonate 0.00 As (ppm) Marble Schist Dolomite Dacite Slate Shale Tormaline 0.00 Ba (ppm) Cerussite 0.41 Be (ppm) Minerals Chlorite Epidots 23.12 Bi (ppm) Malachite Montmorillonite Ilmenite Albite Tourmaline F.O. 38.76 Cd (ppm) Galena 0.00 Ce (ppm) Hombland Actinolite Orthoclase Hematit Chlorite Calcite Quartz 0.00 Garnets Co (ppm) 29.92 Magnetite Mg-Oxides Iron-Oxides Goethite Cr (ppm) Limonite Pyrite Ď 357.68 Cs (ppm) Hematite Ilmenite 0.64 Cu (ppm) Fillings Leucoxene 0.00 La (ppm) Hematite& Manganez vein Silice vein Calcite Vein Quartz Vein 0.52 Li (ppm) Limonite Magnetite 0.70 Mn (ppm) Martite 0.00 Mo (ppm) Monazite 0.00 Nb (ppm) Pvrite 0.00 Ni (ppm) Pvrite limonite 0.00 P (ppm) Pyrite oxide 0.61 Pb (ppm) Pyroxens 217.60 Rb (ppm) 0.00 Rutile S (ppm) 0.00 Sapphir Sb (ppm) Sericite 18.70 Sc (ppm) Silver 0.00 Sn (ppm) Sr (ppm) Sphene 0.47 0.00 Titano-magnetite Te (ppm) 1.91 Th (ppm) Zircon Ti (ppm) TI (ppm) U (ppm) V (ppm) W (ppm) Y (ppm) Yb (ppm) Zn (ppm) Zr (ppm)

جدول **4-10- شناسنامه محدوده آنومال** MR7

0 ٦

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

MR8 محدوده آنومال شماره -**۸-۴**

با توجه به تصویر ۴–۸، مشاهده می شود که این محدوده آنومالی در منطقه ناهمواری واقع شده است که ازسمت جنوب و شمال به دره منتهی می شود. مساحت این حوضه بالغ بر ۰/۲۵ کیلومترمربع است. این آنومالی به لحاظ جغرافیایی در مرکز محدوده اکتشافی، در شرق روستای قلعه لان و جنوب مزرعه باباگور گو قرار گرفته است. شناسنامه این محدوده در جدول شماره ۴–۱۹ نشان داده شده است.

این ناهنجاری یکی از مهمترین نواحی ناهنجاری در محدوده اکتشافی میانراهان ۲ میباشد. همبستگی مکانی میان دو نمونه ناهنجار آبراههای با کد ۱۰۴ و ۱۰۸ در کنار ناهنجاری معنی دار میان عناصر با رفتار ژئوشیمیایی مشابه مانند As، Sb، محمونه ناهنجار آبراههای با کد ۱۰۴ و ۱۰۸ در کنار ناهنجاری معنی دار میان عناصر با رفتار ژئوشیمیایی مشابه مانند As، Sb، محمونه ناهنجار آبراههای با کد ۱۰۴ و ۱۰۸ در کنار ناهنجاری معنی دار میان عناصر با رفتار ژئوشیمیایی مشابه مانند As، Sb، محمونه ناهنجار آبراههای با کد ۱۰۴ و ۱۰۸ در کنار ناهنجاری معنی دار میان عناصر با رفتار ژئوشیمیایی مشابه مانند As، Sb، محمونه ناهنجار آبراههای با که محمون این این محدوده است. دیوریت گابرو و شیل سنگ شناسی اصلی این ناحیه هستند. حضور شاخص کانی های اکسیده در این منطقه جالب توجه میباشد که در این میان لیمونیت و سایر اکسید و هیدروکسیدهای آهن مهمترین میباشند. این نوع دگرسانی و یا هوازدگی بیشتر مرتبط با واحدهای شیلی است. محدوده دارای گسلش نیز میباشد. از محدوده فوق دو نمونه کانی سنگین به شرح زیر برداشت گردیده است:

– نمونه کانی سنگین شماره MR2-20-H2 که از محل نمونه ژئوشیمیایی ۱۱۸ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمی دهد.

– نمونه کانی سنگین شماره MR2-21-H2 که از محل نمونه ژئوشیمیایی ۱۰۴ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمی دهد.

> با توجه به نتایج عیاری و مطالعات کانی سنگین عدم حضور کانه سازی در این منطقه نیز تأیید گردید. جهت تعیین منشأ آنومالی ۵ نمونه از پدیدههای مشکوک به کانی سازی اخذ شد:

-نمونه مینرالیزه شماره MR2-104-M1 از مختصات جهانی (۳۸۵۰۰۴۳ و ۶۹۶۵۴۰) برداشت شده است. این نمونه نسبت به عنصر Au آنومال میباشد. در ادامه نتیجه مطالعات میکروسکوپی تیغه نازک این نمونه آمده است. (تصویر ۴–۹)

-نمونه مینرالیزه شماره MR2-104-M2 از مختصات جهانی (۳۸۵۰۱۳۹ و ۶۹۶۵۸۱) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

تصویر ۴–۸– تصویر ماهوارهای محدوده آنومال MR8 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده -نمونه مینرالیزه شماره MR2-104-M3 که از مختصات جهانی (۳۸۵۰۱۹۹ و ۶۹۶۵۴۸) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

– نمونه مینرالیزه شماره MR2-118-M1 که از مختصات جهانی (۳۸۵۱۱۱۲ و ۶۹۶۳۷۷) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

- نمونه مینرالیزه شماره MR2-118-M2 که از مختصات جهانی (۳۸۵۱۱۲۳ و ۶۹۶۳۸۶) برداشت شده است. این نمونه نسبت به عنصر لیتیوم آنومال میباشد.

بالا رفتن عیار برخی عناصر در نمونههای MR2-118-M1 و MR2-118-M2 بدلیل برداشت آنها از واحدهای شیلی و بالا بودن طبیعی عیار کاتیونها در آنها میباشد. به همین ترتیب میتوان ناهنجاری را حاصل آلودگی منتج شده از شیلها در منطقه دانست و کانه سازی را در منطقه منتفی دانست.

تصویر ۴-۹- تصویر میکروسکوپی گرفته شده از مقطع نازک نمونه MR2.104T

شرح تصویر ۴–۹ مربوط به نمونه MR2-104T؛ بافت این نمونه فیلیتی– تخریبی است. سنگ از ذرات تخریبی بسیار ریز اندازه تشکیل شده است و حاوی مواد کربنی– کل و بلورهای ریز بی شکل کوارتز که دارای ابعاد درشت تری نسبت به زمینه هستند و اندازه آنها از ۲ میکرون تا ۱۰۰ میکرون متغیر است و تقریباً ۲۰–۱۵ درصد فراوانی سنگ را تشکیل میدهند. در این نمونه تیغکهای سریسیت، بلورهای بی شکل کلریت، کانی اسفن، زیرکن– روتیل در حد چند مورد قابل مشاهده است. سنگ در اثر تحمل فشارهای مکانیکی تا حدودی دارای درزه و شکاف است و یکسری از درزهها توسط اکتینولیت پر نشده است. کانی اپاک نیز به صورت بلورهای بی شکل در ابعاد ۱۰ میکرون به صورت پراکنده در سنگ مشاهده می شود و فراوانی آن در حد ۱۰٪ است. با توجه به مشاهدات میکروسکوپی می توان سنگ را شیل نامید.

پروژه اکتشاف ژئوشیمیایی ۵۰۰۰۵۲:۱۷ر محدوده اکتشافی میانراهان گزارش نهایی

جدول 4-19- شناسنامه محدوده آنومال MR8

مازمان زمین شناسی و اکتشاف معدنی کشور

> كزارش نهايى پروژه اكتشاف ژئوشيميايى 300,451در محدوده اكتشافى ميانراهان

فمل چهارم– تعبير و تفسير

جدول 4-19- شناسنامه محدوده آنومال MR8 (ادامه)

-

MR9 محدوده آنومال شماره

با توجه به تصویر ۴–۱۰، مشاهده می شود که این محدوده آنومالی نیز در منطقه ناهمواری واقع شده است که ازسمت جنوب به ارتفاعات و از شمال به دره منتهی می شود. این محدوده یکی از وسیع ترین آنومالی های مشخص شده در محدوده اکتشافی میانراهان ۲ بوده و مساحت این حوضه بالغ بر ۱/۱۵ کیلومترمربع است. این آنومالی در محدوده مزرعه و تپه قلعه لان و در مرکز محدوده اکتشافی قرار گرفته است. شناسنامه این محدوده در جدول شماره ۴–۲۰ نشان داده شده است.

آنومالی مورد بحث حوضه آبریز نمونههای ۹۶، ۹۷، ۹۸ ، ۱۰۹ را در بر می گیرد که علاوه بر ارتباط مکانی، دارای ارتباط با معنایی میان ناهنجاری عناصر Au, Be و Bi به عنوان عناصر دارای رفتار ژئوشیمیایی مشابه میباشد. به لحاظ سنگ شناسی دیوریت گابرو و شیل مهم ترین لیتولوژیهای منطقه هستند که تشخیص برخی کانیها در نمونههای دستی و حتی چنین کانیهای سنگین مانند اسفن و گارنت گراسولار میتواند از دگرگونی بخشی و شیلها حکایت نماید. لازم به ذکر است که محدوده دارای گسلش نیز میباشد. از محدوده فوق چهار نمونه کانی سنگین به شرح زیر برداشت گردیده است:

- نمونه کانی سنگین شماره MR2-25-H که از محل نمونه ژئوشیمیایی ۹۷ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمی دهد.

– نمونه کانی سنگین شماره MR2-22-H2 که از محل نمونه ژئوشیمیایی۱۰۹ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمیدهد.

- نمونه کانی سنگین شماره MR2-23-H2 که از محل نمونه ژئوشیمیایی ۹۶ برداشت شده و نسبت به کانی آمفیبول غنی شدگی دارد.

- نمونه کانی سنگین شماره MR2-24-H2 که از محل نمونه ژئوشیمیایی ۹۸ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی نشان نمی دهد.

چهار نمونه کانی سنگین اخذ شده از این آنومالی هیچ کانی شاخص کانساری را در خود نشان نمیدهد و تنها تفاوت در مقدار کانیهای سنگ ساز در نمونه MR2-23-H2 جلب توجه مینماید که میتواند حاصل حضور واحدهای شیلی در بالادست نمونه اخذ شده باشد.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

تصویر ۴-10- تصویر ماهوارهای محدوده آنومال MR9 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

شرح تصاویر ۴–۱۱، ۴–۲۱ و ۴–۱۳ مربوط به نمونه MR2-96P: در این نمونه ایلمنیت و هیدرکسید آهن به عنوان کانی فلزی دیده می شوند. فراوانی ایلمنیت حدوده ۴٪ است. ایلمنیتها در نمونه به حالت پراکنده مشاهده می شوند. ایلمنیتها در دو سایز دیده می شوند، یک دسته دانههای درشت هستند که فراوانی آنها پایین است و منحصر به چند دانه انگشت شمار است و ابعاد آن بین ۲۰۰ الی ۲۰۰ میکرون است. یک دسته دانههای بسیار کوچک که زیر ۴۰ میکرون می باشند و دارای فراوانی زیادتری هستند. این نوع ایلمنیتها بیشتر در حواشی دانههای گانگ و محل کنتاکت دانههای گانگ با یکدیگر مشاهده می گردند. قالبهای اتومورف تا نیمه اتومورفی در قسمتی از نمونه تجمع کردهاندکه فراوانی آنها چا حدود ۱٪ است و اندازه ابعاد آنها بین ۵۰ الی ۲۰۰ میکرون می باشد. این دانهها توسط هیدروکسید آهن جانشین شدهاند و هیچ اثری از کانی اولیه باقی نمانده است. لا

نمی توان دقیقاً نوع کانی اولیه را مشخص کرد ولی با توجه به شکل دانهها احتمالاً این دانهها، سولفیدهایی نظیر پیریت بوده اند که در اثر عملکرد آلتراسیون سوپرژن توسط لیمونیت و گوتیت جانشین شده اند.

همچنین چهار نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-96-M1 از مختصات جهانی (۳۸۵۰۵۳۶ و ۶۹۸۰۹۲) برداشت شده است. در ادامه نتایج مطالعات میکروسکوپی مقطع صیقلی این نمونه آمده است. (تصاویر ۴– ۱۱، ۴–۱۲ و ۴–۱۳)

-نمونه مینرالیزه شماره MR2-96-M2 از مختصات جهانی (۳۸۵۰۲۶۴ و ۶۹۷۷۱۵) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-109-M1 از مختصات جهانی (۶۹۷۵۲۹ و ۶۹۷۵۲۹) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد. در ادامه نتایج مطالعات میکروسکوپی مقطع نازک این نمونه آمده است. (تصویر ۴–۱۴)

تصویر 4-11- تصویر میکروسکوپی گرفته شده از مقطع صیقلی نمونه MR2.96.P

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

K C E

مندخ شادر

تصویر 4-11- تصویر میکروسکوپی گرفته شده از مقطع صیقلی نمونه MR2.96.P

تصوير 4-13- تصوير ميكروسكوپي گرفته شده از مقطع صيقلي نمونه MR2.96.P

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

تصویر ۴-۱۴- تصویر میکروسکوپی گرفته شده از مقطع نازک نمونه MR2.109T

شرح تمویر ۴–۴۱ مربوط به نمونه MR2-109T: نمونه دارای بافت تخریبی- فیلیتی است. این نمونه از دو بخش تشکیل شده است. یک بخش با بافت تخریبی و حاوی بلورهای ریز و زاویه دار کوارتز با فراوانی تقریبا ۵۰٪ حجمی سنگ و بیش از ۵۸درصد حجمی سنگ نیز از ذرات دانه ریز تشکیل شده است. در این زمینه نیز بلورهای بی شکل فلدسپار و بلورهای بی شکل الادرصد حجمی سنگ نیز از ذرات دانه ریز تشکیل شده است. در این زمینه نیز بلورهای بی شکل فلدسپار و بلورهای بی شکل ۱۹۷۵ می ۱۹۷۵ می ۱۹۷۵ می می که عایم می که فلدسپار و بلورهای بی شکل ایاک که تا حدودی به اکسید- هیدروکسیدهای آهن تبدیل شده اند، مشاهده می گردد. در ضمن به طور محدود بلورهای بی شکل ایاک که تا حدودی به اکسید- هیدروکسیدهای آهن تبدیل شده ند، مشاهده می گردد. در ضمن به طور محدود بلورهای بی شکل تا نیمه شکل داری از اسفن- زیرکن نیز حضور دارند. در این بخش رگه رگومهایی مشاده می شود که توسط اکسید- هیدروکسید آهن پر شده است. بخش دیگر سنگ رگه رگومهایی مشاده می شود که توسط اکسید- می می شکل تا نیمه شکل داری از اسفن- زیرکن نیز حضور دارند. در این بخش رگه رگومهایی مشاده می شود که توسط اکسید- میدروکسید آهن پر شده است. بخش دیگر سنگ رگه رگومهایی مشاده می شود که توسط اکسید- سی شکل تا نیمه شکل داری از اسفن- زیرکن نیز حضور دارند. در این بخش رگه رگومهایی مشاده می شود کربنی- بیوتیت، کوارتز و ... می باشد، تشکیل شده است. به علت ریزبودن ذرات زمینه تشخیص سایر کانیها مقدور نیست و جابجایی قطعاتی از ماسه سنگ (گری واک) در میان این زمینه ریزدانه (شیل) مشاهده می شود. در این نمونه به نظر می سداز یک تناوب شیل و ماسه سنگ بخش اول بوده) توسط اکسید- هیدروکسیدهای آهن پر شده است. این نمونه به نظر می می ساید. در آخر می توان این سنگ را ماسه سنگ (گری واک) - شیل نامگذاری کرد.

-نمونه مینرالیزه شماره MR2-109-M2 از مختصات جهانی (۳۸۵۱۰۰۶ و ۶۹۷۵۰۴) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

نتیجهٔ آنالیز نمونههای مینرالیزه اخذ شده نیز عدم غنی شدگی و وجود عیارهای قابل قبول از عناصر کانسارساز در منطقه را

نشان میدهند و مقدار بالاتر عناصری مانند گوگرد و فسفر در نمونه MR2-109-M2 حاصل تفاوت واحد سنگی میباشد.

سازمان زمين شناسي و اكتشاف معدني كشور

> پروژه اکتشاف ژئوشیمیایی . 24.4 الار محدوده اكتشافي ميانراهان گزارش نهایی

فمل ۋە)(ھ-تعبير و تفسير

Sheet 1/25,000 : Mianrahan II Anomaly No. : MR9 Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data USR 1/PN Airborne Geoph. : Shallow Magnetic Bodies: Geoph, Faults: 11.893 42.37 96 Be dg 97 11.24 Altration: vugi.Q Sillicification Argilic Qz.Carbonate Listv. Chloritization Potasic Ni 102.3 dσ Propilitic Listv. 98 Au 0.007 dg 42.37 98 Bi 0.606 dg 8.69 Limonite Hematite Goetite Siderite Graizen Shear zone Philic 109 Sr 420.802 42.37 dø Fault: Fracture: Weathering : Gossan : Other: Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types Heavy Mineral Variables H-25 H2-22 H2-23 H2-24 96-M1 96-M2 109-M1 109-M2 Granit Pegmatitic Granit Biotite Granit Travertan Altreadsillicate 2211.84 486.00 1542.24 1300.32 Au (ppb) <1 1 <1 <1 Amphibols 614.40 166.40 2176.00 1612.80 Al (ppm) 95648 88421 76875 89331 Granodiorite Microgranodiorit Diabase Philite Microdiorite Anatase 0.00 0.00 0.00 0.00 Ca (ppm) 76124 83045 58344 72537 54264 Plagic Limeston Andalusite 0.00 0.00 0.00 0.00 Fe (ppm) 65382 66293 44879 Andesite Conglomerate Sandstone Limestone 0.00 0.13 0.43 0.00 K (ppm) 3380 33936 11480 Apatite Barite 0.00 0.00 0.00 0.00 Mg (ppm) 24307 13526 9633 20667 Marl Diorite Gabro Diorite 14505 Biotite 0.00 0.00 0.00 0.00 Na (ppm) 16057 9199 12072 7.9 Shale Carbonate 0.00 0.00 1.11 0.30 As (ppm) 5.5 12.9 63 Marble Schist Dolomite Dacite Slate 422 585 333 Cerussite 0.00 0.00 0.00 0.00 Ba (ppm) 156 1.7 0.9 Minerals Chlorite 0.38 0.12 20.40 16.80 Be (ppm) 1 1.6 Epi dots 130.56 61.20 23.12 114.24 Bi (ppm) 1.37 1.06 0.79 0.59 Malachit Feldspa Albit Ilmenite F.Q. 45.60 0.57 135.66 79.80 Cd (ppm) 0.23 0.8 0.26 0.29 Galena 0.00 0.00 0.00 0.00 Ce (ppm) 27 59 60 31 Hornbland Zircon Sphene Goethite Chlorite Calcite Garnets 0.00 0.00 0.00 0.00 Co (ppm) 29 16 14 26 Goethite 0.00 0.00 0.00 0.00 Cr (ppm) 96 81 49 115 Limonite Grossular Biotite Iron-Oxides 0.67 9.47 29.46 9.4 9.8 Hematite 214.61 Cs (ppm) 7 8.9 0.00 16.92 63.92 0.53 47 35 32 50 Ilmenite Cu (ppm) Fillings 0.00 0.00 0.00 0.00 La (ppm) 30 33 12 Hematite& Manganez vein Silice vein Calcite Vein Leucoxene 9 0.00 0.00 46 26 27 Limonite 0.00 0.00 Li (ppm) 1172 1838 1001 Magnetite 331.52 207.20 352.24 290.08 Mn (ppm) 1351 1.66 2.35 1.35 0.00 0.00 0.00 1.51 Martite 0.00 Mo (ppm) Nb (ppm) 22 0.00 0.00 0.00 0.00 28 19 23 Monazite 0.00 0.00 57 52 63 Pyrite 0.00 0.00 Ni (ppm) 49 979 840.00 Pyrite limonite 0.00 0.00 0.00 0.00 P (ppm) 1138 731 15.00 0.00 0.00 0.00 0.00 19 33 21 Pyrite oxide Pb (ppm) 819.20 345.60 358.40 126 142 52.00 Pyroxens 217.60 Rb (ppm) 24 Rutile 0.00 0.00 0.00 0.00 220 1476 176 264.00 S (ppm) 0.00 0.00 0.00 1.3 < 0.5 < 0.5 Sapphir 0.00 Sb (ppm) 0.68 16.6 13.5 25.5 Sericite 0.00 0.00 0.00 0.00 Sc (ppm) 26.8 0.00 2.8 3.1 3.2 2.5 0.00 0.00 0.00 Silver Sn (ppm) 261 Sphene 0.00 0.00 0.47 0.00 Sr (ppm) 217 350 266 Titano-magnetite 0.00 0.00 0.00 0.00 0.23 0.24 0.16 0.19 Te (ppm) Zircon 0.60 0.94 1.91 1.57 Th (ppm) 32 13.9 14.2 63 8773 Ti (ppm) 10427 5651 4355 TI (ppm) 0.38 0.7 0.98 0.63 U(ppm) 3.2 3 3 3 V (ppm) 214 153 124 180 6.6 5.7 4.7 W (ppm) 4.5 52 36 33 42 Y (ppm) Yb (ppm) 3.7 4.1 3.4 Zn (ppm) 106 345 100 86 104 108 175 109 Zr (ppm)

حدول 4-4- شناسنامه محدوده آنومال MR9

> -

Basalt

Gabro

Shalv limeston

Tormaline

ourmaline

Quartz

Orthoclase

Quartz Vein

Gabro Diorite

MR10 محدوده آنومال شماره -۱۰-۴

با توجه به تصویر ۴–۱۵ مشاهده می شود که این محدوده آنومالی در ارتفاعات محدوده مورد مطالعه واقع شده است. مساحت این حوضه بالغ بر ۰/۳۸ کیلومترمربع است. این محدوده در بخش جنوبی محدودهٔ اکتشافی و جنوب مزرعه و تپه قلعهلان واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۲۱ نشان داده شده است.

تصویر ۴–1۵– تصویر ماهواردای محدوده آنومال MR10 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده عنصر Sr در دو نمونه آبراههای ۱۸۸ و ۱۹۱ باعث معرفی این منطقه آنومال شده است. نقشه زمین شناسی ۱:۱۰۰,۰۰۰ منطقه و کاوشهای صحرایی دیوریت گابرو را به عنوان واحد اصلی سنگی منطقه نشان میدهد با این حال حضور واحدهای شیلی نیز به صورت پراکنده قابل گزارش است. محدوده دارای گسلش نیز می باشد. در بررسی های صورت پذیرفته پدیدهٔ شاخصی که بتوان کانه سازی و ناهنجاری عیار را به آن نسبت داد یافت نگردید و لذا صرفاً به برداشت دو نمونه کانی سنگین از حوضه آبریز مورد نظر اکتفا گردید:

– نمونه کانی سنگین شماره MR2-37-H که از محل نمونه ژئوشیمیایی ۱۹۱ برداشت شده و نسبت به کانی گارنت غنی شدگی دارد.

– نمونه کانی سنگین شماره H-38-MR2 که از محل نمونه ژئوشیمیایی ۱۸۸ برداشت شده و نسبت بـه هـیچ کـدام از کانیهای موجود غنی شدگی نشان نمیدهد.

با توجه به گزارش مطالعه این نمونه ها کانی فلزی و یا اقتصادی دیگری که بتواند ادامه پیجویی را توجیه نماید وجود ندارد. با این حال این دو نمونه با یکدیگر به لحاظ کانی های اصل و حتی کانی های مرتبط با آهن و تیتان تفاوت دارند. این موضوع میتواند مربوط به توزیع بالاتر، واحد سنگی شیلی در بالادست نمونه HR2-36-H باشد. بایستی توجه نمود که این واحد تخریبی در طی فرسایش مرحله دوم میتواند بخش بیشتری از کانیهای مورد بحث را از خود آزاد نماید و لذا وفور این کانیها در پایین دست چنین واحدی اغلب نمی تواند حاصل وجود پدیده های کانی سازی در آنها باشد. سازمان زمین شناسی و 1کتشاف معدنی کشور

> گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۵۰۰٬۵۲۰در محدوده اکتشافی میانراهان

فمل چهارم– تعبير و تفسير

Sheet 1/25,000 : Mianrahan II Anomaly No. : **MR10** Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data USRT 1/PN Airborne Geoph. : Shallow Magnetic Bodies: Geoph. Faults: Sr 296.802 Sr 297.902 4.37 188 dg 4.64
Chloritization
Potasic

Image: Constraint of the second seco Altration: vugi.Q Sillicification 191 d٥ Propilitic Argilic Oz Carbonate Listv Graizen Shear zone Goetite Siderite Limonite Hematite Fault: Fracture: Weathering : Other : Gossan : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types Heavy Mineral Variables H-37 H-38 Pegmatitic Granit Biotite Granit Granit Travertan Basalt Altreadsillicate 1319.76 1263.60 Au (ppb) Amphibols 299.52 1190.40 Al (ppm) Diabase Philite Microdiorite Gabro Granodiorite Microgranodiorit . 0.00 0.00 Ca (ppm) Anatase Andalusite 0.00 0.00 Fe (ppm) Plagic Limeston Conglomerate Sandstone Limestone Shaly limestone Andesite 0.99 0.38 K (ppm) Apatite 0.00 Gabro Diorite 0.00 Marl Diorite Gabro Diorite Barite Mg (ppm) 0.31 0.00 Biotite Na (ppm) Carbonate 0.00 0.00 Marble Schist Dolomite As (ppm) Dacite Slate Shale Tormaline Cerussite 0.00 0.00 Ba (ppm) Minerals Chlorite 0.31 0.36 Be (ppm) M alachite 95 47 73 44 Montmorillonite Enidots Bi (ppm) Ilmenite A lbite Tourmaline 59.28 34.20 F.Q. Cd (ppm) Galena 0.00 0.00 Ce (ppm) Hornbland Actinolite Orthoclase Hematit Chlorite Calcite Quartz 18.25 0.00 Garnets Co (ppm) Mg-Oxides Iron-Oxides Goethite 0.00 0.00 Cr (ppm) Magnetite Pyrite Limonite Hematite 492.34 28.40 Cs (ppm) Ilmenite 879.84 25.38 Cu (ppm) Fillings 0.00 0.00 Hematite& Manganez vein Leucoxene La (ppm) Silice vein Calcite Vein Quartz Vein 0.00 0.00 Limonite Li (ppm) 484.85 621.60 Mn (ppm) Magnetite Mo (ppm) Martite 0.00 0.00 0.00 0.00 Nb (ppm) Monazite Ni (ppm) 0.00 0.00 Pyrite Pyrite limonite 0.00 0.00 P (ppm) Pyrite oxide 0.47 0.00 Pb (ppm) Pyroxens 149.76 691.20 Rb (ppm) 0.00 0.00 Rutile S (ppm) 0.00 0.00 Sapphir Sb (ppm) Sericite 0.29 0.00 Sc (ppm) 0.00 0.00 Silver Sn (ppm) 0.36 0.42 Sr (ppm) Sphene Te (ppm) 51.38 0.00 Titano-magnetite Zircon 12.17 5.62 Th (ppm) Ti (ppm) Tl (ppm) U (ppm) V (ppm) W (ppm) Y (ppm) Yb (ppm) Zn (ppm) Zr (ppm)

جدول F-۲۱- شناسنامه محدوده آنومال MR10

1

MR11 محدوده آنومال شماره MR11

با توجه به تصویر ۴–۱۶، مشاهده می شود که این محدوده آنومالی نیز در ارتفاعات منطقه مورد نظر واقع شده است. مساحت این حوضه بالغ بر ۰/۶۴ کیلومترمربع است. این آنومالی در جنوب مزرعه و تپه قلعه لان، واقع در جنوب محدوده اکتشافی قرار دارد. شناسنامه این محدوده در جدول شماره ۴–۲۲ نشان داده شده است.

نمونههای آبراههای شماره ۱۹۳، ۱۹۶ و ۱۹۷ دارای ناهنجاری عیاری عنصر S در خود هستند. سنگ موجود در بالا دست آن دیوریت گابرو می باشد. محدوده گسلش نیز دارد. از محدوده فوق دو نمونه کانی سنگین به شرح زیر برداشت گردیده است: - نمونه کانی سنگین شماره MR2-11-H2 که از محل نمونه ژئوشیمیایی ۱۹۷ برداشت شده و نسبت به کانی های

کربنات و سریسیت غنی شدگی دارد.

تصویر ۴-16- تصویر ماهوارهای محدوده آنومال MR11 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

– نمونه کانی سنگین شماره MR2-12-H2 که از محل نمونه ژئوشیمیایی ۱۹۶ برداشت شده و نسبت به کانی کربنات غنی شدگی دارد.

واحدهای آذرین دیوریت گابرویی، لیتولوژی چیره این حوضهٔ آبریز براساس مشاهدات صحرایی، اغلب فاقد دگرسانی شاخصی بوده و تنها در یک نقطه مشکوک به کانه سازی یک نمونه مینرالیزه به شرح زیر برداشت شده است:

-نمونه مینرالیزه شماره MR2-197-M1 از مختصات جهانی (۳۸۴۷۱۶۷ و ۶۹۷۱۹۳) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

به غیر از عیار Ti که اندکی از حد زمینه متعارف چنین سنگ هایی بالاتر است (ولی در عین حال فاقد عیار اقتصادی است) سایر عناصر ارزش اکتشافی چندانی ندارند. به علاوه دو نمونه کانی سنگین اخذ شده از این حوضهٔ آبریز، جهت کنترل و یافت نشانههای احتمالی کانه سازی اخذ شدند که هیچ کانی ارزشمند اقتصادی را در خود ندارند و حتی عدم وجود کانیهای تیتان دار میتواند تا حد زیادی به پراکندگی عنصر تیتان در کانیهای سنگ ساز باشد. سازمان زمين شناسي و اكتشاف معدني كشور

پروژه اکتشاف ژئوشیمیایی ۵۰۰۰۵۲:۱۷ر محدوده اکتشافی میانراهان

كزارش نهايي

فطل 0.41 0.86 Barite Biotite 0.28 0.19 **₹₽**)(a)-Carbonate 6.23 8.67 Cerussite 0.00 0.00 Chlorite 13.80 0.19 15.64 10.88 Epidots تعبير و تفسير F.O. 117.99 72.96 Galena 0.00 0.00 0.00 0.00 Garnets 0.00 0.00 Goethite Hematite 0.48 16.83 Ilmenite 0.00 0.00 0.00 0.00 Leucoxene 0.00 0.00 Limonite 47.66 33.15 Magnetite Martite 0.00 0.00 Monazite 0.00 0.00 0.00 0.00 Pyrite Pyrite limonite 0.00 0.00 Pyrite oxide 0.00 0.00 Pyroxens 294.40 102.40 Rutile 0.00 0.00 0.00 0.00 Sapphir 12.65 0.18 Sericite Silver 0.00 0.00 Sphene 0.32 0.00 0.00 0.00 Titano-magnetite Zircon 1.29 1.50

Sheet 1/25,000 :

Sample No. 193

196 197

Geochemical Anomal Samples: (Raw Data in ppm) Anomaly Raw Data

S 2387 S 1421

S 1622

Mianrahan II

LISPT

dg

dg

dø

Graizen Shear zone Philic Limonite Hematite Goetite Siderite Fault: Fracture: Weathering : Gossan : Other : Observed Rock Types , Minerals And Fillings In Anomaly Checking : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : No. Rock types Variables Heavy Mineral H2-11 H2-12 197-M1 Pegmatitic Granit Biotite Granit Travertan Granit 1589.76 1296.00 Altreadsillicate Au (ppb) 1 588.80 307.20 83955 Philite Microdiorite Amphibols Al (ppm) Granodiorite Microgranodiorit Diabase 0.00 0.00 Ca (ppm) 49827 Anatase Andalusite 0.00 0.00 66419 Andesite Conglomerate Sandstone Limestone Fe (ppm) Plagic Limeston Apatite 0.00 0.61 K (ppm) 10822 Mg (ppm) 16686 Marl Diorite Gabro Diorite Gabro Diorite Na (ppm) 20229 As (ppm) 4.8 Marble Schist Dolomite Dacite Slate Shale Ba (ppm) 239 Be (ppm) 1.4 Minerals Bi (ppm) 0.81 Malachite Montmorillonite Ilmenite Albite Cd (ppm) 0.25 Ce (ppm) 41 Hornbland Actinolite Orthoclase Hematit Chlorite Calcite Co (ppm) 26 47 Magnetite Mg-Oxides Iron-Oxides Cr (ppm) Limonite Ď Cs (ppm) 9.7 Cu (ppm) 50 Fillings La (ppm) 18 Hematite& Manganez vein Silice vein Calcite Vein Quartz Vein 11 Li (ppm) Mn (ppm) 1314 Mo (ppm) 1.44 Nb (ppm) 24 32 Ni (ppm) P (ppm) 1690 Pb (ppm) 14 Rb (ppm) 44 S (ppm) 170 Sb (ppm) 0.57 Sc (ppm) 20.7 Sn (ppm) 2.6 Sr (ppm) 193 Te (ppm) 0.24 Th (ppm) 6.2 Ti (ppm) 12388 Tl (ppm) 0.33 3.9 U (ppm) V (ppm) 189 W (ppm) 4.8 Y (ppm) 71 Yb (ppm) 6.3 105 Zn (ppm) Zr (ppm) 89

MR11

Airborne Geoph. : Shallow Magnetic Bodies:

Propilitic

Argilic

Ľ

vugi.Q Sillicification

Altration:

Anomaly No. :

1/PN

42.37

42.37 10.35

جدول F-۲۲- شناسنامه محدوده آنومال MR11

Qz.Carbonate

Geoph. Faults:

Listy.

hloritization Potasic

Basalt

Gahro

Shaly limestone

Tormaline

Tourmaline

Quartz

Ò

Pyrite

Ć

z

7

MR12 محدوده آنومال شماره -۱۲-۴

با توجه به تصویر ۴–۱۷ مشاهده می شود که این محدوده آنومالی در منطقه ناهمواری در ارتفاعات محدوده مورد مطالعه واقع شده است. مساحت این حوضه بالغ بر ۰/۶۸ کیلومترمربع است. این آنومالی در مرکز منطقه مطالعاتی و جنوب غرب روستای سربرزه قرار گر فته است. شناسنامه این محدوده در جدول شماره ۴–۲۳ نشان داده شده است.

این ناهنجاری نیز از پر اهمیت ترین مناطقی است که تشخیص داده شده است. عناصر Sn ،Cd ،Cu ،Bi و Zn دارای مقادیر بالاتری نسبت به سایر نمونههای منطقه هستند. هورنفلسهای کوارتز _ اکتینولیت و دیوریت گابروها مهمترین واحدهای سنگی رخنمون یافته در منطقه هستند که براساس پیمایشات شناسایی شدهاند. براساس مشاهدات صحرایی دگرسانی ضعیف پروپیلیتی و آرژیلی بر روی این واحدها تأثیر گذاشته است و هماتیت و سایر کانیهای اکسیدی و هیدروکسیدی آهن نیز به پروپیلیتی و آرژیلی بر روی این واحدها تأثیر گذاشته است و هماتیت و سایر کانیهای اکسیدی و هیدروکسیدی آمن نیز به پروپیلیتی و آرژیلی بر روی این واحدها تأثیر گذاشته است و هماتیت و سایر کانیهای اکسیدی و هیدروکسیدی آهن نیز به وفور در محدوده دیده میشود. محدوده دارای گسلش نیز میباشد. از محدوده فوق چهار نمونه کانی سنگین به شرح زیر برداشت گردیده است:

– نمونه کانی سنگین شماره MR2-14-H که از محل نمونه ژئوشیمیایی ۶۱ برداشت شده و نسبت به کانی روتیل غنی شدگی دارد.

- نمونه کانی سنگین شماره MR2-6-H2 که از محل نمونه ژئوشیمیایی ۵۵ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی ندارد.

- نمونه کانی سنگین شماره MR2-7-H2 که از محل نمونه ژئوشیمیایی ۶۲ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی ندارد.

- نمونه کانی سنگین شماره MR2-8-H2 که از محل نمونه ژئوشیمیایی ۶۸ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی ندارد.

در مطالعهٔ این نمونهها به غیر از نمونه MR2-H-14 که حاوی برخی کانیهای تیتان دار میباشد و به نظر ناهنجاری حاصل حضور واحدهای شیل _ هورنفلسی است، در نمونه های دیگر تنها کانی های سنگ ساز مشاهده می شود.

همچنین ۹ نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-55-M1 از مختصات جهانی (۳۸۴۸۲۸۹ و ۲۰۱۲۱۱) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-55-M2 از مختصات جهانی (۳۸۴۸۲۶۹ و ۲۰۱۱۹۰) برداشت شده است. این نمونه نسبت

به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-55-M3 از مختصات جهانی (۳۸۴۸۹۳۲ و ۲۰۰۹۶۹) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

-نمونه مینرالیزه شماره MR2-62-M1 از مختصات جهانی (۳۸۴۸۲۸۲ و ۲۰۰۲۱۶) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

–نمونه مینرالیزه شماره MR2-62-M2 از مختصات جهانی (۳۸۴۸۲۹۵ و ۲۰۰۱۸۷) برداشت شده است. این نمونه نسبت به عناصر Au و Cu دارای آنومالی میباشد.

–نمونه مینرالیزه شماره MR2-62-M3 از مختصات جهانی (۳۸۴۸۳۶۹ و ۲۰۰۱۴۹) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-62-M4 از مختصات جهانی (۳۸۴۸۳۶۷ و ۲۰۰۱۱۵) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

-نمونه مینرالیزه شماره MR2-62-M5 از مختصات جهانی (۳۸۴۸۳۷۹ و ۲۰۰۱۶۷) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

تصویر ۴–۱۷– تصویر ماهوارهای محدوده آنومال MR12 به همراه شماره نمونه ها و غنی شدگیهای مربوط به این محدوده -نمونه مینرالیزه شماره MR2-68-M1 از مختصات جهانی (۳۸۴۹۳۹۸ و ۶۹۹۴۹۱) برداشت شده است. این نمونه نسبت به عنصر S آنومال می باشد.

در ادامه نتایج مطالعات میکروسکوپی مقطع نازک نمونه MR2.62T اَمده است. (تصویر ۴–۱۸)

شرح تصویر ۴–۱۸ مربوط به نمونه MR2-62T: اساس سنگ توسط کانیهای کوارتز و اکتینولیت تشکیل شده است. بلورهای ریزدانه کوارتز به صورت موزائیکی در کنار هم قرر گرفته است و بافت گرانوپلاستیک را تداعی می کند. حضور اکتینولیت در سنگ چشمگیر است و تقریبا ۶۰–۵۰ درصد حجمی سنگ را شامل می شود. قرار گیری این دوکانی در کنار هم به صورت مجزا بوده و قطعاتی کاملاً از کوارتز تشکیل شده یا حضور داشته است و سپس سنگ تحت تأثیر اکتینولیتی شدید قرار گرفته است و مور مجزا بوده و قطعاتی کاملاً از کوارتز تشکیل شده یا حضور داشته است و سپس سنگ تحت تأثیر اکتینولیتی شدید قرار گرفته است و می سنگ را شامل می شود. قرار گیری این دوکانی در کنار هم به صورت مجزا بوده و قطعاتی کاملاً از کوارتز تشکیل شده یا حضور داشته است و سپس سنگ تحت تأثیر اکتینولیتی شدید قرار گرفته است و در فاز بعدی حضور رگه رگچه های پر شده از اکسید– هیدروکسیدهای آهن مشاهده می شود که هم قطعات کوارتزی و هم قطعات کارتزی و هم قطعات اکتینولیتی را قطع کرده است. به همراه اکتینولیت به میزان کم بلورهای اپیدوت مشاهده می شود و در کنار هم قطعات اکتینولیتها بلورهای بیدوت مشاهده می شود و در کنار از قرابت

تشکیل آن دو باشد. به نظر میرسد سنگ در یک شرایط دگرگونی تشکیل شده باشد. با توجه به تفاسیر فوق و مشاهدات میکروسکوپی میتوان سنگ را کوارتز–اکتینولیت هورنفلس نامید.

تصویر ۴-18- تصویر میکروسکوپی گرفته شده از مقطع نازک نمونه MR2.62T

از میان ۹ نمونه ای که از عوارض مشکوک به کانهسازی در این منطقه برداشت گردید نمونه MR2-62-M2 جالب توجه می باشد. این نمونه که از بخشهای هورنفلسی تا حدی سیلیسی شده برداشت گردیده حاوی تقریباً ۷/۷۶ درصد مس است. عیار سایر عناصر چندان بالا نبوده و تنها Zn عیار ۳۵۴ گرم در تن نشان می دهد. با لحاظ این مطالب می توان این محدوده را مهمترین بخش از محدوده اکتشافی تاکنون در نظر داشت. با این حال باید چنین بیان نمود که غنی شدگی Cu و به مقدار کم می می می می می می این می دهد. با لحاظ این مطالب می توان این محدوده را می می می می ترین بخش از محدوده اکتشافی تاکنون در نظر داشت. با این حال باید چنین بیان نمود که غنی شدگی Cu و به مقدار کمتری Zn در سنگهای حد واسط تا بازیک، که علی الاصول عیار زمینه بالاتری از این عناصر در خود دارند، تحت تأثیر فرآیندهای گرمابی، امری عادی بوده و اغلب کانسارهای ارزشمند اقتصادی ایجاد نمی نمایند.

سازمان زمین شناسی و اکتنا معدنی کشور

	Sheet 1/2	25,000 :	Mia	anraha	n II	Anoma	dy No. :	M	R12]								
	Geochemica	I Anomal S	amples: (Ra	w Data in	ppm)		1/001	1			Cl II M	CDE		C L F K	_			-
	Sample No.	Anomaly Bi	0 727		dg		1/PN 29.58			Airborne Geoph. :	Shallow Mag	netic Bodies:		Geoph. Faults				J
	59	Cu	104.15		dg		14.09			Altration: vugi.Q	Sillicification	Propilitic	Argilic	Qz.Carbonate	Listv.	hloritization	Potasic	
	61	Cu	114.56		dg		42.37											1
	62	Cu	207.15		dg		42.37				Limonite	Hematite	Goetite	Siderite	Graizen	Shear zone	Philic	_
	68	Cu	283.17		dg		42.37			Fault: Fracture:								-
	68	Zn	321.96		dg		42.37											
	68	Cd	0.357		dg		0.02								0.1			7
											Weathering	:	Gossan :		Other:			J
	Heavy Miner	al Samples	Taken Fro	m Anomal	Area : (Da	ta in ppm)				Mineraliz	ed Samples Tal	ten form Ano	mal Arera :					
	Heavy N	lineral	No. H2-6	No. H2_7	No. H2_8	N0.	No.	N0.	No.	Variables	No. 55-M1	No. 55-M2	No. 55-M3	N0.	No.	No. 62-M3	No.	Observed Rock Types , Minerals And Fillings in Anomaly Checking :
	Altreads	illicate	725.76	405.00	829.44	1010.88				Au (ppb)	<1	1	1	<1	2	<1	<1	Granit Juartz-actinolite Hornfel Biotite Granit Travertan
	Amph	ibols	102.40	76.80	307.20	921.60				Al (ppm)	82741	82884	88951	88350	32363	82617	79138	
	Anat	ase	0.00	0.00	0.00	0.00				Ca (ppm)	51317	48322	40241	61756	27804	52371	22406	Granodiorite Microgranodiorit Diabase Philite Microdiorite
	Andal	usite	0.00	0.00	0.00	0.00				Fe (ppm)	69532	71629	64055	67407	74469	70563	86139	
ן <u>צ</u>	Apa	tite	0.00	0.06	0.00	0.31				K (ppm)	3377	2399	3744	1451	5225	2223	4424	Andesite Plagic Limeston Conglomerate Sandstone Limestone S
31	Bar	ite	0.00	0.09	0.00	1.30				Mg (ppm)	16140	15640	14242	23586	16482	19495	19487	
a .	Biot	ite	0.00	0.00	0.00	0.00				Na (ppm)	19462	19520	23819	18462	3864	17138	17481	Marl Diorite Gabro Diorite Gabro I
9	Carbo	nate	0.09	0.05	0.13	0.00				As (ppm)	3.5	4	4.9	5.7	5.2	4.4	6.1	
ତି	Cerus	site	0.00	0.00	0.00	0.00				Ba (ppm)	146	125	159	130	125	154	1/0	- Marble Schist Dolomite Dacite State Shale
1	Enid	rite	4.80	2.40	32.64	65.28				Bi (ppm)	0.8	0.94	0.85	0.68	0.4	1.2	1 27	
3	F.C).	0.46	0.29	0.68	62.93				Cd (ppm)	0.27	0.24	0.03	0.26	0.21	0.22	0.23	Malachite Montmorillonite Ilmenite Albite
ネー	Gale	ena	0.00	0.00	0.00	0.00				Ce (ppm)	47	50	57	34	17	38	42	
2	Garr	iets	0.00	0.00	0.00	0.00				Co (ppm)	23	26	17	22	33	25	22	Hornbland Actinolite Orthoclase Goethite Epidote Silice
5	Goet	hite	0.00	0.00	10.56	21.12				Cr (ppm)	22	11	13	27	12	37	37	
g	Hema	atite	33.66	25.25	252.48	757.44				Cs (ppm)	8.9	9.1	7.8	9.9	8.3	9.4	9	Limonite Magnetite Bornite Mg-Oxides Iron-Oxides
3.	Ilme	nite	7.52	0.09	0.23	22.56				Cu (ppm)	68	52	49	82	7618	82	21	
~	Leuco	xene	0.00	0.00	0.00	0.00				La (ppm)	20	21	25	14	6	16	15	Fillings
	Limo	nite	0.00	0.00	0.18	0.36				Li (ppm)	3	2	4	3	6	3	38	Hematite& Manganez vem Silice vem Calcite Vem Quartz
	Magn	etite	16.58	10.36	24.86	74.59				Mn (ppm)	119/	1/64	1220	1841	2.04	1801	1344	
	Mons	vite	0.00	0.00	0.00	0.00				No (ppm)	22	1.50	22	29	10	28	23	-
	Pvr	ite	0.00	0.50	0.24	0.48				Ni (ppm)	17	19	14	21	10	18	25	-
	Pyrite li	monite	0.00	0.00	0.21	0.00				P (ppm)	1916	2029	1601	1435	957	1682.00	1823	1
	Pyrite	oxide	0.14	0.00	10.80	21.60				Pb (ppm)	17	17	14	15	19	19.00	19	1
	Pyro	vens	51.20	51.20	153.60	460.80				Rb (ppm)	32	27	36	34	38	27.00	39]
	Rut	ile	0.00	0.00	0.00	0.41				S (ppm)	169	173	179	1590	298	388.00	343	4
	Sapp	hir	0.00	0.00	0.00	0.00				Sb (ppm)	0.89	1.39	< 0.5	< 0.5	0.89	1.31	< 0.5	4
	Seri	cite	4.40	0.06	6.60	0.26				Sc (ppm)	20.6	19.5	16.7	26	9.4	24	21	4
	Silv	er	0.00	0.00	0.00	0.00				Sn (ppm)	3.4	3.1 194	3.2	2.8	2.5	2.3	2.4	-
	Titano-m	agnetite	0.00	0.00	0.00	0.00				SF (ppm) Te (nnm)	0.23	0.25	0.21	0.24	0.26	0.25	0.27	-
	Ziro	on	0.00	0.09	0.22	2.25				Th (ppm)	5.1	6.9	8.5	47	3	5	4.9	4
										Ti (ppm)	11849	13495	10925	12586	6899	14213	11664	1
										TI (ppm)	0.54	0.44	0.51	0.47	0.66	0.3	0.54	1
										U(ppm)	3.7	3.5	3.9	3.8	2.6	3.5	3.4]
										V (ppm)	164	183	139	214	121	239	175	
										W (ppm)	4	4	5.1	5.8	<0.5	5.6	5.3	4
										Y (ppm)	84	87	91	59	33	69	65	4
										Yb (ppm)	6.8	7.3	7.2	5.3	2.9	5.9	5.3	4
										Zn (ppm)	93	102	99	95 77	354	144	131	4
										zr (ppm)	94	/9	88	11	00	/0	83	

جدول ۴-۲۳- شناسنامه محدوده آنومال MR12

111

كزارش نهايي پروژه اكتشاف ژئوشيميايي 300,421در محدوده اكتشافي ميانراهان ۲

> /") "

سازمان زمين شناسي و اكتشاف معدني كشور

> پروژه اکتشاف ژئوشیمیایی . 2006 محدوده اكتشافي ميانراهان

گزارش نهایی

فطل -@)(@-تعبير و تفسير

MR12 Sheet 1/25,000 : Mianrahan II Anomaly No. : Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data USRT 1/PN Airborne Geoph. : Shallow Magnetic Bodies: Geoph. Faults: Altration: vugi.Q Sillicification Propilitic Argilic Oz.Carbonate Listy. Chloritization Potasic Graizen Shear zone Philic Limonite Hematite Goetite Siderite Fault: Fracture: Weathering : Gossan : Г Other: Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : No. No. No. No. No. No. No. No. No. Observed Rock Types , Minerals And Fillings In Anomaly Checking : Variables Heavy Mineral 62-M5 68-M1 Rock types Altreadsillicate Au (ppb) 1 <1 wartz-actinolite Hornfe Biotite Granit Travertan Basalt Granit Amphibols Al (ppm) 77287 80675 43295 41260 Microgranodiorit Philite Ca (ppm) Granodiorite Diabase Microdiorite Gabro Anatase 60166 Andalusite Fe (ppm) 69439 Apatite K (ppm) 6586 4658 Andesite Plagic Limeston Conglomerate Sandstone Limestone Shaly limeston 15276 Barite Mg (ppm) 16698 Biotite 20518 21195 Marl Diorite Gabro Diorite Gabro Diorite Na (ppm) Carbonate As (ppm) 4.7 4.7 Cerussite Ba (ppm) 178 172 Marble Schist Dolomite Dacite Slate Shale Tormaline Chlorite 1.2 1.2 Be (ppm) Bi (ppm) 0.85 Minerals Epidots 1 F.Q. Cd (ppm) 0.26 0.25 Malachite Montmorillonite Albite Ilmenite Tourmaline Galena Ce (ppm) 45 46 Co (ppm) 20 8 Hornbland Actinolite Orthoclase Epidote Garnets Goethite Silice Quartz Goethite Cr (ppm) 13 15 Hematite Cs (ppm) 9.8 9.8 Magnetite Bornite Mg-Oxides Iron-Oxides Pyrite Limonite Ľ Ilmenite Cu (ppm) 28 88 Leucoxene La (ppm) 19 21 Fillings Limonite Li (ppm) 5 3 Hematite& Manganez vein Silice vein Calcite Vein Ouartz Vein Magnetite Mn (ppm) 1246 1636 Martite Mo (ppm) 1.32 2.11 24 Monazite Nb (ppm) 25 Pyrite Ni (ppm) 13 5 Pvrite limonite P (ppm) 1973 1830 Pyrite oxide Pb (ppm) 18 16 39 Pyroxens Rb (ppm) 40 2538 Rutile S (ppm) 207 Sb (ppm) Sapphir 0.75 1.01 Sericite Sc (ppm) 21.3 21.2 3.6 3 Silver Sn (ppm) 174 168 Sphene Sr (ppm) Te (ppm) 0.27 0.25 Titano-magnetite Zircon Th (ppm) 5.8 6.1 Ti (ppm) 14862 15139 Tl (ppm) 0.33 0.35 U (ppm) 3.7 3.5 216 211 V (ppm) 4.2 4.2 W (ppm) 76 67 Y (ppm) 5.6 Yb (ppm) 6.3 Zn (ppm) 111 102 74 Zr (ppm) 107

جدول 4-27- شناسنامه محدوده آنومال MR12 (ادامه)

٦ 7

MR13 محدوده آنومال شماره MR13

با توجه به تصویر ۴–۱۹ مشاهده می شود که این محدوده آنومالی در درهای در منطقه واقع شده است که از جنوب به سمت ارتفاعات پیش می رود. مساحت این حوضه بالغ بر ۱/۴۱ کیلومتر مربع است. این آنومالی در محدوده جنوبی روستای سربرزه و در شمال محدوده اکتشافی میانراهان ۲ قرار گر فته است. شناسنامه این محدوده در جدول شماره ۴–۲۴ نشان داده شده است. مشاهدات صحرایی در کنار اطلاعات استخراجی از نقشه ۱:۱۰۰،۰۰۰ منطقه، لیتولوژی غالب منطقه را دیوریت گابرو و گابرو دیوریت ها نشان می دهد. گوگرد عنصر ناهنجار در اکتشافات ناحیه ای نمونه شماره ۲۵ می باشد که در پایین دست حوضهٔ آبریز مربوطه اخذ گردیده است. با این حال پی جویی های صحرایی نتوانست پدیده شاخص و غالبی که بتواند آنومالی مربوطه و یا با عناصر همراه را توجیه نماید را مشخص سازد. لذا به برداشت یک نمونه کانی سنگین جهت مشخص گردیدن کانه سازی احتمالی در حوضه مورد نظر اکتفا شد:

تصویر ۴-۱۹- تصویر ماهوارهای محدوده آنومال MR13 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

– نمونه کانی سنگین شماره MR2-15-H که از محل نمونه ژئوشیمیایی ۵۲ برداشت شده است. براساس نتیجه مطالعه این نمونه، کانی تشخیص داده شده مربوط به سنگ شناسی منطقه بوده و کانیهای سنگینی که بتواند امیدواری حضور کانی

سازیهایی را در بالادست ایجاد نماید تشخیص داده نشد.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۵۰۰٬۵۲۰در محدوده اکتشافی میانراهان

فمل

- (a)-

تعبير و تفسير

Sheet 1/25.000 : **MR13** Mianrahan II Anomaly No. : Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data 1/PN Airborne Geoph.: Shallow Magnetic Bodies: LISPT Geoph. Faults: 52 S 2125 dg.gd 42.37 Altration: vugi.Q Sillicification Individual Propilitic Argilic Qz.Carbonate Listv. Ć Goetite Siderite Graizen Shear zone Philic Limonite Hematite Fault: Fracture: Other : Weathering : Gossan : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types Heavy Mineral Variables H-15 Granit Pegmatitic Granit Biotite Granit Travertan Basalt 2021.76 Altreadsillicate Au (ppb) Amphibols 166.40 Al (ppm) Granodiorite Microgranodiorit Diabase Philite Microdiorite Gabro Anatase 0.00 Ca (ppm) Andalusite 0.00 Fe (ppm) Andesite Plagic Limeston Conglomerate Sandstone Limestone Shaly limeston 0.33 Anatite K (ppm) 4.68 Marl Diorite Gabro Diorite Gabro Diorite Barite Mg (ppm) Biotite 0.00 Na (ppm) Carbonate 0.00 As (ppm) Marble Schist Dolomite Dacite Slate Shale Tormaline Cerussite 0.00 Ba (ppm) Chlorite 0.31 Be (ppm) Minerals Epidots 176.80 Bi (ppm) M alachite Montmorillonite Ilmenite Albite Tourmaline F.Q. 74.10 Cd (ppm) 0.00 Galena Ce (ppm) Hornbland Actinolite Orthoclase Hematit Chlorite Calcite Quartz Garnets 0.00 Co (ppm) Cr (ppm) Goethite 0.46 Limonite Magnetite Mg-Oxides Iron-Oxides Pyrite Ľ Hematite 273 52 Cs (ppm) 244.40 Ilmenite Cu (ppm) Fillings 0.00 La (ppm) Leucoxene Hematite& Manganez vein Silice vein Calcite Vein Quartz Vein Limonite 0.40 Li (ppm) Magnetite 269.36 Mn (ppm) 0.00 Martite Mo (ppm) Nb (ppm) Monazite 0.00 Pyrite 1.56 Ni (ppm) 0.00 Pyrite limonite P (ppm) 0.47 Pyrite oxide Pb (ppm) Rb (ppm) 665.60 Pyroxens Rutile 0.00 S (ppm) 0.00 Sapphir Sb (ppm) 0.00 Sc (ppm) Sericite Silver 0.00 Sn (ppm) Sphene 0.00 Sr (ppm) 0.00 Titano-magnetite Te (ppm) 1.46 Th (ppm) Zircon Ti (ppm) TI (ppm) U (ppm) V (ppm) W (ppm) Y (ppm) Yb (ppm) Zn (ppm) Zr (ppm)

جدول 4-24- شناسنامه محدوده آنومال MR13

171

MR14 محدوده آنومال شماره MR14

با توجه به تصویر ۴–۲۰ مشاهده می شود که این محدوده آنومالی در ارتفاعات منطقه واقع شده است. مساحت این حوضه بالغ بر ۰/۱۷ کیلومترمربع است. این آنومالی در مرکز نقشه و در جنوب روستای سربرزه واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۲۵ نشان داده شده است.

عنصر Zn در این منطقه آنومال بوده و سنگ موجود در بالا دست آن دیوریت گابرو میباشد. در مشاهدات صحرایی آثار آلتراسیون هماتیتی و لیمونیتی در بالادست و آلتراسیون آرژیلیک و کانی سازی اکسیدهای آهن به صورت تزریق در درزه و شکافهای سنگ گزارش شده است. از محدوده فوق یک نمونه کانی سنگین به شرح زیر برداشت گردیده است:

– نمونه کانی سنگین شماره MR2-5-H2 که از محل نمونه ژئوشیمیایی ۵۱ برداشت شد. مطالعه کانی سنگین مانند تمام نمونههایی که تاکنون تشریح شد از عدم وجود کانی ارزشمند فلزی و یا غیر فلزی کانسار ساز حکایت دارد.

همچنین چهار نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-51-M1 از مختصات جهانی (۳۸۴۸۲۸۹ و ۲۰۱۲۱۱) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-51-M2 از مختصات جهانی (۲۸۴۸۲۶۹ و ۲۰۱۱۹۰) برداشت شده است. این نمونه نسبت به عناصر Au و Cu دارای آنومالی میباشد.

-نمونه مینرالیزه شماره MR2-51-M3 از مختصات جهانی (۳۸۴۸۳۳۵ و ۲۰۱۱۱۵) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-51-M4 از مختصات جهانی (۸۹۳۸۸ و ۲۰۱۳۳۵) برداشت شده است. این نمونه مقادیر نسبتاً بالاتری از عناصر Pb (108ppm)، وانادیوم (481ppm) و روی (487ppm) در خود دارد. مقادیر یاد شده را نمیتوان چندان قوی دانست و اغلب حداکثر تا دو برابر سنگ در برگیرنده غنی شدگی دارد. با این حال یافتن منشأ احتمالی این آنومالیها و بررسی احتمال ادامه دار بودن آن در سطح پایینتر میتواند ارزشمند باشد.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

تصویر 4-۲۰- تصویر ماهوارهای محدوده آنومال MR14 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

سازمان زمين شناسي و اكتشاف معدني كشور **MR14** Sheet 1/25,000 : Mianrahan II Anomaly No. : Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data USRT 1/PN Airborne Geoph.: Shallow Magnetic Bodies: Geoph. Faults: 51 Zn 221.18 36.74 d٥ Altration: vugi.Q Sillicification Propilitic Argilic Qz.Carbonate Listy. Inloritization Potasic Limonite Hematite Goetite Siderite Graizen Shear zone Philic پروژه اکتشاف ژئوشیمیایی ۵۰۰۰۵۲:۱۷ر محدوده اکتشافی میانراهان Fault: Fracture: Weathering : Other · Gossan · Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types Variables Heavy Mineral H2-5 51-M1 51-M2 51-M3 51-M4 Pegmatitic Granit Biotite Granit Travertan Basalt Granit Altreadsillicate 1948.32 <1 Au (ppb) 140.80 73992 70949 Amphibols Al (ppm) 118902 88171 Granodiorite Microgranodiorit Diabase Philite Microdiorite Gabro Ca (ppm) 54004 28301 35797 Anatase 0.00 61535 0.00 70680 69447 54152 112810 Plagic Limeston Andalusite Andesite Conglomerate Sandstone Limestone Shaly limeston فطل Fe (ppm) 0.00 5847 3044 4493 17004 Apatite K (ppm) Barite 0.00 Mg (ppm) 19586 19427 6412 13182 Marl Diorite Gabro Diorite Gabro Diorite ۋە)(ھ-0.00 Na (ppm) 17821 18710 25668 14997 Biotite كزارش نهايي 0.72 3.7 4.7 7.1 Schist Dolomite Dacite Slate Shale Tormaline Carbonate As (ppm) 7 Marble 0.00 Cerussite Ba (ppm) 414 211 237 650 0.26 Be (ppm) Minerals 0 Chlorite 0.8 1.1 2.8 1 7 تعبير و تفسير 29.92 Bi (ppm) 1.18 0.91 0.7 1.7 Malachite Montmorillonite Albite Epi dots Ilmenite Tourmaline F.Q. 112.86 Cd (ppm) 1.4 0.3 0.18 0.7 Galena 0.00 Ce (ppm) 31 41 47 29 Hornbland Actinolite Orthoclase Hematit Chlorite Calcite Quartz È Garnets 0.00 Co (ppm) 19 12 14 36 Goethite 0.00 Cr (ppm) 38 32 28 36 Limonite Magnetite Mg-Oxides Iron-Oxides Pyrite Ĕ. Hematite 92.58 Cs (ppm) 7.4 11 9.6 5.3 Ilmenite 0.00 Cu (ppm) 84 41 86 170 Fillings Leucoxene 0.00 La (ppm) 11 16 19 8 Hematite& Manganez vein Calcite Vein Silice vein Quartz Vein Limonite 0.00 Li (ppm) 6 5 3 7 Magnetite 113.96 Mn (ppm) 1440 2093 524 907 17 2.95 2.93 Martite 0.00 Mo (ppm) 2.36 0.00 Nb (ppm) 25 22 22 27 Monazite 0.00 9 28 Pyrite Ni (ppm) 21 11 0.39 1561.00 1972 1269 Pyrite limonite P (ppm) 1438 19.80 108.00 20 Pvrite oxide Pb (ppm) 54 19 281.60 59.00 31 28 28 Pyroxens Rb (ppm) Rutile 0.00 1057 297 257.00 S (ppm) 323 < 0.5 Sapphir 0.00 Sb (ppm) 1 1 9 0.64 0.99 0.24 25.1 5.8 22.1 Sc (ppm) 24.7 Sericite 0.00 2.7 3.7 1.9 Silver Sn (ppm) 3.1 0.00 150 Sphene Sr (ppm) 205 241 164 0.46 0.00 0.18 Titano-magnetite Te (ppm) 0.25 0.26 0.41 Th (ppm) 5.6 5.2 6.8 7.9 Zircon Ti (ppm) 12543 13877 6593 10677 TI (ppm) 0.42 0.32 0.72 < 0.2 U (ppm) 3.8 4 42 3.5 233 481 V (ppm) 240 30 W (ppm) 6.8 5.9 5.8 7.4 76 56 Y (ppm) 50 69 6.2 6.5 5.5 Yb (ppm) 4.7 Zn (ppm) 269 226 68 487 94 Zr (ppm) 91 92 80

جدول **4-20- شناسنامه محدوده آنومال MR14**

MR15 محدوده آنومال شماره MR15

با توجه به تصویر ۴–۲۱ مشاهده می شود که این محدوده آنومالی در منطقه ناهمواری واقع شده است که ازسمت شمال به دره منتهی می شود. مساحت این حوضه بالغ بر ۰/۵۳ کیلومترمربع است. این آنومالی در در شمال شرق محدوده اکتشافی و در جنوب شرق روستای سربرزه واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۲۶ نشان داده شده است.

عناصر Ti ،Au و V در نمونه های شماره ۷ و ۱۲ آبراهه ای این منطقه را بعنوان یک محدوده آنومال معرفی کرده است. شیل و دیوریت گابرو اصلی ترین واحدهای سنگی این منطقه هستند که اندکی تحت تأثیر فرآیندهای آرژیلی و اکسید آهنی قرار گرفته اند. از محدوده فوق دو نمونه کانی سنگین به شرح زیر برداشت گردیده است:

- نمونه کانی سنگین شماره MR2-12-H که از محل نمونه ژئوشیمیایی ۱۲ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی ندارد.

- نمونه کانی سنگین شماره MR2-4-H2 که از محل نمونه ژئوشیمیایی ۷ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی ندارد.

نتایج مطالعه کانی سنگین صرفاً حضور کانیهای سنگساز را نشان میدهد و تفاوت مقادیر کمی کانیها در دو نمونه برداشتی بواسطه تنوع گسترش واحد شیلی و آذرین در بالادست آن میباشد.

همچنین پنج نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-7-M1 از مختصات جهانی (۳۸۴۸۰۵۳ و ۷۰۲۱۸۲) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد و در بالادست آبراهه واقع در شاخههای منتهی به این نقطه آلودگیهای انسانی (شامل فلزات و ضایعات) قابل مشاهده است.

-نمونه مینرالیزه شماره MR2-17-M1 از مختصات جهانی (۳۸۴۸۴۱۹ و ۲۰۱۸۴۰) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-17-M2 از مختصات جهانی (۳۸۴۸۴۴۹ و ۲۰۱۸۵۲) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

تصویر ۴-۲۱- تصویر ماهوارهای محدوده آنومال MR15 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

-نمونه مینرالیزه شماره MR2-17-M3 از مختصات جهانی (۸۹۴۶۸ و ۲۸۴۸۶۶) برداشت شده است. ایـن نمونـه در میان نمونههای مشکوک به کانه سازی عیارهای به نسبت نامتعارفی از عناصر آرسـنیک، بیسـموت، کادمیوم، سـرب، روی، وانادیوم، تنگستن و روی نشان میدهد این نمونه از بخشهای تغییر رخساره یافتهٔ شیلهای کمی دگرگون شده برداشـت شـده است. با توجه به تجربیات مشابه شیلهای مزوزوئیک ایران دارای عیارهای غیرمتعارف و در شرایط حاضر غیراقتصادی از عناصر یاد شده فوق میباشند و تنها در صورت وجود سدهای مناسب ژئوشیمیایی، میزبان مناسب و رخداد پدیدهٔ چرخشی شورابههای حوضهای، این عناصر میتوانند در نواحی مناسب تغلیظ شده به حالت اقتصادی برسند، که البته در اینجا چنین نشده است. -نمونه مینرالیزه شماره MR2-17-M4 از مختصات جهانی (۲۰۱۸۶۳ و ۲۸۴۸۴۳) برداشت شده است. این نمونه نسبت

پروژه اکتشاف ژئوشیمیایی ۵۰۰۰۵۲:۱۷ر محدوده اکتشافی میانراهان فطل ۋە)(ھ-گزارش نهایی تعبير و تفسير

Sheet 1/25,000 : Mianrahan II Anomaly No. : **MR15** Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data USRT 1/PN Airborne Geoph.: Shallow Magnetic Bodies: Geoph. Faults: Au 0.005 dø 16.33 vugi.Q Sillicification 12 Ti 26855.71 dg,kf2,db 3.17 Altration: Propilitic Qz.Carbonate Argilic Listv. Chloritization Potasic Limonite 12 V 301.5 dg,kf2,db 5.06 Goetite Hematite Siderite Graizen Shear zone Philic Fault: Fracture: Weathering : Other : Gossan : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Observed Rock Types , Minerals And Fillings In Anomaly Checking : Mineralized Samples Taken form Anomal Arera No. Rock types Heavy Mineral Variables H2-4 17-M3 17-M4 H-12 7-M1 17-M1 17-M2 Pegmatitic Granit Biotite Granit Granit Altreadsillicate 388.80 524.88 Au (ppb) 1 Amphibols 69.12 36.86 Al (ppm) 83476 79113 84227 17732 81035 Granodiorite Microgranodiorit Diabase 0.00 48662 54858 11734 Anatase 0.00 Ca (ppm) 54449 54137 Andalusite 0.00 0.00 Fe (ppm) 63129 57225 62305 253832 66453 Conglomerate Sandstone Andesite Plagic Limeston 0.00 0.00 4983 5065 639 Apatite K (ppm) 6226 5060 0.00 0.00 Barite Mg (ppm) 18316 20845 21738 6676 21397 Marl Diorite Gabro 0.00 0.00 17862 556 16623 Biotite Na (ppm) 19322 18392 0.07 0.00 5.7 4.2 26.3 4.5 Marble Schist Dolomite Carbonate As (ppm) 5.2 Dacite 0.00 0.00 170 Cerussite Ba (ppm) 222 171 27 183 3.24 0.22 0.9 0.3 Chlorite Be (ppm) 1 0.9 Minerals 22.03 9.79 0.71 54.9 1.12 M alachite 0.79 0.62 Montmorillonite Epidots Bi (ppm) Cd (ppm) F.Q. 0.34 30.78 0.25 0.24 0.21 20.4 0.2 Galena 0.00 0.00 Ce (ppm) 37 32 33 2 31 Hornbland Actinolite Orthoclase Hematit Garnets 0.00 0.00 Co (ppm) 25 25 28 <1 26 0.00 0.00 72 79 40 83 Goethite 64 Limonite Magnetite Cr (ppm) Hematite 34.08 151.49 Cs (ppm) 7.8 8.4 8.1 7.4 8.8 Ilmenite 30.46 1353.60 39 453 20 Cu (ppm) 62 0.00 0.00 14 13 <1 13 Leucoxene La (ppm) 13 Hematite& Manganez vein Silice vein 0.00 0.00 11 7 10 2 9 Limonite Li (ppm) 99.46 671.33 1193 1275 636 1314 1265 Magnetite Mn (ppm) Martite 0.00 0.00 Mo (ppm) 1.59 1.52 1.55 2.87 1.25 0.00 0.00 Monazite <1 24 Nb (ppm) 22 21 27 0.00 0.00 32 40 35 41 Pyrite Ni (ppm) 31 2964.00 1240 Pyrite limonite 0.11 0.00 P (ppm) 1541 1207 1285 129.00 Pyrite oxide 0.11 0.32 Pb (ppm) 16 19 20 19 39 99.84 184.32 36 30 67.00 Pyroxens Rb (ppm) 30 Rutile 0.00 0.00 188 174 167 368.00 168 S (ppm) 0.00 < 0.5 0.67 Sapphir 0.00 Sb (ppm) 1.18 1.06 1.15 76 24

جدول 4-47- شناسنامه محدوده آنومال MR15

2.1

39

0.67

4.2

2567

< 0.2

11

489

57.9

21

3.5

6215

2.2

283

0.22

4.6

10723

0.46

3.9

179

4.5

52

4.8

108

81 118

< 7

Travertan

Microdiorite

Limestone

Shale

Albite

Calcite

Mg-Oxides Iron-Oxides

Diorite

Philite

Slate

Ilmenite

Chlorite

Calcite Vein

Fillings

Basalt

Gabro

Shaly limeston

Tormaline

Tourmaline

Quartz

 \square

Pyrite

Quartz Vein

Gabro Diorite

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

4−4−4 محدوده آنومال شماره MR16

با توجه به تصویر ۴–۲۲ مشاهده می شود که این محدوده آنومالی نیز در ارتفاعات منطقه واقع شده است. مساحت این حوضه بالغ بر ۰/۱۳ کیلومترمربع است. این آنومالی در شرق محدوده اکتشافی و در غرب روستای پشت کلان قرار گرفته است. شناسنامه این محدوده در جدول شماره ۴–۲۷ نشان داده شده است.

تصویر ۴-۲۲- تصویر ماهوارهای محدوده آنومال MR16 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

عنصر Sn در این منطقه آنومال بوده است. واحدهای دیوریت گابرویی بخش عمدهای از منطقه را میپوشانند که رخدادهای اکسید آهنی موجود در آنها تنها عوارض مشکوک به کانه سازی هستند. در نمونه دستی آثار و شواهدی از حضور کانیهای فلزی و یا سایر کانیهای ارزشمند اقتصادی دیده نشد که نتایج آنالیز نمونهها ضمن تأیید این مسأله، نشانگر عیار نزدیک به

زمینه در نمونههای اخذ شده می باشد. در محدوده گسل موجود است. از محدوده فوق یک نمونه کانی سنگین به شرح زیر برداشت گردیده است:

- نمونه کانی سنگین شماره MR2-3-H2 که از محل نمونه ژئوشیمیایی ۲۳۴ برداشت شده است.

نمونه کانیسنگین برداشت شده از منطقه نیز، که حوضهٔ آبریز را تحت پوشش قرار میدهد، عدم وجود کانی سازی را در منطقه نشان میدهد و تنها کانیهای سنگ ساز و کانیهایی همچون باریت که به نظر حاضر آلودگی شیلها هستند در آن رویت گردیده است.

همچنین پنج نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-234-M1 از مختصات جهانی (۳۸۴۷۱۸۶ و ۷۰۲۷۷۳) برداشت شده است. این نمونه نسبت به عنصر مولیبدن دارای غنی شدگی میباشد.

-نمونه مینرالیزه شماره MR2-234-M2 از مختصات جهانی (۳۸۴۷۰۵۸ و ۷۰۲۷۲۸) برداشت شده است. این نمونه نسبت به عنصر مولیبدن آنومال میباشد.

-نمونه مینرالیزه شماره MR2-234-M3 از مختصات جهانی (۳۸۴۷۱۲۳ و ۷۰۲۷۰۱) برداشت شده است. این نمونه نسبت به عنصر کروم دارای غنی شدگی میباشد.

-نمونه مینرالیزه شماره MR2-234-M4 از مختصات جهانی (۳۸۴۷۱۳۴ و ۷۰۲۶۸۱) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمی باشد.

-نمونه مینرالیزه شماره MR2-234-M5 از مختصات جهانی (۳۸۴۷۱۵۱ و ۷۰۲۷۰۳) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

پروژه اکتشاف ژئوشیمیایی ۵۰۰۰(۲۵:۱در محدوده اکتشافی میانراهان ۲ گزارش نهایی

فمال
9)(a)-
Ę

MOH

	Sheet 1/25,000 :	Mi	anraha	n II	Anom	aly No. :	M	R16										
6	eochemical Anomal S	amples: (Ra	w Data in j	ppm)		1/001	1					(D. F			1 F k			7
F	234 Sn	4.74		kf2		5.27			Airborne	Geoph. :	Shallow Mag	gnetic Bodies:		Geo	opn. Faults:			1
							-		Altration:	vugi.Q	Sillicification	Propilitic	Argilic	Qz.Carbonate	Listv.	hloritizatio	Potasic	
											Limonite	Hematite	Goetite	Siderite	Graizen	Shear zone	Philic	4
									Fault:	Fracture:								
															0.1			
											weathering	:	Gossan :		Other :			
H	leavy Mineral Samples	Taken Fro	m Anomal	Area : (Da	ta in ppm)			-		-	Mineralized	Samples Tak	en form Anom	al Arera :				Observed Rock Types , Minerals And Fillings In Anomaly Checking :
	Heavy Mineral	No.	No.	No.	No.	No.	No.	No.	No.		Variables	No.	No.	No.	No.	No.	No.	Rock types
ŀ		H2-3								-	1 (D)	234-M1	234-M2	234-M3	234-M4	234-M5		Granit Pegmatitic Granit Biotite Granit Trave
ŀ	Antreadsinicate	192.00				ł				1	Au (ppb)	80850	82154	75773	79161	84456		Granodiorite Microgranodiorit Diabase Philite Microg
ŀ	Anatase	0.00		1		1				1	Ca (ppm)	28015	40755	37721	47744	43035		
t	Andalusite	0.00				L				1	Fe (ppm)	104791	63110	67724	63272	56912		Andesite Plagic Limeston Conglomerate Sandstone Limes
L	Apatite	0.00]	K (ppm)	6111	18139	4247	11885	6040		
L	Barite	0.18								l	Mg (ppm)	15174	18735	15377	15996	19166		Marl Diorite Gabro Diorite
	Biotite	0.00									Na (ppm)	18157	18820	20536	19787	20783		
┝	Carbonate	0.00		1						-	As (ppm)	7.7	5.3	6	4.5	4.9		Marble Schist Dolomite Dacite Slate Sha
ŀ	Chlorite	6.00								-	Ba (ppm)	1.2	237	100	12	202		
F	Enidots	27.20									Bi (ppm)	1.57	0.78	0.81	0.73	0.64		Malachite Montmorillonite Ilmenite Alb
F	F.Q.	0.57									Cd (ppm)	0.25	0.24	0.19	0.22	0.3		
	Galena	0.00									Ce (ppm)	31	29	37	43	28		Hornbland Actinolite Orthoclase Hematit Chlorite Calc
	Garnets	0.00									Co (ppm)	22	29	25	27	27		
L	Goethite	0.00									Cr (ppm)	43	43	277	19	90		Limonite Magnetite Mg-Oxides Iron-O
L	Hematite	105.20									Cs (ppm)	6.8	9	6.6	9.8	8.4		
ŀ	Ilmenite	0.00									Cu (ppm)	109	3/	33	26	41		Fillings Hematite& Manganez vein Silice vein Calcite Vein
F	Limonite	0.00									Li (nnm)	17	9	10	10	10		
F	Magnetite	103.60									Mn (ppm)	1222	979	1301	1102	970		
	Martite	0.00									Mo (ppm)	8.3	1.46	3.12	1.79	1.19		
	Monazite	0.00									Nb (ppm)	18	25	26	23	23		
L	Pyrite	0.00									Ni (ppm)	30	34	69	18	37		
F	Pyrite limonite	0.00									P (ppm)	1463	1304	1803	1826.00	1189		-
ŀ	Pyrite oxide Pyroyens	256.00									Pb (ppm) Rb (ppm)	28	15	32	17.00	15		-
ŀ	Rutile	0.00									S (ppm)	280	165	243	169.00	167		-
F	Sapphir	0.00								1	Sb (ppm)	0.81	0.63	1.11	1.13	0.71		1
L	Sericite	0.11]	Sc (ppm)	25.1	29.9	21.3	21.8	25.5]
L	Silver	0.00								l	Sn (ppm)	3.7	2.6	3	2.8	2.9		4
L	Sphene	0.00				I			I		Sr (ppm)	183	170	139	193	184		4
F	Titano-magnetite	0.00									Te (ppm)	0.33	0.22	0.27	0.24	0.2		4
L	ZIFCON	0.19			I				I	1	Ti (ppm)	4.0	4	3.9 14683	3.1 14756	4.2		-
											TI (ppm)	0.21	0.47	0.49	0.37	0.49		-
											U(ppm)	4.3	3.6	3.9	3.8	3.6]
											V (ppm)	244	234	219	222	194]
											W (ppm)	4.3	4.9	5.4	5.2	4.6		4
											Y (ppm)	56	56	56	69	42		4
											Yb (ppm)	4.8	4.7	4.5	5.7	3.6		4
											Zr (ppin) Zr (nnm)	114	126	102	122	107		1

جدول ۴-۲۷- شناسنامه محدوده آنومال MR16

121

فصل چهاره– تعبير و تفسير

MR17 محدوده آنومال شماره MR17

با توجه به تصویر ۴–۲۳ مشاهده می شود که این محدوده آنومالی نیز در ارتفاعات منطقه واقع شده است. مساحت این حوضه بالغ بر ۰/۲۸ کیلومترمربع است. این آنومالی در بخشهای جنوبی محدوده اکتشافی و جنوب چشمه کانی آخوره قرار گرفته است. شناسنامه این محدوده در جدول شماره ۴–۲۸ نشان داده شده است.

عنصر Pb در این منطقه آنومال بوده و سنگهای موجود در بالا دست آن عبارتند از: واحدهای آذرین بازیک گابرو _ دیوریت. کلریتی شدن مهمترین پدیدهٔ دگرسانی رخ داده بر روی سنگهای این محدوده است. در این محدوده گسل گزارش شده است. از محدوده فوق یک نمونه کانی سنگین به شرح زیر برداشت گردیده است:

- نمونه کانی سنگین شماره MR2-10-H2 که از محل نمونه ژئوشیمیایی ۲۱۰ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی ندارد.

تصویر 4-23- تصویر ماهوارهای محدوده آنومال MR17 به همراه شماره نمونهها و غنی شدگیهای مربوط به این محدوده

فصل چهاره– تعبير و تفسير

همچنین سه نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-207-M1 از مختصات جهانی (۳۸۴۶۱۹۳ و ۶۹۹۳۵۲) برداشت شده است. این نمونه نسبت

به هیچ کدام از عناصر موجود آنومال نمی باشد.

-نمونه مینرالیزه شماره MR2-207-M2 از مختصات جهانی (۳۸۴۶۱۸۶ و ۶۹۹۳۶۷) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-207-M3 از مختصات جهانی (۶۹۹۳۷۹ و ۶۹۹۳۷۹) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

تجزیه و مطالعه نمونههای اخذ شده از عیارها و کانیهای متعارف محیطهای بازیک در آنها حکایت داشته و به نظر میرسد این منطقه نیز فاقد رخدادهای کانی سازی باشد.

افزایش عیار تیتانیوم در نمونه MR2-207-M3 چندان قابل توجه نیست و در حدود اقتصادی قابل ارزیابی نیست. با این حال وجود کانی تیتانومگنتیت و ایلمنیت در نمونه کانی سنگین میتواند بررسی حضور پتانسیلهایی از پلاسرهای تیتانیوم را مفید نشان دهند. كزارش نهايى پروژه اكتشاف ژئوشيميايى 300,400 محدوده اكتشافى ميانراهان

فصل چهارم- تعبير و تفسير

Sheet 1/25,000 : Anomaly No. : **MR17** Mianrahan II Geochemical Anomal Samples: (Raw Data in ppm) Airborne Geoph. : Shallow Magnetic Bodies: Sample No. Anomaly Raw Data 1/PN Geoph. Faults: USRT 207 Pb 75.1 42.37 gd dg Altration: vugi.Q Sillicification Propilitic Argilic Qz.Carbonate Listy. Chloritization Potasic Hematite Goetite Graizen Shear zone Philic Limonite Siderite Fault: Fracture: Weathering : Gossan : Other : Observed Rock Types , Minerals And Fillings In Anomaly Checking : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : No. Rock types Variables Heavy Mineral Pegmatitic Granit H2-10 207-M1 207-M2 207-M3 Biotite Granit Basalt Granit Travertan Altreadsillicate 237.60 Au (ppb) <1 <1 Amphibols 253.44 Al (ppm) 44255 66997 81641 Granodiorite Microgranodiorit Diabase Philite Microdiorite Gabro 、 、 0.00 Ca (ppm) 2572 2910 60627 Anatase Andalusite 0.00 Fe (ppm) 30086 39753 69852 Andesite Plagic Limeston Conglomerate Sandstone Limestone Shaly limestone Apatite 7.00 K (ppm) 27258 17118 13108 Barite 3.96 Mg (ppm) 744 2139 19283 Marl Diorite Gabro Diorite Gabro Diorite 0.26 28698 29966 17320 Riotite Na (ppm) 2.38 4.1 7.9 5.8 Schist Dolomite Carbonate As (ppm) Marble Dacite Slate Tormaline Shale 0.00 288 323 224 Cerussite Ba (ppm) 0.00 3.1 3.2 0.9 Chlorite Be (ppm) Minerals 13.46 0.42 0.48 0.98 Epidots Bi (ppm) Malachite Montmorillonite Ilmenite Albite Tourmaline 75.24 Cd (ppm) 0.2 0.21 0.26 F.O. 0.00 Hombland Actinolite Orthoclase Chlorite Calcite Galena Ce (ppm) 21 33 36 Hematit Quartz 0.00 4 5 34 Garnets Co (ppm) 0.00 Cr (ppm) 11 12 22 Mg-Oxides Iron-Oxides Pyrite Goethite Limonite Magnetite Ľ Hematite 1018.34 Cs (ppm) 4.5 4.9 7.1 Ilmenite 1282.16 Cu (ppm) 63 39 47 Fillings Leucoxene 0.00 La (ppm) 13 20 16 Hematite& Manganez vein Silice vein Calcite Vein Quartz Vein 0.00 Li (ppm) 11 15 29 Limonite Mn (ppm) Magnetite 410.26 226 526 1407 Martite 0.44 Mo (ppm) 2.75 2.17 0.99 23 Monazite 0.00 Nb (ppm) 10 17 Pvrite 0.44 Ni (ppm) 6 11 25 Pvrite limonite 0.00 P (ppm) 325 694 1299 Pyrite oxide 0.40 Pb (ppm) 10 10 18 Pyroxens 380.16 Rb (ppm) 66 54 53 0.00 Rutile S (ppm) 189 242 270 Sapphir 0.00 Sb (ppm) 0.62 < 0.5 1.21 Sericite 10.89 Sc (ppm) 1.2 22.5 2.7 2.2 Silver 0.00 Sn (ppm) 1.9 7.66 Sr (ppm) 23 36 245 Sphene 21.74 0.14 0.23 Titano-magnetite Te (ppm) 0.13 Zircon 51.48 Th (ppm) 4.9 6 4.5 Ti (ppm) 2940 2888 11966 Tl (ppm) 1.08 1.25 0.4 U (ppm) 3.7 4 3.8 V (ppm) 10 215 7 4.7 4.2 W (ppm) 3.4 Y (ppm) 25 32 56 Yb (ppm) 2.8 5.4 2.5 34 32 103 Zn (ppm) 75 83 78 Zr (ppm)

جدول **4-۲۸-** شناسنامه محدوده آنومال MR17

156

فصل چهاره– تعبير و تفسير

MR18 محدوده آنومال شماره MR18

با توجه به تصویر ۴–۲۴ مشاهده می شود که این محدوده آنومالی نیز در منطقه ناهمواری در ارتفاعات واقع شده است. مساحت این حوضه بالغ بر ۰/۱۱ کیلومترمربع است. این آنومالی در جنوب شرق محدوده اکتشافی و جنوب چشمه کانی آخوره قرار گر فته است. شناسنامه این محدوده در جدول شماره ۴–۲۹ نشان داده شده است.

تصویر 4-۲4- تصویر ماهوارهای محدوده آنومال MR18 به همراه شماره نمونهها و غنیشدگیهای مربوط به این محدوده

نمونه ۳۴ ژئوشیمی آبراههای دارای عیار ناهنجاری از عنصر V، نسبت به سایر نمونههای منطقه است. بررسیهای صحرایی حضور واحدهای دیوریت گابرو با دگرسانی مختصر اکسید آهنی را در بالادست این نمونه نشان میدهد. از محدوده فوق یک نمونه کانی سنگین به شرح زیر برداشت گردیده است:

– نمونه کانی سنگین شماره MR2-9-H2 که از محل نمونه ژئوشیمیایی ۳۴ برداشت شده که این نمونه فاقد کانیهای ارزشمند کانی این ارزشمندی اکتشاف پلاسر این ارزشمند اقتصادی بوده و در مقابل وجود کانیهای تیتانیم دار با شدت کمتری نسبت به MR17 ارزشمندی اکتشاف پلاسر این عنصر را می توان مطرح نماید.

همچنین سه نمونه مینرالیزه به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-34-M1 از مختصات جهانی (۳۸۴۶۹۶۸ و ۲۰۰۴۲) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد. در ادامه نتایج مطالعات میکروسکوپی مقطع صیقلی نمونه MR2.62T آمده است. (تصاویر ۴– ۲۵ و ۴–۲۶)

-نمونه مینرالیزه شماره MR2-34-M2 از مختصات جهانی (۳۸۴۶۹۵۳ و ۲۰۰۴۱۲) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-34-M3 از مختصات جهانی (۳۸۴۶۹۷۲ و ۲۰۰۴۶۳) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

سه نمونه سنگی برداشت شده از منطقه عیارهای در حد زمینه سنگهای منطقه نشان میدهند و نمیتوان به آنها امید کانه سازی چندانی داشت.

شرح تصاویر ۴–۲۵ و ۴–۲۶ مربوط به نمونه MR2.34.P: کانیهای فلزی این نمونه منحصر به پیریت و منیتیت میباشد. فراوانی منیتیت در این نمونه حدود ۲ الی ۸٪ است. منیتیتها به طور پراکنده در نمونه استقرار یافته اند. ابعاد منیتیتها از ۱۰ الی ۲۰۰ میکرون متغیر است. منیتیتها سالم بوده و اثراتی از آلتراسیون و هوازدگی نشان نمیدهند. فراوانی پیریت کمتر از ۱٪ است. دانههای پیریت اتومورف بوده و به طور پراکنده در گانگها مشاهده میشوند. ابعاد دانه ها بین ۱۰۰الی ۲۰۰ میکرون میباشد. بعضی از دانهها تحت تأثیر آلتراسیون سوپرژن توسط لیمونیت و گوتیت در حال جانشین شدن هستند.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

تصویر 4-25- تصویر میکروسکوپی گرفته شده از مقطع صیقلی نمونه MR2.34.P

تصویر ۴-۲۶- تصویر میکروسکوپی گرفته شده از مقطع صیقلی نمونه MR2.34.P

سازمان زمين شناسي و اكتشاف جدول 4-29- شناسنامه محدوده آنومال MR18 معدنى كشور Sheet 1/25,000 : Mianrahan II Anomaly No. : **MR18** Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data USRT 1/PN Airborne Geoph.: Shallow Magnetic Bodies: 34 V 313.6 11.80 dh Altration: vugi.Q Sillicification Propilitic Hematite Limonite پروژه اکتشاف ژئوشیمیایی ۵۰۰۰۵۲:۱۷ر محدوده اکتشافی میانراهان Fault: Fracture: Weathering : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) No. No. No. No. No. No. No. No. No. Heavy Mineral Variables H2-9 34-M1 Altreadsillicate 216.00 1 Au (ppb) Amphibols 230.40 Al (ppm) 79820 54500 Anatase 0.00 Ca (ppm) Andalusite 0.00 Fe (ppm) 83474 فطل 2.54 Apatite K (ppm) 5791 0.00 17624 Barite Mg (ppm) Biotite 0.24 Na (ppm) 19368 -@)(@-Carbonate 3.25 3.9 كزارش نهايي As (ppm) 0.00 192 Cerussite Ba (ppm) Chlorite 0.24 07 Be (ppm) Epidots 24.48 1.21 Bi (ppm) تعبير و تفسير F.Q. 68 40 0.25 Cd (ppm) 0.00 56 Galena Ce (ppm) 0.00 Garnets Co (ppm) 31 Goethite 0.00 Cr (ppm) 15 Hematite 547.04 Cs (ppm) 10.1 63 Ilmenite 1015 20 Cu (ppm) 0.00 23 La (ppm) Leucoxene 0.00 17 Limonite Li (ppm) Magnetite 331.52 Mn (ppm) 1700 0.40 Mo (ppm) 1.49 Martite 0.00 Nb (ppm) Monazite 18 Pyrite 0.00 Ni (ppm) 11 Pyrite limonite 0.00 2897 P (ppm) 21 Pyrite oxide 0.00 Pb (ppm) 39 691.20 Rb (ppm) Pyroxens Rutile 0.00 S (ppm) 439 0.00 Sb (ppm) 0.88 Sapphir Sericite 9.90 Sc (ppm) 23.4 0.00 Sn (ppm) 2.7 Silver 6.96 Sr (ppm) 239 Sphene Titano-magnetite 39.52 Te (ppm) 0.3 56.16 43 Zircon Th (ppm) Ti (ppm) 17025 TI (ppm) < 0.2 4.3 U (ppm) V (ppm) 214 W (ppm) 3.3 89 Y (ppm) Yb (ppm) 7.7 Zn (ppm) 158 Zr (ppm) 258

Geoph. Faults: Oz.Carbonate Chloritization Potasic Argilic Listy. Graizen Shear zone Philic Goetite Siderite Other : Gossan : Observed Rock Types , Minerals And Fillings In Anomaly Checking : Mineralized Samples Taken form Anomal Arera : No. No. Rock types No. No. No. Pegmatitic Granit 34-M2 34-M3 Biotite Granit Travertar Basalt Granit 1 1 76076 78362 Microdiorite Granodiorite Microgranodiorit Diabase Philite Gabro 30863 39066 Plagic Limeston 68247 63548 Andesite Conglomerate Sandstone Limestone Shaly limeston 8447 9613 Diorite Gabro 10327 13471 Marl Gabro Diorite Diorite 23030 24385 4.4 4.3 Marble Schist Dolomite Dacite Slate Shale Tormaline 257 153 2.6 1.6 Minerals 0.9 Malachite Montmorillonite 0.74 Ilmenite Orthoclase Albite 0.22 0.21 54 40 Hombland Actinolite Orthoclase Hematit Chlorite Calcite Quartz È 19 21 10 15 Limonite Magnetite Mg-Oxides Iron-Oxides Pyrite 7.3 7.5 34 31 Fillings 23 17 Hematite& Manganez vein Calcite Vein Ouartz Vein Silice vein 9 15 1295 1293 1.23 1.6 18 35 9 8 2543 1527 20 18 46 43 163 427 1.04 0.89 15.5 15.3 2.7 2.1 139 154 0.24 0.25 10.7 6.9 13023 15438 0.32 0.29 4 4.2 185 180 4.2 4 87 67 8.1 6.8 129 114 244 196

、たく

فصل چهاره– تعبير و تفسير

مندسي شادر

MR19 محدوده آنومال شماره MR19

با توجه به تصویر ۴–۲۷ مشاهده می شود که این محدوده آنومالی نیز در منطقه ناهمواری واقع شده است که ازسمت شمال شرق به دره منتهی می شود. مساحت این حوضه بالغ بر ۰/۲۱ کیلومترمربع است. این آنومالی در جنوب و جنوب شرق محدوده اکتشافی و شرق چشمه کانی آخوره واقع شده است. شناسنامه این محدوده در جدول شماره ۴–۳۰ نشان داده شده است.

واحدهای آذرین مافیک شامل دیوریت و گابرو محدوده را می پوشانند. با آن که عنصر ناهنجار این منطقه V بوده است اما با توجه به موقعیت آن باعث می شود تا Ti آن بیشتر مورد توجه باشد. این محدوده در مجاورت آنومالیهای MR17 و MR18 میباشد. در محدوده مورد نظر گسل موجود میباشد. از محدوده فوق یک نمونه کانی سنگین به شرح زیر برداشت گردیده است:

تصویر ۴-۲۷- تصویر ماهوارهای محدوده آنومال MR19 به همراه شماره نمونهها و غنی شدگیهای مربوط به این محدوده

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

فصل چهاره– تعبير و تفسير

- نمونه کانی سنگین شماره MR2-8-H که از محل نمونه ژئوشیمیایی ۴۱ برداشت شده که مقادیر جالب توجهی جهت

ایلمنیت و تیتانومگنتیت نشان میدهند. لذا میتوان بر اهمیت محدوده جهت اکتشاف پلاسری این عنصر مجدداً تأکید کرد.

در محیط سنگی عارضهای که بتواند ناهنجاری را توجیه نموده و شایسته نمونه بردای باشد دیده نشد.

سازمان زمين شناسي و اكتشاف جدول **۴-۳۰** شناسنامه محدوده آنومال MR19 معدنى كشور Sheet 1/25,000 : Mianrahan II Anomaly No. : **MR19** Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data 1/PN Airborne Geoph.: Shallow Magnetic Bodies: USRT Geonh Faults: 41 V 4191 db.dg 42.37 Altration: vugi.Q Sillicification Propilitic Argilic Qz.Carbonate Listy. Chloritizatio Potasic Hematite Goetite Siderite Graizen Shear zone Philic پروژه اکتشاف ژئوشیمیایی ۵۰۰,۵4:1در محدوده اکتشافی میانراهان Fault: Fracture: Weathering : Other : Gossan : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types Heavy Mineral Variables H-8 Pegmatitic Granit Granit Biotite Granit Travertan Basalt Altreadsillicate 345.60 Au (ppb) Amphibols 61.44 Al (ppm) Granodiorite Microgranodiorit Diabase Philite Microdiorite Gabro . Anatase 0.00 Ca (ppm) Conglomerate Sandstone Andalusite 0.00 Fe (ppm) Andesite Plagic Limeston Limestone Shaly limeston فمل Anatite 1.53 K (ppm) Barite 0.00 Mg (ppm) Marl Diorite Gabro Diorite Gabro Diorite - (a)-Biotite 0.00 Na (ppm) . گزارش نهایی 0.00 Marble Schist Dolomite Carbonate As (ppm) Dacite Slate Shale Tormaline 0.00 Cerussite Ba (ppm) Chlorite 0.48 Be (ppm) Minerals w r Malachite Albite Tourmaline تعبير و تفسير Epidots 16.32 Bi (ppm) Montmorillonite Ilmenite 104.88 F.Q. Cd (ppm) 0.00 Ce (ppm) Hombland Actinolite Orthoclase Calcite Quartz Galena Hematit Chlorite 0.00 Garnets Co (ppm) 0.00 Magnetite Mg-Oxides Iron-Oxides Goethite Cr (ppm) Limonite Pyrite 757.44 Ċ. Hematite Cs (ppm) 2707.20 Ilmenite Cu (ppm) Fillings 0.00 Hematite& Manganez vein Quartz Vein Leucoxene La (ppm) Silice vein Calcite Vein 0.00 Limonite Li (ppm) 2652.16 Mn (ppm) Magnetite Martite 0.00 Mo (ppm) Monazite 0.00 Nb (ppm) Pyrite 0.00 Ni (ppm) 0.00 P (ppm) Pvrite limonite Pyrite oxide 0.72 Pb (ppm) Pyroxens 307.20 Rb (ppm) 0.00 Rutile S (ppm) 0.00 Sb (ppm) Sapphir 0.00 Sericite Sc (ppm) Silver 0.00 Sn (ppm) 41.76 Sphene Sr (ppm) 632.32 Titano-magnetite Te (ppm) 37.44 Zircon Th (ppm) Ti (ppm) TI (ppm) U (ppm) V (ppm) W (ppm) Y (ppm) Yb (ppm) Zn (ppm) Zr (ppm)

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل چهارم- تعبیر و تفسیر

MR20 محدوده آنومال شماره

با توجه به تصویر ۴–۲۸ مشاهده می شود که این محدوده آنومالی نیز در منطقه ناهمواری در ارتفاعات واقع شده است. مساحت این حوضه بالغ بر ۰/۰۹ کیلومترمربع است. این آنومالی در جنوب شرق محدوده مورد مطالعه و جنوب غرب روستای پشت کلان قرار گرفته است. شناسنامه این محدوده در جدول شماره ۴–۳۱ نشان داده شده است.

در آبراهه بالادست موقعیت نمونه برداری شده، گسل موجود میباشد. دیوریت گابروی تا حدودی آلتره به اکسیدهای آهن لیتولوژی اصلی منطقهاند. گزارش طلا با مقدار ۰/۰۰۵ گرم در تن (5ppb) برای نمونه ۲۲۹ باعث معرفی این محدوده به عنوان گزینه پی جویی مقدماتی صحرایی گردید.

بروز آنومالی طلا با این مقدار مطلق کم بدلیل حضور مقادیر بسیار کمتر آن در سایر نمونههای اخذ شده از کل محدودهٔ اکتشافی میباشد که در محاسبات آماری بصورت آنومالی نمود یافته است. به همین منظور و طی عملیات صحرایی سه نمونه از بخشهای اکسید آهنی که میتواند حاوی طلا باشند و یک نمونه کانی سنگین از پایین دست حوضه برداشت گردید. نمونه کانی سنگین به شرح زیر برداشت گردیده است:

- نمونه کانی سنگین شماره MR2-2-H2 که از محل نمونه ژئوشیمیایی ۲۲۹ برداشت شده و نسبت به هیچ کدام از کانیهای موجود غنی شدگی ندارند.

نمونههای مینرالیزه نیز به شرح زیر در این منطقه برداشت شده است:

-نمونه مینرالیزه شماره MR2-229-M1 از مختصات جهانی (۲۸۴۵۸۰۱ و ۲۰۲۸۶۸) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-229-M2 از مختصات جهانی (۳۸۴۵۷۸۸ و ۷۰۲۸۶۱) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

-نمونه مینرالیزه شماره MR2-229-M3 از مختصات جهانی (۳۸۴۵۷۸۳ و ۷۰۲۸۶۲) برداشت شده است. این نمونه نسبت به هیچ کدام از عناصر موجود آنومال نمیباشد.

مطالعه و تجزیه نمونههای اخذ شده عنصر و یا کانی خاصی که بتواند ادامه اکتشاف را در این محدوده توجیه نماید را نشان نمی دهد.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

گزارش نهایی

فصل چهارم- تعبیر و تفسیر

تصویر ۴-۲۸ تصویر ماهوارهای محدوده آنومال MR20 به همراه شماره نمونهها و غنی شدگیهای مربوط به این محدوده

سازمان زمينشناسي و اكتشاف جدول 4-31- شناسنامه محدوده آنومال MR20 معدني كشور Mianrahan II Anomaly No. : **MR20** Geochemical Anomal Samples: (Raw Data in ppm) Sample No. Anomaly Raw Data 1/PN Airborne Geoph.: Shallow Magnetic Bodies: Geoph. Faults: USRT 229 Au 0.005 kf2 16.33 Altration: vugi.Q Sillicification Inloritization Potasic Propilitic Argilic Oz Carbonate Listy Goetite Siderite Graizen Shear zone Philic Limonite Hematite Fault: Fracture: پروژه اکتشاف ژئوشیمیایی ۵۰۰۰،۲۵۱ در محدوده اکتشافی میانراهان ۲ Weathering : Other : Gossan : Heavy Mineral Samples Taken From Anomal Area : (Data in ppm) Mineralized Samples Taken form Anomal Arera : Observed Rock Types , Minerals And Fillings In Anomaly Checking : No. Rock types No. Variables Heavy Mineral H2-2 229-M1 229-M2 229-M3 Biotite Granit Pegmatitic Granit Travertan Basalt Granit Altreadsillicate 486.00 Au (ppb) <1 <1 <1 12.80 92522 84186 87391 Granodiorite Microgranodiorit Amphibols Al (ppm) Diabase Philite Microdiorite Gabro Ca (ppm) 0.00 56805 57078 54694 Anatase 0.00 68507 72101 72711 Andesite Plagic Limeston Conglomerate Sandstone Limestone Shaly limeston Andalusite Fe (ppm) 0.06 Apatite K (ppm) 11841 7136 1718 0.09 Mg (ppm) Diorite Gabro Barite 20016 19741 Marl Diorite Gabro Diorite فصل 0.00 Biotite Na (ppm) 18028 20149 23111 Carbonate 0.05 As (ppm) 6.6 5.3 5.9 Marble Schist Dolomite Dacite Slate Shale Tormaline Cerussite 0.00 Ba (ppm) 251 179 136 چهارم 0.06 1.2 1.1 0.9 Minerals Chlorite Be (ppm) 20.40 Bi (ppm) 0.77 0.94 1.28 M alachite Montmorillonite Ilmenite Albite Tourmaline Fnidots 0.29 0.26 0.25 0.26 F.Q. Cd (ppm) 0.00 39 40 Chlorite Quartz Galena Ce (ppm) 39 Hornbland Actinolite Orthoclase Hematit Calcite Ē 0.00 30 29 30 Garnets Co (ppm) . . Goethite 0.00 Cr (ppm) 80 56 57 Magnetite Mg-oxides Iron-Oxides Pvrite Limonite 31.56 Cs (ppm) 8.8 Hematite 11 0.00 45 44 Ilmenite Cu (ppm) 42 Fillings 9 0.00 La (ppm) 14 15 Hematite& Manganez vein Silice vein Calcite Vein Leucoxene 14 Quartz Vein . . . Limonite 0.00 Li (ppm) 16 16 18 Magnetite 0.52 Mn (ppm) 1215 1454 1194 Martite 0.00 Mo (ppm) 1.74 1.42 1.53 Nb (ppm) Monazite 0.00 14 27 28 Pvrite 0.00 Ni (ppm) 44 36 36 Pyrite limonite 0.00 P (ppm) 1526 1545 1600 Pyrite oxide 0.09 Pb (ppm) 19 16 15 Rb (ppm) 6.40 30 38 32 Pvroxens Rutile 0.00 S (ppm) 387 296 229 Sapphir 0.00 Sb (ppm) 1.09 0.69 0.73 0.11 Sericite Sc (ppm) 25.1 25.6 26.2 0.00 Sn (ppm) Silver 2.8 2.7 2.2 0.00 Sphene Sr (ppm) 181 182 166 Te (ppm) Titano-magnetite 0.00 0.25 0.26 0.26 Zircon 0.09 Th (ppm) 4.9 46 37 Ti (ppm) 13635 14021 11951 Tl (ppm) 0.44 0.32 0.34 U (ppm) 4 4 4.5 241 250 V (ppm) 210 W (ppm) 33 4.1 5 70 70 72 Y (ppm) 6.7 6.8 Yb (ppm) 6.6 121 127 125 Zn (ppm) 317 348 328 Zr (ppm)

كزارش نهايي

155

پروژه اکتشافات ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

۵- نتیجهگیری و پیشنهادها

5-1-1رزیابی اکتشافی و اقتصادی یافتهها

بررسی صحرایی در کنار واقعیت های زمین شناختی، که وجود برخی کانه سازیها در هر محدوده را محتمل میکند، در نهایت باعث می گردد، تا بتوان ادامه اکتشاف در محدوده میانراهان ۲ را به صورت ذیل توصیه نمود.

الف) غالب محدوده اکتشافی میانراهان ۲ فاقد پتانسیل اقتصادی ارزشمندی بوده و نباید انتظار وجود کانهسازیهای امیدبخشی را در آن داشت.

ب) مس به عنوان یکی از عناصر ناهنجار است که در محدودهٔ آنومالی MR12 میتواند جالب توجه باشد. با این حال عدم تکرار عیار و همچنین عدم وجود شرایط رخداد کانه سازیهای بزرگ مس، از نوع پورفیری و یا رگهای از ارزش آن میکاهد. آنگونه که در متن گفته شد، غنی شدگیهای موضعی و غیر اقتصادی مس در سنگهای آذرین مافیک میتواند توجیهی برای رخداد این پدیدهها باشد.

ج) جذاب ترین نتیجهٔ این اکتشاف وجود عیارهای نسبتاً خوب تیتانیوم در نمونههای آبراهه ای و اثبات حضور کانیهای ارزشمند تیتانیوم دار در مرحله کنترل ناهنجاری در نزدیکی چشمه کانی آخوره میباشد. توجه گردد هر چند نمیتوان مقدار بین ۱/۵ تا ۲/۵ درصد تیتانیوم را در آبراهه اقتصادی دانست، اما توجه به این نکته که برداشتها از ۸۰- مش صورت پذیرفته است بررسی بیشتر منطقه را توجیه مینماید زیرا تیتانیوم در نزدیکی منشاء ابعاد بزرگتری را دارا میباشد.

5-۲-معرفی زونهای پرپتانسیل در محدودههای آنومالی معرفیشده

با توجه به مطالب و نتیجه گیری های ذکرشده در فصل چهارم و بخصوص بند ۴-۴، نسبت به انتخاب مناسبترین بخشهای هر آنومالی به لحاظ کانی سازیهای محتمل اقدام گردید. زونهای پرپتانسیل مذکور در نقشه ۵-۱ تحت عنوان نقشه HPZ نشان داده شده است.

پروژه اکتشافات ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل پنجم- نتیجه گیری و پیشنهادها

نقشه 1-4- زونهای پرپتانسیل به لحاظ کانیسازیهای محتمل در هر محدوده آنومال در منطقه مطالعاتی (HPZ)

سازمان زمینشناسی و اکتشاف معدنی کشور

گزارش نهایی پروژه اکتشافات ژئوشیمیایی ۱:۲۵۰۰۰ در محدوده اکتشافی میانراهان ۲

فصل پنجم- نتیجه گیری و پیشنهادها

۵-۳- ارائه پیشنهادها در خصوص ادامه و یا توقف عملیات اکتشافی

با توجه به مطالب گزارش، تعبیر و تفسیر نتایج و مدل سازیهای به عمل آمده، میتوان چنین نظر داد که نتایج اکتشاف در محدوده میانراهان ۲ از چشم انداز اکتشافی مطلوبی برخوردار نیستند. بعبارت دیگر، عدم وجود کانیهای ارزشمند در نمونههای کانی سنگین برداشتی، عیار مطلق پایین عناصر در نمونههای آبراههای و نتایج کنترل مقدماتی ناهنجاری نتوانسته پتانسیل مطلوب و دارای قابلیت بررسی بیشتر را در محدوده معرفی نماید.

از سوی دیگر نتایج هر چند ضعیف اما قابل تأمل در دو محدوده را نیز نبایستی به آسانی از نظر دور داشت. چه بسا نشانه-های کوچک که میتوانند به یافت پتانسیلهایی بزرگ و ارزشمند تبدیل شوند. با این دیدگاه موارد ذیل را میتوان به عنوان مسیرهای ادامه پروژه ارایه نمود.

الف) محدوده آنومالی ۱۲ جهت پتانسیل یابی مس پیشنهاد می شود. این مشاور ادامه و توسعه اکتشاف چکشی در محدوده با پیمایش های متراکم تر را جهت یافت رگه های احتمالی دیگر پیشنهاد می دهد. در صورت حضور و تکرار رگه های سطحی برداشت در مقیاس ۱:۵۰۰۰ و حفر ترانشه جهت مشخص شدن روند و نحوه کانه سازی پیشنهاد می گردد.

ب) در محدوده چشمه کانی آخوره، حضور چندین آنومالی از پلاسر کانی های ارزشمند تیتان (از جمله ایلمنیت) باعث می-گردد، تا شرح خدماتی به صورت ذیل جهت بررسی تکمیلی ارایه شود:

ب –۱) برداشت نمونههای کانی سنگین از آبراهههای با فاصله ۵۰ متر و بررسی روند تغییرات فراوانی کانیهای تیتاندار در پروفیل عمودی با فاصله ۲ متری

ب-۲) منشأ یابی کانههای تیتان و یافت پتانسیلهای احتمالی سنگی برجای این عنصر توسط اکتشافات چکشی و برداشت حدود ۵۰ نمونه از کل محدوده

ب-۳) بررسی وضعیت فاز کانه سازی و ارایه بررسیهای مقدماتی توجیه پذیری ادامه و یا توقف طرح ب-۴) در صورت مثبت بودن نتایج بند ب-۳ مشخص نمودن نواحی مشابه به لحاظ زمین شناختی در منطقه و ارایـه طرح جامع اکتشاف تیتان پلاسری در گستره نقشه ۱:۱۰۰٬۰۰۰ میانراهان

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

پيوست ١

نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

ییوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

جدول ۲-1- شماره و مختصات محل نمونه های ژئوشیمیایی برداشت شده

Dow	Sampla No	Coordinate(U	TM WGS 84	Dow	Sampla No	Coordinate(U	TM WGS 84	Dow	Sampla No	Coordinate(U	TM WGS 84
NOW	Sample No.	Х	Y	NUW	Sample No.	X	Y	NUW	Sample No.	X	Y
1	MR-1-G	704375.86	3847598.783	56	MR-56-G	700809.111	3848551.527	111	MR-111-G	693187.4319	3850588.784
2	MR-2-G	703694.425	3847703.371	57	MR-57-G	700931.242	3849147.506	112	MR-112-G	697245.978	3850979.225
3	MR-3-G	703606.587	3847529.735	58	MR-58-G	700488.15	3848966.947	113	MR-113-G	697053.4987	3850786.946
4	MR-4-G	703632.133	3847975.724	59	MR-59-G	700464.4694	3848598.995	114	MR-114-G	697125.908	3851177.677
5	MR-5-G	703585.406	3847867.404	60	MR-60-G	700314.5894	3848702.959	115	MR-115-G	696810.8	3851411.192
6	MR-6-G	702967.341	3848067.577	61	MR-61-G	700350.8859	3848627.398	116	MR-116-G	696755.419	3851286.991
7	MR-7-G	702074.729	3848327.842	62	MR-62-G	700169.055	3848368.009	117	MR-117-G	696518.904	3851245.175
8	MR-8-G	702615.628	3847666.075	63	MR-63-G	699776.3253	3848149.818	118	MR-118-G	696299.5743	3850934.143
9	MR-9-G	702958.561	3848219.442	64	MR-64-G	699469.8832	3848159.421	119	MR-119-G	696269.7199	3851000
10	MR-10-G	702503.553	3848450.708	65	MR-65-G	700466.704	3849185.345	120	MR-120-G	696479.167	3851343.151
11	MR-11-G	702409.925	3848522.455	66	MR-66-G	700632.994	3849476.27	121	MR-121-G	696331.484	3851421.04
12	MR-12-G	702232.58	3848576.797	67	MR-67-G	700208.4842	3849231.579	122	MR-122-G	695023.1307	3851626.965
13	MR-13-G	701781.5376	3848000	68	MR-68-G	699595.5145	3849245.17	123	MR-123-G	695860.847	3851720.249
14	MR-14-G	701909.444	3847576.692	69	MR-69-G	700342.703	3849608.815	124	MR-124-G	695870.362	3851790.466
15	MR-15-G	702055.11	3847432.333	70	MR-70-G	699986.4869	3849698.331	125	MR-125-G	695723.548	3851453.935
16	MR-16-G	701936.5251	3847463.175	71	MR-71-G	699783.0608	3849997.752	126	MR-126-G	695583.965	3851579.24
17	MR-17-G	701597.984	3847893.072	72	MR-72-G	699789.208	3849777.295	127	MR-127-G	695011.554	3851734.148
18	MR-18-G	701458.9819	3847749.415	73	MR-73-G	699657.226	3849963.433	128	MR-128-G	694914.72	3851914.137
19	MR-19-G	701178.396	3847757.373	74	MR-74-G	699720.95	3849900.067	129	MR-129-G	693951.8389	3853000
20	MR-20-G	701224.378	3847376.151	75	MR-75-G	699252.447	3849370.239	130	MR-130-G	693903.6418	3852897.851
21	MR-21-G	701344.443	3847428.356	76	MR-76-G	699335.33	3849219.898	131	MR-131-G	694088.339	3852725.813
22	MR-22-G	701574.377	3847051.5	77	MR-77-G	699047.807	3848808.569	132	MR-132-G	694384.311	3852683.073
23	MR-23-G	700885.977	3847394.963	78	MR-78-G	699167.032	3848578.712	133	MR-133-G	693904.3306	3852763.744
24	MR-24-G	700035.737	3847428.851	79	MR-79-G	699224.061	3850064.728	134	MR-134-G	692960.765	3851464.17
25	MR-25-G	700000	3847673.749	80	MR-80-G	698380.338	3849714.157	135	MR-135-G	692817.773	3851080.838
26	MR-26-G	699718.8453	3847686.108	81	MR-81-G	698110.3854	3849263.212	136	MR-136-G	693164.8495	3851000
27	MR-27-G	699541.473	3847640.664	82	MR-82-G	697645.053	3848691.579	137	MR-137-G	693240.885	3850885.572
28	MR-28-G	699480.887	3847766.123	83	MR-83-G	697733.832	3848634.243	138	MR-138-G	693381.6853	3850964.163
29	MR-29-G	700978.84	3847261.695	84	MR-84-G	697340.467	3849513.837	139	MR-139-G	693610.2881	3851366.877
30	MR-30-G	700854.6104	3847318.626	85	MR-85-G	698212.156	3849233.486	140	MR-140-G	693365.817	3850682.171
31	MR-31-G	700534.0872	3847136.254	86	MR-86-G	698318.663	3848743.444	141	MR-141-G	693724.575	3850788.183
32	MR-32-G	700413.108	3847143.415	87	MR-87-G	698226.444	3848506.251	142	MR-142-G	693581.174	3850607.664
33	MR-33-G	700232.838	3847047.929	88	MR-88-G	698514.032	3848536.271	143	MR-143-G	693838.386	3851349.736
34	MR-34-G	700419.704	3846968.36	89	MR-89-G	698435.747	3848235.47	144	MR-144-G	693968.143	3851433.147
35	MR-35-G	701232.561	3847202.271	90	MR-90-G	698953.778	3850268.087	145	MR-145-G	694073.414	3851391.309
36	MR-36-G	701154.686	3846866.79	91	MR-91-G	698861.548	3850379.137	146	MR-146-G	694530.711	3851701.002
37	MR-37-G	701125.264	3846780.237	92	MR-92-G	698516.695	3850318.375	147	MR-147-G	694419.766	3851797.973
38	MR-38-G	701068.892	3846669.333	93	MR-93-G	698281.186	3850016.991	148	MR-148-G	694570.5302	3851904.508
39	MR-39-G	700739.4128	3846514.408	94	MR-94-G	698381.418	3850447.378	149	MR-149-G	694505.641	3852187.644
40	MR-40-G	700258.503	3846431.321	95	MR-95-G	698353.266	3850582.109	150	MR-150-G	694643.966	3851857.034
41	MR-41-G	701000	3846776.198	96	MR-96-G	698128.1524	3850550.742	151	MR-151-G	693398.3542	3850809.614
42	MR-42-G	700667.1657	3846243.506	97	MR-97-G	697645.488	3850202.961	152	MR-152-G	694057.059	3850777.255
43	MR-43-G	700614.819	3846054.657	98	MR-98-G	697154.723	3850204.968	153	MR-153-G	694255.8633	3850883.57
44	MR-44-G	700468.473	3845775.743	99	MR-99-G	696838.212	3849555.983	154	MR-154-G	694238.336	3850968.837
45	MR-45-G	700408.323	3845757.221	100	MR-100-G	696775.945	3849200.933	155	MR-155-G	694092.518	3850472.099
46	MR-46-G	700777.241	3846231.778	101	MR-101-G	697053.53	3849977.703	156	MR-156-G	693965.3631	3849883.295
47	MR-47-G	700916.032	3845909.644	102	MR-102-G	696944.6	3850056.651	157	MR-157-G	694217.5372	3850687.256
48	MR-48-G	701906.392	3848474.813	103	MR-103-G	696656.958	3849792.599	158	MR-158-G	694231.471	3850386.366
49	MR-49-G	701516.108	3848362.691	104	MR-104-G	696537.06	3850068.304	159	MR-159-G	694192.6472	3849943.273
50	MR-50-G	701292.1337	3848379.254	105	MR-105-G	696636.166	3849856.001	160	MR-160-G	694176.115	3849737.39
51	MR-51-G	701229.762	3848284.401	106	MR-106-G	696340.221	3849944.068	161	MR-161-G	694291.987	3850469.238
52	MR-52-G	701853.243	3848609.284	107	MR-107-G	696145.1323	3850000	162	MR-162-G	694863.042	3849717.201
53	MR-53-G	/01365.762	3848904.415	108	MR-108-G	698024.234	3850619.648	163	MR-163-G	694916.902	3849425.699
54	MR-54-G	701111.302	3848981.128	109	MR-109-G	697559.353	3850773.629	164	MR-164-G	694712.5582	3849275.398
55	MR-55-G	700967.15	3848933.482	110	MR-110-G	697514.491	3850999.373	165	MR-165-G	695120.327	3849282.799

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

جدول ۲-۱- شماره و مختصات محل نمونه های ژئوشیمیایی برداشت شده (ادامه)

Dam	Samula No.	Coordinate(U	TM WGS 84	Dam	Samula Na	Coordinate(U	TM WGS 84	Dam	Samula No	Coordinate(U	TM WGS 84
KOW	Sample No.	Х	Y	KOW	Sample No.	Х	Y	ROW	Sample No.	X	Y
166	MR-166-G	694318.695	3850826.208	190	MR-190-G	696951.234	3851362.272	214	MR-214-G	701851.687	3844765.277
167	MR-167-G	694681.707	3850996.288	191	MR-191-G	696627.227	3847308.553	215	MR-215-G	701762.091	3844918.064
168	MR-168-G	695071.236	3850439.843	192	MR-192-G	696629.95	3847422.252	216	MR-216-G	701589.5763	3845285.598
169	MR-169-G	695027.769	3850553.578	193	MR-193-G	696817.659	3847893.328	217	MR-217-G	701611.748	3845545.692
170	MR-170-G	695379.368	3850374.152	194	MR-194-G	696840.117	3848199.092	218	MR-218-G	703085.49	3845331.406
171	MR-171-G	695265.301	3850308.664	195	MR-195-G	697184.069	3847125.252	219	MR-219-G	702810.248	3845416.475
172	MR-172-G	695472.792	3849767.705	196	MR-196-G	697257.973	3847558.168	220	MR-220-G	702229.055	3845450.498
173	MR-173-G	695637.8177	3849276.817	197	MR-197-G	697266.232	3847231.571	221	MR-221-G	702949.514	3846728.605
174	MR-174-G	695907.642	3848789.435	198	MR-198-G	698000	3846707.506	222	MR-222-G	702566.392	3846294.522
175	MR-175-G	698025.7299	3846642.752	199	MR-199-G	698100.1272	3846783.264	223	MR-223-G	703435.1667	3846393.159
176	MR-176-G	692364.095	3849761.719	200	MR-200-G	698219.7476	3847216.086	224	MR-224-G	703393.778	3846548.131
177	MR-177-G	692433.106	3850023.064	201	MR-201-G	698323.985	3847406.125	225	MR-225-G	703063.8283	3846376.83
178	MR-178-G	692477.243	3849722.263	202	MR-202-G	698198.012	3846573.596	226	MR-226-G	703277.463	3846290.96
179	MR-179-G	692666.547	3849880.074	203	MR-203-G	698601.651	3847008.917	227	MR-227-G	702893.51	3846120.907
180	MR-180-G	693006.213	3849731.3	204	MR-204-G	698928.719	3846301.132	228	MR-228-G	703019.144	3845956.857
181	MR-181-G	693282.843	3849723.216	205	MR-205-G	696839.3332	3849108.473	229	MR-229-G	702875.69	3845793.019
182	MR-182-G	693162.874	3849447.918	206	MR-206-G	698928.525	3846203.077	230	MR-230-G	702569.249	3845956.989
183	MR-183-G	693267.463	3849397.065	207	MR-207-G	699348.3146	3846178.591	231	MR-231-G	704165.728	3847089.891
184	MR-184-G	694629.142	3848555.578	208	MR-208-G	699055.5816	3846091.188	232	MR-232-G	703059.845	3847346.701
185	MR-185-G	694976.503	3848317.997	209	MR-209-G	703959.303	3846852.529	233	MR-233-G	702808.875	3847288.099
186	MR-186-G	695161.0612	3848228.129	210	MR-210-G	702530.516	3844356.984	234	MR-234-G	702787.33	3847153.683
187	MR-187-G	695398.416	3849020.107	211	MR-211-G	702442.663	3844486.736	235	MR-235-G	702764.447	3846949.256
188	MR-188-G	696177.5857	3847633.8	212	MR-212-G	702321.503	3844560.709	236	MR-236-G	697392.848	3851051.71
189	MR-189-G	696169.4952	3847941.285	213	MR-213-G	702077.853	3844714.726				

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Au(ppb)	Ag(ppm)	Al(ppm)	As(ppm)	Ba(ppm)	Be(ppm)	Bi(ppm)	Ca(ppm)	Cd(ppm)	Ce(ppm)	Co(ppm)	Cr(ppm)	Cs(ppm)
MR-1	<	< 0.01	85460	4.9	176.01	1.27	0.07	44963	0.25	45.45	27.48	121.1	2.38
MR-2	2	< 0.01	73628	7.1	225.11	1.42	0.21	26158	0.29	60.59	33.08	115	4.03
MR-3	3	< 0.01	77968	7	228.51	1.73	0.14	27155	0.04	57.78	37.91	119.3	3.55
MR-4	2	< 0.01	84273	6.3	174.71	1.68	0.06	46182	0.10	53.20	36.48	142.2	2.08
MR-5	3	< 0.01	80343	8.7	224.31	1.61	0.12	27557	0.28	63.84	30.96	146.2	3.85
MR-6	4	< 0.01	78401	6	262.81	1.34	0.08	24155	0.22	58.43	38.7	117.7	6.72
MR-7	5	< 0.01	74527	6.4	225.11	1.54	0.07	27345	0.14	59.15	31.53	116.6	3.43
MR-8	2	< 0.01	78356	5	186.61	1.56	0.03	35507	0.30	63.80	30.22	114.5	2.96
MR-9	1	< 0.01	80266	6.3	153.81	0.82	0.05	42037	0.19	46.37	24.54	131.9	2.22
MR-10	3	< 0.01	74338	4.9	196.81	1.74	0.07	35253	0.36	54.62	41.18	112.4	3.95
MR-11	<	< 0.01	86770	7	182.21	1.16	0.10	39779	0.35	47.24	33.78	157.7	2.78
MR-12	2	< 0.01	79733	3.4	173.31	1.68	0.10	37733	0.16	59.79	39.88	131.5	2.36
MR-13	2	< 0.01	64970	6.2	277.71	2.44	0.28	25819	0.35	95.83	35.06	118.9	4.35
MR-14	2	< 0.01	74038	6.3	209.21	1.09	0.17	23275	0.26	63.16	33.75	123.6	3.37
MR-15	<	< 0.01	64726	6.1	244.41	1.24	0.15	15145	0.36	68.58	33.74	112.2	4.79
MR-16	<	< 0.01	64526	10.3	296.01	0.99	0.12	18304	0.32	98.74	33.9	125.8	5.3
MR-17	1	< 0.01	81731	3.3	192.21	0.95	0.06	37691	0.29	52.93	38.79	129	2.71
MR-18	<	< 0.01	83851	3	184.81	1.26	0.11	39737	0.30	51.64	45.7	143.3	2.97
MR-19	1	< 0.01	81487	4.6	209.61	1.57	0.11	32052	0.15	53.82	42.17	120	3.23
MR-20	1	< 0.01	83440	6.5	141.31	0.98	0.01	43/65	0.26	42.84	36.28	158.1	2.02
MR-21 MD 22	3	< 0.01	72/18	6.7	239.61	1.41	0.12	23688	0.03	69.31	33.18	121.2	4.45
MR-22	2	< 0.01	70642	1.2	305.51	1.14	0.17	22130	0.30	8/.13	40.19	141.8	4.82
MR-23	4	< 0.01	69144	6.2	181.91	1.15	0.11	29/83	0.09	05.0/ 71.00	32.40	90	2.51
MD 25	3	<0.01	75050	0.3	2/3.01	1.40	0.14	21097	0.28	71.99	20.55	100.5	2.2
MR-25	1	<0.01	73939	4.5	201 51	1.43	0.09	30/30	0.21	50.90	39.33	90	2.52
MR-20 MR-27	~	<0.01	8/373	3.0	170.31	1.40	0.13	357/1	0.31	52.01	32.26	07.3	2.04
MR-27	1	<0.01	84861	3.8	202.41	1.57	0.15	303/41	0.24	45.57	/3 35	87.9	2.2
MR-29	2	<0.01	66191	3.0	181 91	1.00	0.07	27112	0.27	56 29	36.25	120.3	2.07
MR-30	<	<0.01	81620	43	144 61	1.50	0.06	42514	0.11	41.70	36.1	120.5	1.97
MR-31	1	< 0.01	85760	3.3	119.91	0.89	0.07	59357	0.22	35.83	46.39	278.1	2.44
MR-32	<	< 0.01	79344	6.1	160.21	1.14	0.03	40977	0.08	51.76	36.62	144.4	3.05
MR-33	2	< 0.01	81720	2.3	169.61	1.36	0.08	38878	0.32	50.12	37.9	136.5	2.32
MR-34	1	< 0.01	74383	5.5	111.61	0.97	0.03	50697	0.15	48.47	47.92	256	2.57
MR-35	2	< 0.01	72673	6.5	273.91	1.08	0.12	24134	0.41	70.38	30.15	135.1	3.81
MR-36	<	< 0.01	72185	7.4	214.51	1.16	0.10	22459	0.29	64.82	28.02	123	3.9
MR-37	<	< 0.01	76813	6	277.01	1.40	0.06	26635	0.35	61.60	34.89	134.2	3.53
MR-38	2	< 0.01	76514	4.9	187.91	1.27	0.06	29571	0.32	62.36	27.89	108.1	3.38
MR-39	2	< 0.01	80587	3.6	177.31	1.54	0.05	35942	0.24	49.58	39.82	133	3.16
MR-40	1	< 0.01	66268	1.7	159.21	1.28	0.06	26741	0.21	45.63	31.12	85.5	2.83
MR-41	1	< 0.01	78689	5.4	153.81	1.26	0.09	46054	0.14	45.79	38.62	133.5	2.93
MR-42	<	< 0.01	66457	5.4	231.71	1.47	0.11	24028	0.32	65.98	31.53	84.7	4
MR-43	<	< 0.01	86160	6.2	178.51	1.29	0.08	36483	0.33	45.80	52.01	185.1	4.74
MR-44	1	< 0.01	81265	6.2	188.81	1.37	0.15	28384	0.41	50.10	43.78	167.8	5.47
MR-45	<	< 0.01	76980	5.7	193.61	1.04	0.08	28331	0.26	55.51	46.25	182.6	5.9
MR-46 MD 47	<	< 0.01	/6081	1	231.51	1.09	0.08	26243	0.12	66.00	36.78	140.1	4.6
MR-47	< 1	<0.01	80288	5.0	155.01	0.99	0.06	30865	0.09	42.18	31.54	01.4	4.31
MR-40	1	<0.01	80708	4.5	140.31	2.42	0.12	20217	0.25	42.55	20.14	91.4	2.01
MR-47	3	<0.01	85015	5	205 51	1 30	0.08	35518	0.24	40.09	40.81	130.1	2.01
MR-51	ر ح	<0.01	86482	3	203.31	1.57	0.17	42938	0.47	51.43	39.41	108.9	2.7
MR-52	<	< 0.01	81265	39	162.31	1.99	0.09	43659	0.24	42 50	25.69	147.6	2.45
MR-53	<	< 0.01	84883	4.9	226.31	1.37	0.15	31543	0.46	59.65	36.62	166.5	4.86
MR-54	1	< 0.01	76369	4	171.61	1.32	0.08	28066	0.29	37.57	28.36	95.5	2.37
MR-55	1	< 0.01	84262	2.2	180.61	1.69	0.73	37214	0.31	50.54	33.81	84.9	2.31
MR-56	1	< 0.01	80499	5.6	191.01	1.26	0.24	36758	0.31	47.49	31.26	85.1	2.27
MR-57	<	< 0.01	86604	6.2	177.81	0.83	0.12	46627	0.25	44.96	26.06	135.3	2.31
MR-58	<	< 0.01	82952	8	200.61	1.79	0.10	40585	0.19	59.09	32.77	104.8	2.08
MR-59	<	< 0.01	80143	7	261.51	1.48	0.17	33917	0.29	70.25	39.97	89.2	3.56

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Cu(ppm)	Dy(ppm)	Er(ppm)	Eu(ppm)	Fe(ppm)	Gd(ppm)	Ho(ppm)	K(ppm)	La(ppm)	Li(ppm)	Mg(ppm)	Mn(ppm)	Mo(ppm)
MR-1	35.88	8.297	4.307	1.498	63635.85	4.95	1.45	9373	19.41	13.69	25748	1164.99	0.354
MR-2	42.35	8.704	4.949	1.824	72578.25	6.11	1.91	11268	23.25	25.24	22568	1516.99	0.625
MR-3	46.43	8.595	4.392	1.638	76755.05	5.43	1.66	10856	22.77	23.72	23328	1600.99	0.669
MR-4	37.04	9.383	4.507	1.97	69266.25	5.97	1.69	9713	23.28	19.24	26178	1394.99	0.624
MR-5	42.28	9.393	5.076	1.983	69008.65	6.37	1.84	11896	24.74	21.49	23188	1437.99	0.533
MR-6	58.67	6.398	3.721	1.497	64427.05	4.34	1.22	13462	22.82	37.24	22908	1687.99	0.481
MR-7	44.47	10.335	5.683	1.778	68272.65	6.87	1.90	12143	25.31	26.79	19488	1328.99	0.802
MR-8	37.22	9.031	4.919	1.512	56192.95	5.52	1.70	10804	23.64	25.20	23108	1001.00	0.525
MR-10	29.99 17.03	8 502	4.980	1.337	64905.45	5.20	1.62	9979	19.92	34.26	19058	1604.99	0.162
MR-11	45.2	8 754	4 366	1.705	68235.85	5.98	1.05	9710	21.45	19.87	26628	1527.99	0.546
MR-12	39.12	12.032	6.12	2.11	89681.05	6.69	2.26	8939	25.10	18.81	24368	2003.99	0.728
MR-13	43.57	8.339	4.097	1.929	65126.25	6.53	1.65	12535	30.21	33.74	19598	1739.99	0.727
MR-14	33.23	9.231	4.859	1.847	71005.05	6.22	1.67	12020	25.31	23.83	19858	1642.99	0.819
MR-15	31.97	7.067	3.518	1.607	61510.65	5.34	1.44	12071	28.10	36.69	17558	1294.99	0.892
MR-16	36.76	8.417	4.035	1.841	62357.05	5.80	1.47	13524	31.71	26.56	17878	1721.99	1.065
MR-17	47.16	10.039	5.333	1.767	80959.45	6.16	1.94	9374	22.57	24.92	24968	1717.99	0.572
MR-18	55.32	9.195	4.838	1.716	73903.05	5.72	1.84	7988	20.60	24.17	26978	1742.99	0.576
MR-19	48.35	8.843	4.702	1.832	71796.25	7.05	1.84	10403	23.34	26.50	22158	1498.99	0.657
MR-20	33.1	9.541	6.263	1.686	74160.65	5.90	2.05	7648	18.19	14.56	28418	1497.99	0.636
MR-21	34.02	9.32	4.569	2.004	67674.65	6.45	1.68	11330	28.07	32.37	17898	1568.99	0.841
MR-22	41.35	8.546	4.538	1.809	67297.45	6.47	1.77	14368	31.24	30.50	20928	2086.99	1.135
MR-23	40.01	9.823	5.822	2.074	72504.65	6.48	1.95	9806	24.09	17.20	22338	1630.99	0.534
MR-24 MD 25	37.63	9.374	5.86/	1.769	6/996.65	5.99	2.04	1362/	27.43	27.59	19938	1516.99	1.349
MR-25 MR-26	85.5 76.40	0.369	5.201	1.746	75971 85	6.57	2.05	9238	24.94	21.56	25908	1/8/.99	0.931
MR-20 MR-27	41.32	12 168	7.602	2 003	83305.45	7.42	2 49	12401	23.44	15.94	23008	1509.99	0.829
MR-28	71.14	9.052	5 289	1 574	74234 25	5.63	1.82	9343	20.25	19.46	28868	1307.99	0.866
MR-29	31.55	8.567	4.635	1.798	66432.65	5.28	1.78	8869	20.77	22.28	18638	1669.99	0.646
MR-30	31.28	8.675	6.095	1.692	75954.65	5.53	1.84	7365	17.94	15.46	28878	1628.99	0.472
MR-31	52.37	7.641	3.846	1.313	73286.65	4.41	1.40	5016	14.49	18.60	46468	1520.99	0.621
MR-32	57.86	12.439	6.822	1.725	90564.25	6.70	2.23	8150	22.09	20.98	27248	1718.99	0.802
MR-33	38.14	9.429	5.576	1.831	72099.85	6.03	1.94	9853	20.19	18.28	25998	1818.99	0.583
MR-34	57.11	10.616	6.156	1.615	92707.85	6.94	2.14	5484	20.32	17.67	39538	1996.99	0.414
MR-35	34.19	9.231	5.529	1.868	69514.65	6.46	1.86	13833	30.39	22.94	18998	1484.99	0.804
MR-36	43.39	8.987	5.619	1.802	67987.45	6.11	1.85	13112	26.02	22.78	21358	1293.99	0.818
MR-37	41.2	9.337	5.529	1.867	71511.05	6.55	1.95	13482	27.78	23.87	25008	1460.99	0.846
MR-30	33.07 46.57	0.33	5 360	1.913	20150.05	0.70	2.03	9399	24.07	22.24	20748	1220.99	0.657
MR-40	50.37	7.866	4 029	1.632	70526.65	4 56	2.00	8309	20.12	21.33	19308	1201.99	0.505
MR-41	44.92	10 535	6 566	2.067	98227.85	6.74	2.38	7499	20.12	18 37	27698	1858 99	1.037
MR-42	35	10.1	5.336	2.145	67122.65	7.14	1.91	10382	26.00	24.20	17218	1494.99	0.607
MR-43	67.86	9.99	5.083	1.969	79257.45	6.77	1.89	10152	20.20	37.52	34088	1547.99	0.533
MR-44	54.3	8.158	4.156	1.813	69551.45	5.48	1.46	12185	20.33	42.95	26008	1407.99	0.711
MR-45	61.5	8.34	4.1	1.755	65963.45	5.50	1.51	11814	21.03	38.56	27478	1565.99	0.612
MR-46	43.02	9.223	4.677	2.043	70683.05	6.56	1.69	13143	25.84	23.20	24608	1619.99	1.016
MR-47	42.64	7.982	4.27	1.948	62761.85	5.77	1.75	8532	17.85	21.57	32358	1474.99	0.373
MR-48	41.61	9.829	6.116	1.847	72605.85	6.56	1.89	7967	16.91	13.04	26068	1225.99	0.351
MR-49	62.71	9.058	5.301	1.767	78033.85	6.32	1.87	7805	20.22	15.98	26808	1544.99	0.357
MR-50	62.88	9.99	5.568	1.632	78217.85	5.79	1.77	9691	20.79	21.71	25708	1571.99	0.625
MR-51 MR 52	03.1	10.585	0.284	1./01	58080 45	/.00	2.02	8454	20.37	15.20	29008	1051.99	0.498
MR-52 MR-53	52.85 70.7	8 330	4.049	1.555	74006 25	4.8/	1.35	0/30	27.31	29.64	24328	1528.00	0.525
MR-54	49.42	8 129	3 71	1.009	66487 85	4 37	1.69	7881	16.56	19.04	20908	1706 99	1 447
MR-55	73,93	9.85	5.512	1.886	72247.05	5.99	1.96	7235	21.54	22.05	25478	1433.99	0.414
MR-56	73.43	9.572	5.651	1.675	66313.05	6.63	2.04	6224	20.99	18.68	24648	1405.99	0.255
MR-57	33.73	8.171	4.649	1.63	56404.65	5.07	1.66	8818	21.13	17.00	24458	1182.99	0.191
MR-58	46.54	11.697	7.111	2.369	76635.45	7.86	2.57	10516	25.15	15.81	21948	1743.99	0.624
MR-59	104.15	10.967	5.66	2.112	79708.25	7.52	2.08	12617	28.07	22.88	21128	1515.99	0.779

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Na(ppm)	Nb(ppm)	Nd(ppm)	Ni(ppm)	P(ppm)	Pb(ppm)	Pr(ppm)	Rb(ppm)	S(ppm)	Sb(ppm)	Sc(ppm)	Sm(ppm)	Sn(ppm)
MR-1	28556	9.862	21.467	53.74	914.5	7.30	5.37	36.03	756.00	0.29	22.35	5.029	2.6
MR-2	17666	11.242	27.357	65.5	1044.1	11.30	6.18	45.35	602.00	0.54	24.06	5.638	2.48
MR-3	19976	10.608	25.207	64.82	1084.3	9.80	6.10	39.88	555.00	0.50	24.37	6.288	3.04
MR-4	27816	11.594	26.207	63.65	969.5	7.50	6.15	47.93	818.00	0.35	24.99	6.527	2.76
MR-5	17916	10.626	27.977	71.92	988.3	13.50	6.83	49.84	575.00	0.49	21.29	6.551	2.92
MR-6	17006	9.052	21.387	96	962.2	11.50	5.24	70.24	559.00	0.42	22.25	5.423	2.61
MR-7	17876	10.938	26.687	71.6	1259.1	16.40	5.87	46.58	849.00	0.41	26.79	6.138	3.06
MR-8	21876	9.026	26.627	64.43	1104.5	7.70	6.46	38.92	795.00	0.23	25.48	6.314	2.73
MR-9	23886	8.329	21.537	49.09	1081.3	9.60	5.05	35.71	656.00	0.35	19.02	4.875	1.85
MR-10	15366	10.684	24.137	83.5	840.6	9.80	5.82	44.17	545.00	0.47	21.28	5.65	2.66
MR-11	24196	9.552	26.937	65.08	1025.5	11.20	5.93	41.9	755.00	0.33	22.85	6.253	2.66
MR-12	24246	15.499	27.437	66.98	1145.6	8.90	6.66	37.17	697.00	0.37	29.25	7.428	3.16
MR-13	1/086	11.44	29.787	98.44	1103.1	10.30	7.75	69.55	607.00	0.52	26.14	7.318	2.93
MR-14 MD 15	16226	10.289	26.467	85.63	949.2	14.50	6.19	46.54	617.00	0.42	18.01	5./1/	2.43
MR-15 MD 16	12706	10.574	31.107	99.7	/10.1	10.40	0.80	70.15	595.00	0.32	20.39	6.547	2.37
MR-10 MR-17	22286	12 254	26.667	80.51	928.1	8 20	6.12	20.42	592.00 661.00	0.4/	21.88	0.347	2.83
MR-17 MR-18	25380	10.54	25.007	104.5	986.7	6.00	5.81	37.43	590.00	0.30	22.55	5 717	2.80
MR-19	18376	10.296	27.637	86 28	1140	12 30	6.16	50 11	671.00	0.35	22.81	6.543	2.69
MR-20	25226	9 103	20.897	68.48	1161.2	13.00	4 92	28.62	712.00	0.25	21.66	5 203	2.05
MR-21	18096	13,706	30.107	95.66	1028.1	11.40	7.16	66.34	666.00	0.48	21.75	7.063	3.33
MR-22	16716	12.595	34.227	105.5	1041.4	13.90	8.59	75.45	561.00	0.32	20.67	7.698	2.73
MR-23	23526	11.759	28.437	59.7	1007.3	9.20	7.27	42.49	686.00	0.36	19.52	6.429	2.49
MR-24	16636	11.594	29.917	82.35	1007.3	12.70	7.32	56.85	605.00	0.53	25.51	6.186	2.34
MR-25	24296	11.429	28.117	57.46	1248.4	5.90	6.30	38.19	763.00	0.31	23.47	6.591	2.66
MR-26	21646	11.704	30.057	54.41	1422.8	9.80	6.66	46.32	865.00	0.31	21.69	7.398	2.89
MR-27	25816	10.634	26.857	49.48	1419	12.40	6.40	40.33	691.00	0.24	20.94	6.549	2.42
MR-28	24326	9.719	23.417	53.47	1140.9	6.10	5.13	29.17	1011.00	0.21	25.97	5.459	2.81
MR-29	20046	11.583	27.377	64.55	893	8.00	5.68	39.02	531.00	0.34	19.77	6.336	2.15
MR-30	25136	10.876	21.777	76.27	1036	9.30	4.71	26.91	757.00	0.21	24.37	5.445	2.08
MR-31	20796	8.348	18.627	158	925.7	4.70	4.27	23.14	965.00	0.23	28.43	5.139	2.1
MR-32 MD 22	21126	16.907	25.177	73.1	1563.6	9.40	6.00	32.33	692.00	0.23	27.68	5.489	3.23
MR-33	28376	9.594	24.257	04	1669.6	5.90	5.6/	39.18	/11.00	0.23	20.42	5.908	2.47
MR-34 MR-35	19/40	14.322	24.257	70.89	1787.6	10.60	7.65	23.99 52.01	670.00	0.28	20.04	6 3 4 5	2.73
MR-36	15326	9 864	26.017	71.68	1407.5	19.80	6.40	56.06	774.00	0.39	18.88	5.82	2.5
MR-37	17986	12 771	28.357	81.07	1653.2	21.70	7.04	56.17	769.00	0.20	19.65	6.108	2.42
MR-38	20896	12.859	24.897	65.36	1108.9	9.00	6.13	42.44	800.00	0.24	21.66	7.122	2.87
MR-39	21736	10.832	25.637	94.32	1815.8	7.90	5.71	38.64	671.00	0.35	25.67	6.502	2.54
MR-40	19716	10.371	21.717	57.08	1130.2	7.80	5.10	39.67	518.00	0.31	16.98	5.317	2.45
MR-41	23136	14.322	26.187	56.41	1239.8	10.70	5.61	32.67	677.00	0.21	27.57	6.709	3.18
MR-42	16076	11.044	30.627	67.25	1145.3	13.90	7.00	51.06	438.00	0.35	16.05	6.862	2.74
MR-43	17236	10.207	22.657	116.3	1511.2	8.20	5.44	55	696.00	0.40	27.03	5.81	2.3
MR-44	13466	10.395	24.997	106.2	1525.2	12.30	5.77	66.41	901.00	0.40	23.07	5.761	2.48
MR-45	14586	8.541	26.727	112.4	1408.8	12.00	5.68	59.27	724.00	0.42	21.75	6.375	1.91
MR-46	16326	9.894	28.377	78.19	1561.1	12.40	6.89	55.88	689.00	0.44	19.24	6.367	2.32
MR-47	15456	6.65	22.527	72.47	1174.5	8.90	5.16	41.66	701.00	0.25	19.1	5.04	1.68
MR-48	22896	7.805	20.747	37.57	1071	14.70	5.24	28.35	657.00	0.19	20.78	5.887	1.9
MR-49	23296	9.624	23.627	4/./4	1035.9	12.70	5.66	28.59	656.00	0.37	25.68	5.396	2.34
MR-50 MD 51	20306	10.738	23.327	68.34 50.20	991.6	17.30	5.4/	30.30	617.00	0.35	20.52	5.408	1.84
MR-51 MR-52	22506	8 724	20.1//	JY.39 46.61	822.0	14.00	0.55	20.09	2125.00	0.40	29.33	0.398	2.43
MR-52	14576	11 473	27 957	83 30	898 2	11 20	6.68	55 3/	673.00	0.30	25.24	5 885	2 51
MR-54	16376	5.149	17.647	70.26	846.1	6.80	4.06	31.82	551.00	0.20	22.09	4.312	2.51
MR-55	20286	9,103	27.757	53.97	990.8	15.30	5.85	39.38	667.00	0.29	23.02	7.166	2.2
MR-56	18006	9.464	25.047	57.05	772.9	5.70	5.27	31.96	595.00	0.40	24.06	6.064	2.45
MR-57	26696	9.143	19.977	46.36	871.4	6.50	5.16	37.74	683.00	0.22	21.65	5.3	1.74
MR-58	26716	11.913	29.247	52.54	1594.4	11.80	7.03	41.42	665.00	0.43	23.9	7.741	2.94
MR-59	18736	12.815	31.997	95.91	1803	10.30	7.21	71.5	643.00	0.44	19.51	7.58	3.83

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Sr(ppm)	Tb(ppm)	Te(ppm)	Th(ppm)	Ti(ppm)	Tl(ppm)	Tm(ppm)	U(ppm)	V(ppm)	W(ppm)	Y(ppm)	Yb(ppm)	Zn(ppm)	Zr(ppm)
MR-1	193.902	1.103	< 0.05	3.206	11110.51	0.22	0.63	0.718	160.70	0.80	1.68	3.873	92.11	85.242
MR-2	146.002	1.359	0.12	4.606	12419.71	0.39	0.61	0.912	198.40	2.10	1.68	4.162	110.94	64.914
MR-3	134.102	1.129	0.06	3.062	14771.71	0.21	0.63	0.635	219.40	0.80	1.68	3.737	110.11	65.805
MR-4	225.402	1.18	0.06	3.366	15335.71	0.18	0.65	0.761	207.90	1.00	1.68	4.211	98.2	81.106
MR-5	127.902	1.314	< 0.05	5.012	9572.11	0.33	0.74	0.999	163.40	1.10	1.68	4.878	96.61	67.29
MR-6	194.202	0.965	0.29	4.786	7415.71	0.22	0.55	1.049	154.00	0.90	1.68	3.488	104.51	66.135
MR-7	142.402	1.53	0.17	5.452	11999.71	0.33	0.86	1.176	199.00	1.10	1.68	4.789	117.49	88.608
MR-8	171.302	1.356	0.06	3.595	10670.11	0.23	0.69	1.19	157.40	0.80	1.68	3.837	108.65	76.057
MR-9	178.802	1.074	0.07	3.777	10000.51	0.17	0.66	0.801	165.50	1.00	1.68	3.613	70.07	59.711
MR-10	195.702	1.246	0.05	4.356	9814.51	0.24	0.62	0.975	178.80	0.90	1.68	4.139	91.05	72.537
MR-11	193.802	1.195	0.15	4.101	13103.71	0.32	0.71	0.923	183.70	0.90	1.68	4.471	104.7	81.469
MR-12	150.102	1.675	0.41	4.827	26855.71	0.32	0.96	0.999	301.50	1.00	1.68	5.689	134.03	78.862
MR-13	187.102	1.158	< 0.05	6.633	12443.71	0.43	0.63	1.226	186.50	0.80	1.68	4.122	110.94	87.772
MR-14	102.602	1.382	0.18	6.211	11157.31	0.52	0.67	1.328	185.50	1.00	1.68	3.911	90.14	60.283
MR-15	113.502	1.102	0.22	5.813	8289.31	0.39	0.45	1.158	162.00	0.90	1.68	3.273	97.79	61.889
MR-16	154.202	1.097	0.06	7.23	8596.51	0.26	0.61	1.308	181.10	1.10	1.68	3.705	102.62	75.584
MR-17	148.302	1.314	0.05	7.744	17051.71	0.17	0.84	1.172	230.80	0.90	1.68	5.263	108.76	70.612
MR-18	194.702	1.291	0.22	3.725	14495.71	0.41	0.61	0.749	230.20	0.60	1.68	4.301	127.06	85.165
MR-19	151.202	1.359	0.16	5.506	12131.71	0.32	0.73	1.09	196.10	0.80	1.68	5.02	110.63	50.119
MR-20	137.702	1.348	0.17	4.532	12503.71	0.12	1.00	0.684	215.80	0.90	1.68	5.712	84.75	62.538
MR-21	177.602	1.367	< 0.05	5.818	13055.71	0.33	0.60	1.284	191.00	1.00	1.68	4.062	99.55	93.657
MR-22	155.602	1.382	0.05	/.359	11148.91	0.36	0.65	1.651	196.20	1.00	1.68	4.509	120.61	91.259
MD 24	138.302	1.3/1	0.15	4.915	10450 51	0.33	0.87	0.979	185.20	1.00	1.08	3.413	102.59	44.155
MR-24	150.902	1.336	0.05	0.002	15551 71	0.44	0.80	0.764	233.90	1.00	1.00	4.909	102.38	22.943
MR-25	142 902	1.332	0.15	5 251	13115 71	0.21	0.73	1.064	199.80	1.20	1.08	5.438	145 57	48 59
MR-27	119 502	1.431	0.00	5.637	12659 71	0.44	1.01	1 184	198.90	1.10	1.68	6 124	130.29	38 393
MR-28	175 302	1.772	0.16	3 722	11999 71	0.77	0.74	0.749	204.00	0.90	1.68	4 642	188.42	33.817
MR-29	138 702	1.217	0.06	4 643	12731 71	0.22	0.69	0.84	192.80	1.00	1.68	4 603	77.11	41 847
MR-30	147.102	1.337	0.12	4.97	15671.71	0.16	0.81	0.774	255.60	0.80	1.68	4.898	82.55	64.397
MR-31	198.502	1.099	0.15	3.307	12239.71	0.22	0.63	0.685	214.50	0.60	1.68	3.911	92.12	100.554
MR-32	138.802	1.532	0.07	5.517	20591.71	0.17	0.99	0.919	272.00	1.00	1.68	5.921	101.79	79.94
MR-33	172.202	1.328	0.31	4.319	12011.71	0.27	0.74	0.862	197.70	0.90	1.68	6.224	102.93	45.928
MR-34	139.302	1.555	0.24	4.732	23723.71	0.19	0.90	1.472	313.60	1.00	1.68	5.879	127.48	128.384
MR-35	127.302	1.385	0.06	5.876	13139.71	0.41	0.76	1.344	223.00	1.00	1.68	4.663	116.87	84.142
MR-36	115.102	1.29	0.11	6	9018.91	0.30	0.81	1.369	170.00	0.80	1.68	4.638	113.02	76.167
MR-37	130.702	1.318	0.06	5.651	10972.51	0.20	0.74	1.128	208.90	1.00	1.68	4.602	130.18	82.514
MR-38	129.402	1.462	< 0.05	5.468	14399.71	0.22	0.92	1.082	225.50	0.90	1.68	5.7	117.61	71.723
MR-39	146.702	1.447	0.06	4.55	16295.71	0.24	0.72	0.894	226.80	0.80	1.68	4.777	126.33	71.437
MR-40	132.502	1.092	0.14	3.113	13427.71	0.23	0.59	0.761	187.70	0.90	1.68	3.983	90.07	56.895
MR-41	139.202	1.487	0.36	4.863	23087.71	0.23	1.02	0.964	419.10	1.00	1.68	6.359	138.19	61.592
MR-42	134.202	1.483	0.14	5./86	10827.31	0.33	0.83	1.039	143.50	1.10	1.68	5.152	96.32	67.389
MR-45	159.802	1.345	< 0.05	3.05	10172.21	0.20	0.76	1.139	224.40	0.70	1.68	4.301	123.21	85.176
MR-44 MR-45	131.302	1.213	0.24	4.339	0568 51	0.30	0.58	1.309	1/1.20	0.70	1.08	4.008	110.04	85.095
MR-46	149.402	1.175	0.10	4.300	9508.51	0.23	0.30	1.402	109.40	0.90	1.00	3.302	105.78	67.125
MR-40 MR-47	122.002	1.244	0.14	3.476	7480 51	0.30	0.72	0.77	137.70	0.90	1.68	4 346	80.58	50 845
MR-48	132 102	1.175	0.19	3 433	11754 91	0.23	0.82	0.756	171.20	1 40	1.68	5 523	110.01	32 233
MR-49	158 402	1.344	0.06	3 464	14339 71	0.22	0.02	0.634	205 50	1.40	1.68	4 753	189.67	47 413
MR-50	139.602	1.37	0.06	4.425	15875.71	0.31	0.75	0.908	208.00	0.90	1.68	4.789	152.85	55.96
MR-51	166.902	1.479	0.06	3.7	17375.71	0.25	0.88	0.832	233.10	1.10	1.68	5.539	221.18	53.199
MR-52	171.702	1.03	0.07	3.6	10518.91	0.22	0.55	0.731	178.40	1.10	1.68	3.929	83.77	65.629
MR-53	174.102	1.21	0.14	5.425	12911.71	0.44	0.71	1.608	245.00	2.10	1.68	4.792	148.8	56.708
MR-54	118.402	1.103	0.15	3.75	7599.31	0.30	0.66	0.583	186.70	0.60	1.68	3.826	102.75	30.946
MR-55	151.802	1.402	0.13	4.386	11705.71	0.29	0.79	0.746	171.60	1.20	1.68	4.749	112.5	38.822
MR-56	153.302	1.379	0.14	4.46	11102.11	0.17	0.78	0.735	164.10	1.20	1.68	4.962	131.74	41.715
MR-57	222.302	1.091	< 0.05	3.286	11316.91	0.23	0.59	0.674	205.70	0.90	1.68	3.965	81.44	64.804
MR-58	142.102	1.734	0.05	5.069	16955.71	0.32	1.19	0.893	234.20	1.10	1.68	6.621	138.61	44.619
MR-59	158.502	1.628	0.15	6.543	11696.11	0.39	0.85	1.122	177.10	1.40	1.68	5.309	128.93	46.863

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Au(ppb)	Ag(ppm)	Al(ppm)	As(ppm)	Ba(ppm)	Be(ppm)	Bi(ppm)	Ca(ppm)	Cd(ppm)	Ce(ppm)	Co(ppm)	Cr(ppm)	Cs(ppm)
MR-60	<	< 0.01	77979	6	241.41	2.61	0.12	29063	0.23	70.71	32.24	99.8	3.97
MR-61	<	< 0.01	82619	6.8	198.91	1.76	0.09	57290	0.33	52.66	39.61	88.6	2.85
MR-62	1	< 0.01	83107	4	187.81	2.69	0.08	34787	0.27	66.71	35.47	83.4	2.68
MR-63	<	< 0.01	78945	1.2	167.61	1.42	0.09	33356	0.23	53.95	33.19	87.7	1.99
MR-64	<	< 0.01	80932	3.2	174.91	2.12	0.03	32264	0.12	58.32	33.88	52.9	2.47
MR-65	<	< 0.01	61151	4.7	146.61	0.80	0.03	30080	0.15	38.43	31.16	60.2	1.52
MR-66	1	< 0.01	75382	15.6	191.91	1.23	0.07	37924	0.28	46.58	27.72	110.4	2.39
MR-67	<	< 0.01	63527	2	144.61	1.06	0.06	31405	0.16	41.95	21.14	61.6	1.87
MR-68	<	< 0.01	76913	2.9	161.11	1.47	0.21	29052	0.36	49.67	41.47	54.5	2.17
MR-69	1	< 0.01	78345	7	183.91	0.66	0.07	36207	0.14	51.55	28.59	113.8	2.67
MR-70	<	< 0.01	80454	4.8	201.81	1.84	0.13	37193	0.44	54.36	34.79	104.1	3.02
MR-71	1	< 0.01	85449	6.7	186.71	1.09	0.08	40882	0.45	41.33	34.74	119	3.58
MR-72	<	< 0.01	83862	3.3	144.11	1.35	0.04	39217	0.08	37.24	38.05	132.6	1.67
MR-73	1	< 0.01	78068	7.8	195.91	1.00	0.10	34818	0.22	56.24	25.6	128.8	3.12
MR-74	<	< 0.01	82275	6.2	190.51	1.64	0.11	35433	0.29	55.86	32.66	122	2.55
MR-75	1	< 0.01	80243	5.3	190.31	2.09	0.13	32953	0.44	55.62	29.82	126.7	2.64
MR-76	<	< 0.01	80456	3.2	172.21	1.59	0.11	33377	0.31	63.67	26.77	71.4	2.47
MR-77	< 1	< 0.01	81953	4.2	213.51	1.14	0.11	33610	0.18	70.52	26.86	87	2.97
MR-/8	l	< 0.01	/8601	4.2	208.71	1.38	0.07	31649	0.32	66.//	27.32	131.2	3.73
MR-/9	< 1	< 0.01	/4138	10.9	293.81	1.49	0.20	31893	0.16	58.72	25.76	107.2	6.94
MR-80	I	< 0.01	82341	0.1 5.1	218.91	1.04	0.09	30/10	0.32	51.32	30.70	159.8	3.06
MD 82		< 0.01	9733 82120	3.1 7.4	192.51	1.32	0.14	32983	0.22	51.52	38.73	1/3	4.2
MR-83		<0.01	70122	7.4	215.81	1.37	0.05	24701	0.30	62.00	47.52	150.0	3.37
MR-84	1	<0.01	85372	5.5	213.01	1.33	0.15	33112	0.42	58.94	25.08	125.5	3 10
MR-85	1	<0.01	85372	53	177.51	1.47	0.05	36196	0.20	51.36	42.61	151.4	2 77
MR-86	2	<0.01	86470	3.8	150.91	1.02	<0.002	35931	0.10	49.37	31.35	149.5	3.22
MR-87	<	<0.01	66080	10.9	395.91	1.10	0.10	14307	0.72	106 73	29.19	161.9	8.01
MR-88	<	<0.01	70686	79	198 31	2.12	0.07	27303	0.23	64 87	28.71	79.5	3.6
MR-89	<	< 0.01	73916	8.1	324.61	1.88	0.12	22056	0.22	95.48	27.31	103.6	5.39
MR-90	1	< 0.01	72940	17.6	287.11	1.37	0.17	41507	0.03	64.75	22.03	117.2	5.85
MR-91	1	< 0.01	77113	7.8	204.41	1.11	0.17	35571	0.27	60.39	29.63	180	2.93
MR-92	<	< 0.01	70409	9.5	305.81	1.52	0.11	27123	0.19	82.15	23.66	113.1	6.5
MR-93	3	< 0.01	76503	6.3	233.61	1.23	0.11	39525	0.17	55.50	25.41	124.9	3.36
MR-94	<	< 0.01	72562	8.1	264.01	1.37	0.19	29232	0.15	72.64	30.81	133.2	4.55
MR-95	1	< 0.01	69576	9.6	259.31	2.10	0.14	21166	0.30	70.38	28.26	121	6.09
MR-96	<	< 0.01	75459	9.2	262.91	11.89	0.21	27897	0.33	75.64	39.57	197.4	6.06
MR-97	1	< 0.01	83107	10.1	188.51	1.00	0.12	45885	0.11	44.62	41.92	244.5	4.16
MR-98	7	< 0.01	78157	9.4	274.41	0.91	0.61	35295	0.14	53.93	28.45	124.4	8.11
MR-99	<	< 0.01	76980	7.1	154.41	1.08	0.07	35603	0.31	48.55	25.88	110.4	2.32
MR-100	1	< 0.01	70975	8.3	191.71	1.05	0.06	28798	0.31	51.12	29.21	127.7	3.21
MR-101	<	< 0.01	76480	7.7	204.91	0.97	0.04	33578	0.17	53.38	37.26	158.5	3.18
MR-102	l	< 0.01	65958	5./	237.11	1.68	0.18	24218	0.29	69.02	26.36	195.7	3.68
MR-105 MD 104	< 2	< 0.01	669/9	/.9	2/2.51	2.11	0.19	21293	0.49	69.60	33.85	1/9.4	4.58
MD 105	3	< 0.01	57511	6.2	220.11	1.89	0.55	16047	0.40	90.11	20.30	120.0	7.1
MR-105		<0.01	76012	0.5	107.51	1.62	0.19	22520	0.43	48.62	42.52	271.7	2.93
MR-107	1	<0.01	/0913	4.0 8.7	255.81	1.00	0.17	15187	0.44	40.02	45.52 26.48	100.2	3.61
MR-108	2	<0.01	67922	7	237.41	1.17	0.10	28957	0.29	45.54	20.46	112.7	3.66
MR-109	<	<0.01	107061	14	158.21	0.75	0.14	67562	0.16	20.73	37.88	38.9	3.04
MR-110	<	< 0.01	73273	7.5	246.71	1.14	0.16	46977	0.15	47.56	28.83	81.4	4.77
MR-111	<	< 0.01	82230	8.7	233.71	0.71	0.04	39196	0.08	48.55	37.91	67.2	3.74
MR-112	1	< 0.01	80310	9.1	287.81	1.11	0.21	33748	0.18	52.30	33	98.4	13.31
MR-113	<	< 0.01	86149	8.4	182.41	0.79	0.11	38210	0.06	25.55	29.11	72.1	11.86
MR-114	<	< 0.01	69243	11.8	274.91	1.62	0.12	32741	0.41	58.30	26.63	109.3	4.26
<u>MR-11</u> 5	<	< 0.01	72362	7.6	201.61	1.37	0.08	27769	0.49	46.72	31.58	97.1	2.96
MR-116	1	0.59	71386	11.7	301.91	2.08	0.27	25777	0.39	65.62	29.5	97.7	6.29
MR-117	2	< 0.01	74327	15.5	345.91	2.03	0.19	17360	0.39	82.85	30.83	115.1	6.46
MR-118	<	< 0.01	61840	13.2	393.71	2.19	0.32	14837	0.47	91.60	28.38	106.9	9.12

پیوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Cu(ppm)	Dy(ppm)	Er(ppm)	Eu(ppm)	Fe(ppm)	Gd(ppm)	Ho(ppm)	K(ppm)	La(ppm)	Li(ppm)	Mg(ppm)	Mn(ppm)	Mo(ppm)
MR-60	47.77	10.115	5.519	1.828	75145.05	7.54	2.09	11814	29.29	24.91	21868	1408.99	1.045
MR-61	114.56	10.136	5.478	1.759	86175.85	6.59	2.13	9950	24.07	19.83	27468	1632.99	0.712
MR-62	207.15	11.547	7.075	2.113	78751.45	7.62	2.50	10023	28.04	15.65	26298	1284.99	0.838
MR-63	79.99	10.959	6.957	1.947	82689.05	7.41	2.29	9942	23.81	13.56	26768	1321.99	0.482
MR-64	75.19	11.654	6.565	1.94	87187.85	7.13	2.43	8760	25.72	13.12	25288	1404.99	0.634
MR-65	33.13	8.303	4.997	1.582	63047.05	5.23	1.80	7252	13.69	11.62	17338	1435.99	0.417
MR-66	32.82	7.309	3.743	1.3	61759.05	4.55	1.37	10222	19.77	17.97	22578	1171.99	0.518
MR-67	26.07	9.677	5.535	1.751	59357.85	5.57	2.19	6711	17.90	14.47	18028	1124.99	0.551
MR-68	283.17	12.819	7.137	2.174	86424.25	8.72	2.49	7989	21.84	18.07	20598	1524.99	0.8
MR-69	34.68	7.969	4.506	1.69	60471.05	5.50	1.58	10372	21.60	17.01	21938	1183.99	0.378
MR-70	61.11	11.362	6.214	1.989	79009.05	7.30	2.23	8825	24.10	17.73	23128	1622.99	0.55
MR-71	46.07	7.508	3.744	1.323	60057.05	4.93	1.39	10080	18.89	24.70	25928	1354.99	0.494
MR-72	37.43	10.21	5.593	2.007	79395.45	6.33	1.98	7601	14.44	14.95	26508	1839.99	0.405
MR-73	32.31	8.104	4.345	1.662	57913.45	5.45	1.61	11824	23.49	17.18	22548	1027.99	0.763
MR-74	46.37	11.85	7.871	2.072	76644.65	7.45	2.49	9884	24.12	19.58	23778	1669.99	0.83
MR-75	65.06	10.288	5.653	1.856	76147.85	6.42	2.02	8972	23.47	19.65	21208	1493.99	0.866
MR-76	34.99	12.968	8.215	2.392	82164.65	8.75	2.81	9728	24.92	14.12	20798	1540.99	0.946
MR-77	34.91	12.861	7.941	2.284	81345.85	8.02	2.80	11556	28.19	18.26	22538	1654.99	0.592
MR-/8	34.86	10.6//	5./1	1.922	6/150.25	6.66	2.20	11/83	27.61	27.38	23/28	1381.99	0.688
MR-/9	34.23	6.882	5.429	1.431	521/2.65	4.76	1.35	14080	26.27	31.79	18198	1314.99	0.281
MR-80 MD 91	4/.2	9.472	5.272	1.821	/0/84.25	6.14 5.64	1./4	0514	23.62	29.37	20010	1424.99	0.685
MD 82	50.74	0.726	4.097	1.0/4	72119 25	5.04	1.00	9314	21.23	25.79	28018	1484.99	0.659
MR-83	39.24 13.16	9.720	4.793	1.090	64887.05	5.80	1.70	9042	22.42	31.33	2/098	1545.99	1.016
MR-84	32.27	12 207	6.644	1.723	67610.45	7 38	2 35	12885	25.01	22.66	20388	1317.99	0.500
MR-85	46.78	11.092	5 977	2.092	76782.65	7.16	2.55	9610	22.70	26.70	26898	1649.99	0.356
MR-86	55.07	8.83	4 766	1 541	70416.25	5 57	1 71	7293	19.41	32 54	27868	1106.99	0.500
MR-87	39.67	9.046	4 749	1.874	59477 45	6.45	1.71	17180	42 51	40.64	20108	1556.99	1 538
MR-88	34 97	12 362	6.887	1.071	73985 85	7.09	2.33	11227	26.66	18.65	18698	1389.99	1 131
MR-89	33.6	11.983	6.303	1.963	74639.05	7.71	2.36	14049	36.25	25.96	21678	1516.99	1.313
MR-90	27.08	7.927	4.206	1.632	50461.45	5.82	1.71	14595	29.51	29.78	17468	1026.99	0.311
MR-91	32.86	7.088	4.62	1.522	59431.45	4.81	1.60	11196	27.38	19.56	23228	1330.99	0.42
MR-92	32.36	8.314	4.075	1.457	54067.85	5.00	1.48	13050	29.53	31.05	18058	1137.99	0.402
MR-93	31.66	8.746	4.76	1.645	59845.45	6.09	1.61	10291	23.59	20.83	20068	1267.99	0.494
MR-94	33.45	8.474	4.298	1.586	56901.45	5.44	1.49	14337	28.17	31.11	20208	1389.99	0.429
MR-95	39.73	6.111	3.284	1.454	50093.45	5.05	1.18	15810	28.33	36.31	16928	1110.99	0.433
MR-96	42.74	7.221	4.704	1.51	56791.05	5.47	1.46	13153	30.36	31.84	22508	1400.99	0.568
MR-97	44.64	5.717	3.159	1.371	50811.05	4.27	1.11	7847	19.78	28.86	29368	960.29	0.469
MR-98	77.93	4.879	2.762	1.114	51712.65	3.54	0.96	12113	25.74	37.90	22268	881.49	0.407
MR-99	31.38	8.296	5.454	1.639	63249.45	5.14	1.67	9820	19.03	18.66	24338	1101.99	0.577
MR-100	35.44	9.016	5.38	1.78	64003.85	6.25	1.74	10918	23.43	26.86	21658	1340.99	1.08
MR-101	34.65	9.666	5.594	1.707	64703.05	6.13	1.97	9813	22.45	22.68	22978	1613.99	0.542
MR-102	33.52	7.827	4.189	1.503	55475.45	6.02	1.57	12432	28.49	32.60	20378	901.19	0.734
MR-103	3/	9.379	4.542	1.5/	590/2.65	6.1/	1.//	12288	32.21	31.14	20848	1388.99	1.215
MD 105	20.05	7.625 9.625	4.107	1.095	52404.65	6.22	1.54	12701	40.70	20.20	12018	1156.99	0.020
MR-105	29.03	0.000	4.445	1.040	60203.85	6.07	1.07	0758	21.33	24.90	33018	1766.00	0.923
MR-107	41.65	5.564	2 023	1.022	15364 65	4.25	1.09	12680	21.40	24.90	13088	1168.00	0.740
MR-107	35.9	6 332	3 443	1.230	50433.85	4.01	1.13	12007	21.00	25.45	18888	1049 99	0.467
MR-109	36.06	4 074	2 301	0.951	47066.65	2 79	0.78	4803	9.86	20.02	32568	843 19	0.206
MR-110	30.72	5 31	2.56	1 346	45870.65	3.88	0.96	12339	23.34	25.25	15328	983 29	0.200
MR-111	46.35	6.835	3.851	1.483	67260.65	4.97	1.45	9792	21.50	30.74	26058	1524.99	0.667
MR-112	30.6	5.367	3.177	1.238	48952.65	4.49	1.22	12113	24.25	42.06	22028	1308.99	0.565
MR-113	23.08	4.465	2.385	1.188	45953.45	3.70	0.95	8517	13.19	58.37	28538	897.59	0.578
MR-114	39.13	7.007	4.099	1.359	52954.65	4.93	1.43	11598	25.46	27.12	15868	1551.99	0.574
MR-115	67.55	7.282	3.75	1.503	59486.65	5.58	1.38	8756	19.49	26.73	17398	1283.99	0.584
MR-116	56.47	7.808	3.89	1.76	54270.25	5.60	1.56	12648	28.25	46.56	14868	1477.99	0.555
MR-117	36.71	6.219	3.462	1.48	54941.85	6.00	1.35	16233	39.28	47.15	13138	1099.99	0.617
MR-118	36.94	7.075	3.516	1.734	49900.25	5.82	1.32	20703	40.37	52.47	12208	1243.99	0.696

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Na(ppm)	Nb(ppm)	Nd(ppm)	Ni(ppm)	P(ppm)	Pb(ppm)	Pr(ppm)	Rb(ppm)	S(ppm)	Sb(ppm)	Sc(ppm)	Sm(ppm)	Sn(ppm)
MR-60	20386	12.067	29.637	80.46	896.8	8.00	7.02	62.22	519.00	0.50	27.13	6.926	2.94
MR-61	22926	14.036	28.477	52.76	1709.6	10.70	6.72	41.46	1051.00	0.30	23.78	7.058	4
MR-62	24896	12.815	32.867	50.9	1392.1	7.80	7.47	46.34	718.00	0.29	27.46	8.263	9.11
MR-63	24776	11.187	28.077	38.76	1529.1	10.90	6.39	29.1	771.00	0.24	20.23	6.567	2.27
MR-64	29726	13.805	27.817	38.21	1393.4	6.20	6.74	36.81	596.00	0.26	21.56	7.072	2.97
MR-65	21806	7.392	20.087	32.98	1043.1	5.50	4.50	34.49	600.00	0.28	17.99	5.19	2.35
MR-66	24236	9.44	21.067	58.46	1002.5	6.90	4.92	41.71	806.00	0.33	21.52	5.1	2.43
MR-67	20356	10.587	21.687	28.4	960.8	3.20	5.17	26.46	480.00	0.25	17.28	5.266	2.01
MR-68	22266	12.782	27.497	40.4	1159.5	12.10	6.21	32.82	610.00	0.32	23.72	7.156	2.28
MR-69	21746	8.398	24.197	53.37	977.1	9.20	5.89	42.84	858.00	0.36	17.53	5.196	2.01
MR-70	24036	13.387	29.317	56.76	1093.7	12.70	6.56	41.65	654.00	0.35	24.17	6.842	2.79
MR-71	23346	9.129	18.777	69.71	920.1	9.10	4.79	43.73	753.00	0.34	21.92	4.792	2.73
MR-72	29116	11.737	21.967	68.84	1131.6	4.90	4.65	35.11	564.00	0.23	20.86	6.293	2.82
MR-73	21476	8.782	24.997	60.03	837.5	9.70	5.92	46.76	686.00	0.41	15.73	5.672	1.92
MR-74	25866	12.375	31.167	53.25	1362.7	22.10	7.01	38.94	690.00	0.30	21.95	7.15	2.6
MR-75	21386	12.199	28.127	59.37	1148.1	14.70	6.14	35.93	715.00	0.35	19.72	7.242	2.67
MR-76	29526	11.671	33.167	38.96	1609.7	14.40	7.39	34.53	547.00	0.36	19.17	7.891	2.71
MR-77	27496	13.244	34.707	48.6	1630.2	9.90	8.14	40.58	581.00	0.35	20.1	7.706	2.73
MR-78	23246	12.21	31.757	62.38	1258.5	9.80	7.29	48.7	727.00	0.21	23.04	7.314	2.49
MR-79	15206	9.15	22.857	62.7	718.2	15.20	6.11	64.48	615.00	0.41	19.34	4.822	2.12
MR-80	23406	11.748	27.547	94.7	1050.9	8.10	6.21	51.76	787.00	0.39	26.05	6.455	3.15
MR-81	18176	10.731	25.107	99.7	711	10.10	5.55	54.18	680.00	0.32	23.17	5.838	2.51
MR-82	18916	10.288	26.447	97.85	1234.9	16.40	5.67	45.68	823.00	0.39	22.98	6.538	2.93
MR-85	13/20	10.021	28.707	91.32	1159.5	16.90	0.83	57.74	/08.00	0.41	21.54	6.283	2.4
MR-84	28376	10.557	27.967	54.96	10/4.3	9.70	6.20	48.49	553.00	0.27	19.74	6.49	3.52
MD 86	238/0	8 001	28.207	97.37	1085.5	17.20	5.39	28.02	850.00	0.34	25.09	0.023 5.460	3.19
MD 97	10226	0.991	20.277	120.0	1106 /	17.20	10.17	20.92	550.00	0.20	20.91	7.9	2 20
MR-88	26566	14 223	30.337	58.65	1100.4	8 70	7.48	105.5	629.00	0.38	23.60	7.603	3.24
MR-89	16356	15.048	36 577	89.74	1556	20.20	8.92	78 74	691.00	0.49	23.09	8.012	3.47
MR-90	17066	9 341	28.017	42.65	751.3	23.00	6.91	65.24	706.00	0.46	18.36	5.602	24
MR-91	21266	9 976	25.057	75 74	859.6	15 50	6.29	41 79	619.00	0.48	19.2	4 825	2.31
MR-92	15346	9.53	29.297	68.46	730.9	14.90	7.48	64.81	660.00	0.50	23.07	5.663	2.68
MR-93	19716	10.067	27.387	63.9	767.7	12.20	6.49	48.31	790.00	0.34	17.4	5.9	2.66
MR-94	19116	10.923	29.757	83.73	935.3	13.80	6.89	76.36	773.00	0.56	20.77	7.002	2.73
MR-95	12486	8.31	27.797	86.74	1110.4	15.20	6.80	86.87	695.00	0.58	19.23	6.023	2.58
MR-96	14746	9.849	31.657	151	921.3	12.00	7.88	66.2	531.00	0.80	21.06	6.046	3.01
MR-97	15536	7.566	20.787	192.3	567.4	13.20	4.71	35.49	701.00	0.77	17.27	4.529	1.7
MR-98	12916	10.107	21.957	144.5	670.1	22.50	5.79	59.22	505.00	0.91	17.99	4.483	1.83
MR-99	19546	9.516	22.987	56.36	1165.7	11.70	5.40	36.88	675.00	0.25	18.92	5.773	1.86
MR-100	16196	12.166	29.107	75.29	986.7	11.20	6.61	49.46	676.00	0.45	19.8	6.17	2.6
MR-101	19006	9.919	28.737	95.54	814.8	12.50	6.72	45.15	642.00	0.41	18.01	5.743	2.56
MR-102	13696	13.882	26.837	127.7	776.7	14.70	6.96	65.28	636.00	0.77	18.23	5.947	2.51
MR-103	14366	15.752	29.747	113.7	771.8	13.30	6.87	64.34	489.00	0.75	22.23	6.675	2.93
MR-104	12556	16.687	34.497	83.19	823.7	29.60	8.29	114.3	441.00	1.60	17.66	6.541	2.77
MR-105	13436	14.322	30.227	99.08	973	14.80	6.86	61.71	505.00	0.60	16.11	7.166	3.08
MR-106	18656	11.275	27.437	148.7	935.3	12.00	6.29	43.01	533.00	0.43	20.16	5.719	2.2
MR-107	11566	11.187	21.837	73.37	688.6	11.10	5.20	65.24	310.00	0.85	14.93	4.93	2.08
MR-108	14316	9.549	20.777	61.55	1161.7	10.50	5.37	51.66	609.00	0.49	16.6	4.822	2.43
MR-109	17806	4.162	10.757	41.05	512.9	10.30	2.32	15.55	818.00	0.44	25.32	2.644	0.91
MR-110 MD 111	13666	8.379	21.377	63.31	742.3	12.10	5.44	61.09	631.00	0.50	16.71	5.41	2.24
MD 112	184/6	8.823	23.81/	37.32	1581.6	/.30	5.75	54./1	505.00	0.26	25.08	5.415	2.1
MR 112	11956	8.958	22.697	/2.18	025.5	19.90	2.65	03.32 28.5	393.00 706.00	0.82	21.50	4.482	1.58
MR 114	10990	3.743	13.247	0J.1 55.00	427.3	15.90	5.4/	52.57	504.00	0.85	19.24	5.303	1.89
MR_114	1/090	12.820	24.14/	55.88 77.22	139.8 877 2	0.60	5 55	25.57 27.20	460.00	0.47	10.4	5.189	2.38
MR-116	10920	13.006	22.41/	77 75	800.8	22.00	6.08	76.83	444.00	0.50	19.00	6.431	2.43
MR-117	7608	12 60/	37 / 57	121.6	508.4	26.00	8.67	95.59	343.00	1 10	17.23	7.642	3.07
MR-118	9347	14.696	36.787	101.6	987.4	30.20	9.59	144.4	433.00	1.08	17.1	8.069	2.82

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Sr(ppm)	Tb(ppm)	Te(ppm)	Th(ppm)	Ti(ppm)	Tl(ppm)	Tm(ppm)	U(ppm)	V(ppm)	W(ppm)	Y(ppm)	Yb(ppm)	Zn(ppm)	Zr(ppm)
MR-60	150.102	1.493	< 0.05	6.595	13403.71	0.51	0.77	1.301	203.50	1.20	1.68	5.149	120.72	53.177
MR-61	195.302	1.34	0.06	3.703	18827.71	0.27	0.86	0.816	264.70	2.00	1.68	5.19	160.97	74.022
MR-62	152.902	1.893	0.25	5.218	17699.71	0.33	0.97	1.224	215.60	1.70	1.68	5.119	146.51	51.725
MR-63	120.602	1.68	0.1	4.422	13103.71	0.38	0.98	0.718	193.60	1.10	1.68	5.857	106.31	28.031
MR-64	144.802	1.772	0.13	4.88	14723.71	0.35	0.88	0.77	177.10	1.50	1.68	5.719	135.59	35.137
MR-65	148.702	1.239	< 0.05	2.641	11680.51	0.31	0.70	0.456	186.40	1.00	1.68	4.787	100.74	25.842
MR-66	192.302	1.026	0.42	3.579	10049.71	0.26	0.55	0.946	169.40	0.80	1.68	3.611	97.61	102.083
MR-67	118.702	1.36	0.15	3.41	14195.71	0.32	0.76	0.74	177.20	0.90	1.68	5.254	80.5	27.459
MR-68	127.602	2.015	0.15	5.036	16283.71	0.38	1.00	1.273	213.40	1.20	1.68	5.918	321.96	49.822
MR-69	168.102	1.138	0.06	4.239	10100.11	0.25	0.65	0.756	141.70	0.80	1.68	4.107	90.07	51.263
MR-70	166.702	1.454	0.05	4.199	18671.71	0.29	0.84	0.869	248.20	1.10	1.68	5.951	166.48	73.065
MR-71	220.002	1.124	< 0.05	3.844	9288.91	0.25	0.51	0.875	147.60	1.00	1.68	3.351	105.76	94.559
MR-72	191.402	1.459	0.06	2.662	16883.71	0.23	0.74	0.479	168.80	1.00	1.68	4.716	106.45	51.428
MR-73	155.602	1.131	0.08	4.521	8942.11	0.25	0.76	0.862	153.50	1.10	1.68	4.094	76.26	56.95
MR-74	148.202	1.813	< 0.05	4.325	14687.71	0.27	0.99	0.873	230.70	1.10	1.68	6.316	149.11	47.303
MR-75	134.402	1.421	0.15	4.382	13499.71	0.39	0.83	1.012	216.90	0.90	1.68	5.437	186.45	46.654
MR-76	126.702	1.776	< 0.05	4.821	13835.71	0.30	1.06	0.953	210.20	1.10	1.68	7.357	156.42	38.129
MR-77	135.802	1.839	0.15	4.937	14111.71	0.47	1.13	1.016	187.30	1.00	1.68	6.987	157.85	50.284
MR-78	151.702	1.398	0.16	4.391	14543.71	0.24	0.83	1.321	227.00	0.90	1.68	5.591	129.77	63.011
MR-79	197.702	1.034	0.06	5.979	7686.91	0.37	0.49	0.959	139.60	1.20	1.68	2.95	111.05	44.806
MR-80	169.802	1.338	0.47	4.637	13475.71	0.24	0.80	1.043	206.70	0.90	1.68	5.052	118.95	62.131
MR-81	156.402	1.235	0.4	4.975	11042.11	0.32	0.60	1.054	188.40	0.90	1.68	4.207	94.7	75.936
MR-82	149.702	1.333	0.06	4.464	11187.31	0.16	0.82	1.007	192.30	1.00	1.68	4.878	129.45	59.293
MR-85	123.202	1.199	0.06	6.348	8/34.51	0.49	0.65	1.546	160.30	1.00	1.68	4.629	100.26	61.53/
MR-84 MD 85	151.902	1.486	< 0.05	5.115	12407.71	0.26	0.93	1.145	1/9.10	1.00	1.68	5./16	113.85	41.264
MD 96	140.302	1.455	0.05	4./39	13403.71	0.18	0.90	0.979	190.10	0.80	1.08	3.130	104.97	34.112
MD 97	131.002	1.2/9	0.00	0.704	0122.01	0.12	0.77	0.8/3	184.30	0.00	1.08	4.332	104.87	47.10
MR-88	141.302	1.180	0.29	9.704	9138.91	0.30	0.75	1.808	175.60	1.10	1.08	5 284	119.05	92.931
MR-80	117 202	1.04	0.00	6.002	10778 11	0.27	0.92	1.15	1/3.00	1.00	1.00	5 747	122.02	70.48
MR-0)	174 202	1.041	0.10	6 207	8584 51	0.28	0.57	0.708	160.20	1.00	1.08	3.747	110.21	31 023
MR-91	168 402	1.125	0.00	5.081	10551 31	0.45	0.05	0.99	179.40	1.00	1.68	3 844	88.28	53 441
MR-92	196 202	1.066	0.17	5 911	9801 31	0.32	0.60	0.964	154 40	1.00	1.68	3 541	108 76	48 502
MR-93	150.602	1.000	0.07	5 531	9287 71	0.28	0.00	0.783	145.10	0.90	1.68	4 488	92.37	46 797
MR-94	178.702	1.25	0.14	6.948	8742.91	0.48	0.58	1.121	148.30	1.10	1.68	4.026	102.54	59.612
MR-95	175.202	0.969	0.08	6.933	6041.71	0.27	0.52	1.079	146.70	1.10	1.68	2.917	105.14	52.308
MR-96	178.002	1.118	< 0.05	6.995	8084.11	0.44	0.47	1.093	168.50	1.10	1.68	4.057	95.61	59.557
MR-97	205.502	0.788	0.06	4.499	6908.11	0.09	0.56	0.767	151.50	0.70	1.68	3.005	86.98	48.348
MR-98	216.202	0.697	< 0.05	5.75	7569.31	0.31	0.46	0.886	175.20	0.90	1.68	2.276	89.89	41.143
MR-99	109.302	1.191	0.07	4.086	9946.51	0.20	0.78	0.984	165.70	0.80	1.68	3.985	84.64	45.125
MR-100	112.602	1.274	0.17	5.781	10433.71	0.29	0.78	1.197	174.10	1.10	1.68	5.265	93.58	55.971
MR-101	134.402	1.398	0.17	5.34	10966.51	0.13	0.81	0.932	167.90	0.60	1.68	5.323	98.72	57.313
MR-102	135.302	1.152	0.06	7.385	7930.51	0.39	0.57	1.423	133.30	1.40	1.68	3.669	97.74	61.757
MR-103	126.702	1.338	0.4	7.507	10361.71	0.50	0.60	1.407	161.00	1.30	1.68	4.353	122.28	67.444
MR-104	179.602	1.296	0.14	12.101	7853.71	0.57	0.63	2.221	142.00	2.20	1.68	3.558	126.65	65.398
MR-105	101.602	1.238	< 0.05	7.568	8477.71	0.46	0.65	1.823	133.40	1.50	1.68	4.589	123.11	62.769
MR-106	123.302	1.295	0.15	4.876	12047.71	0.38	0.80	1.25	182.10	0.90	1.68	5.322	111.05	56.169
MR-107	118.502	0.801	0.05	5.659	8398.51	0.54	0.42	1.248	129.70	1.00	1.68	2.903	127.79	51.846
MR-108	154.402	0.85	0.37	4.739	8585.71	0.23	0.52	0.774	180.70	0.90	1.68	3.21	101.3	54.86
MR-109	420.802	0.625	0.21	1.934	6140.11	0.31	0.24	0.422	166.10	0.30	1.68	1.979	75.36	44.443
MR-110	209.202	0.818	0.05	4.96	6240.91	0.32	0.35	0.794	132.40	0.70	1.68	2.579	81.86	50.207
MR-111	205.202	1.01	0.06	5.64	8264.11	0.20	0.69	0.926	201.70	1.00	1.68	4.143	92.03	43.189
MR-112	211.702	0.804	0.41	6.199	6701.71	0.45	0.44	1.291	186.60	1.00	1.68	3.038	97.54	54.86
MR-113	197.802	0.724	0.15	4.262	5242.51	0.25	0.37	0.641	154.80	0.80	1.68	2.397	80.96	44.487
MD 115	188.902	0.946	0.06	4.957	10245.31	0.19	0.60	0.9/1	1/2.20	1.30	1.68	3.217	108.1	64.892
MD 114	134.902	1.09/	0.15	4.139	9334.11	0.17	0.62	0.811	170.00	0.90	1.08	3.3/4	113.1	19.984
MD 117	224.402	1.208	0.05	0.800	7029.01	0.37	0.55	1.292	1/0.30	1.40	1.08	2.449	132.03	54.607
MD 110	205 702	1.01/	0.18	10.392	6/25 21	0.22	0.01	2 001	137.40	1.70	1.08	2.04	117.18	54.007 61.02
WIN-118	205.702	1.108	0.05	11.331	0455.51	0.00	0.31	2.001	157.70	1.70	1.08	2.943	124.//	01.02

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Au(ppb)	Ag(ppm)	Al(ppm)	As(ppm)	Ba(ppm)	Be(ppm)	Bi(ppm)	Ca(ppm)	Cd(ppm)	Ce(ppm)	Co(ppm)	Cr(ppm)	Cs(ppm)
MR-119	<	< 0.01	64215	13.3	395.51	1.68	0.28	18685	0.52	92.40	27.43	115.3	9.37
MR-120	<	< 0.01	58787	8.5	248.01	1.18	0.24	28045	0.38	48.07	27.83	110	3.12
MR-121	<	< 0.01	38319	2.5	103.91	0.63	0.12	15304	0.09	27.23	17.33	61.8	1.36
MR-122	<	< 0.01	70187	6.4	382.51	1.31	0.17	21749	0.67	82.48	27.8	107.3	8.75
MR-123	<	< 0.01	65569	10.7	205.61	0.73	0.07	90278	1.43	40.30	32.16	113.9	2.36
MR-124	<	< 0.01	75193	6	163.21	0.84	0.16	31808	0.26	40.50	35.45	134.1	2.09
MR-125	<	< 0.01	51261	14.6	403.31	1.37	0.19	15166	0.66	127.63	24.04	113.5	8.84
MR-126	1	< 0.01	74449	9.6	261.21	1.52	0.19	30833	0.41	71.32	33.53	122	6.36
MR-127	<	< 0.01	75315	9	259.21	1.22	0.22	26837	0.54	77.42	38.96	150.2	3.55
MR-128	<	< 0.01	76036	11.7	302.91	1.00	0.12	26222	0.26	90.13	51.03	156.4	4.46
MR-129	<	< 0.01	58621	3.4	141.01	0.73	0.12	26709	0.34	37.06	30.33	94.9	2.3
MR-130	1	< 0.01	81054	5.2	146.21	0.66	0.09	45567	0.40	30.34	37.59	97.2	2.03
MR-131	<	< 0.01	71585	7.8	277.21	1.00	0.14	24197	0.44	57.56	51.09	286.8	5.08
MR-132	<	< 0.01	56711	3.3	189.41	1.15	0.11	19650	0.18	45.87	45.43	424.5	2.32
MR-133	1	< 0.01	77679	5.4	362.01	1.67	0.13	32932	0.57	59.41	31.71	107.4	10.44
MR-134	1	< 0.01	77701	8.4	238.21	1.41	0.15	57937	0.18	53.12	28.36	132.8	4.47
MR-135	2	< 0.01	84328	4.5	253.71	1.32	0.05	42387	0.29	53.72	35.15	144.1	5.27
MR-136	<	< 0.01	67989	3.4	242.81	1.39	0.09	31861	0.14	43.69	25.81	137.5	3.59
MR-137	1	< 0.01	59842	1.8	106.41	0.37	0.17	35592	0.16	22.83	22.17	80.2	1.65
MR-138	I	< 0.01	63682	8.9	368.31	1.60	0.10	30589	0.23	51.24	32.75	107.6	4.66
MR-139	<	< 0.01	86848	4.4	180.51	0.64	0.27	48821	0.25	38.55	33.33	146.1	2.96
MR-140 MD 141	1	< 0.01	/9389	5.4	181.91	0.88	0.09	40383	0.13	44.06	30.74	149.2	2.92
MR-141 MD 142	1	< 0.01	85949	4.8	195.81	0.50	0.05	49044	0.20	44.18	34.91	180.3	5.75
MD 142	2	<0.01	79270	0.2	212.01	0.05	0.13	42303	0.22	45.44	25.00	91	3.51
MR-143	5	<0.01	84517	9.5	299.61	0.93	0.05	41123	0.08	56.27	23.78	105.7	4.73
MR-145	1	<0.01	83/18	2.0	187.01	1.09	0.15	43747	0.27	30.27	41.85	165.5	7.74
MR-145	1	<0.01	74704	11.1	238 31	1.07	0.10	37617	0.07	70.75	35.48	105.5	5.49
MR-147	<	<0.01	80754	3.4	176 71	0.70	0.15	58774	0.23	49.44	42 71	175.8	11
MR-148	2	<0.01	64870	11.4	283.11	1.28	0.15	34288	0.22	75 54	46.04	139.8	3 33
MR-149	1	< 0.01	68500	9.4	284.21	1.28	0.13	26720	0.35	56.87	34.57	132.2	3.89
MR-150	2	< 0.01	66246	9.6	243.11	1.22	0.12	38687	0.46	68.68	41.89	117.2	3.48
MR-151	1	< 0.01	67578	3.3	205.91	0.71	0.63	38486	0.21	43.77	26.65	95.7	3.7
MR-152	1	< 0.01	75892	4	176.11	1.00	0.11	47591	0.15	61.58	35.63	151	3.62
MR-153	2	< 0.01	68799	7.8	260.51	1.31	0.14	37691	0.27	57.55	27.24	120.6	5.84
MR-154	1	< 0.01	90511	2.1	140.31	0.82	0.11	59856	0.12	47.71	39.65	139	4.64
MR-155	3	< 0.01	69288	3.7	272.31	1.54	0.13	25003	0.08	62.20	28.81	67.2	4
MR-156	1	< 0.01	56423	6.1	317.01	1.41	0.19	18463	0.52	56.72	35.77	109.9	3.63
MR-157	4	< 0.01	64870	13.7	237.01	1.02	0.22	29381	0.25	43.97	26.66	149.4	6.25
MR-158	3	< 0.01	75837	7.4	284.11	1.75	0.10	27038	0.17	57.90	32.74	114.5	3.66
MR-159	1	< 0.01	64570	7.8	288.71	1.50	0.09	25300	0.40	60.46	33.92	73.7	2.93
MR-160	3	< 0.01	72529	6.5	295.21	1.52	0.16	29116	0.39	64.69	44.18	58.4	2.92
MR-161	<	< 0.01	82363	7.5	266.61	1.37	0.15	47867	0.67	50.52	30.39	129.2	4.05
MR-162	<	< 0.01	75304	6.3	280.91	1.74	0.13	31437	0.25	68.80	37.01	88.7	3.63
MR-163	<	0.18	82674	3.2	260.31	1.95	0.14	40002	0.20	61.41	32.35	59.9	2.85
MR-164 MD 165	<	< 0.01	80898	6.4	224.11	1.65	0.11	336/4	0.33	54.98	32.68	96.4	2.59
MR-105	<	<0.01	02010	0.0	250.21	1.11	0.11	28617	0.26	03.81	29.03	80	3.18
MR-100	~	< 0.01	82819	/.4	234.01	0.84	0.13	55626	0.21	70.95	28.40	62.6	7.95
MR-168	~	<0.01	75081	11.2	380.21	1.76	0.09	25278	0.23	97.76	31.57	138.8	6.55
MR-160	~	<0.01	74327	16.4	347 21	1.70	0.23	30674	0.09	106.63	20.88	106.3	10.55
MR-170	~	<0.01	77901	13.7	404 31	2.31	0.31	24473	0.02	97.48	29.30	135.5	8.98
MR-171	<	1.01	67356	12.5	373 11	1.45	0.14	17763	0.33	99.12	28.34	143.3	6.58
MR-172	<	< 0.01	80632	9.2	265.91	1.54	0.16	29752	0.45	80.92	34.67	150.2	4.51
MR-173	<	0.16	86704	9.5	261.11	1.30	0.10	29455	0.40	68.12	40.23	159.8	4.46
MR-174	<	0.34	86504	8.5	250.11	1.24	0.07	29497	0.44	65.43	37.53	142.2	4.17
MR-175	<	< 0.01	77757	4.8	161.01	1.43	0.03	40129	0.38	43.12	26.33	100.1	2.39
MR-176	<	< 0.01	89889	5.4	330.21	0.67	0.07	50252	0.21	45.90	26.84	103.9	2.6
MR-177	<	0.45	87791	2.6	129.51	0.57	0.05	64403	0.07	34.71	30.82	161.4	1.76

پیوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Cu(ppm)	Dy(ppm)	Er(ppm)	Eu(ppm)	Fe(ppm)	Gd(ppm)	Ho(ppm)	K(ppm)	La(ppm)	Li(ppm)	Mg(ppm)	Mn(ppm)	Mo(ppm)
MR-119	32.97	7.027	3.5	1.44	50673.05	5.00	1.32	18293	38.37	45.51	14158	1300.99	0.804
MR-120	50.24	7.06	3.846	1.388	52273.85	4.47	1.37	10246	22.20	22.35	15928	1326.99	0.589
MR-121	29.07	3.792	2.383	0.866	29494.65	2.95	0.83	4434	11.92	10.65	8759	778.09	0.187
MR-122	32.78	8.057	4.696	1.685	53718.25	5.73	1.79	18344	32.38	28.60	16868	1420.99	0.935
MR-123	65.45	6.385	3.844	1.425	48409.85	5.23	1.28	9695	18.75	14.34	17808	1433.99	0.707
MR-124	67.96	7.452	4.386	1.482	60084.65	4.83	1.66	6318	16.79	12.58	21238	1406.99	0.554
MR-125	33.42	6.921	3.465	1.466	48676.65	5.03	1.30	16366	42.12	34.87	13068	1192.99	0.916
MR-126	67.99	8.522	4.356	1.931	61584.25	5.73	1.64	10887	28.59	30.35	17278	1432.99	0.589
MR-127	46.64	9.841	5.38	1.958	66745.45	6.26	1.79	9854	27.90	19.28	18868	1667.99	0.884
MR-128	47.57	9.035	4.755	1.967	67435.45	6.75	1.64	10732	31.53	26.38	19578	1917.99	1.082
MR-129	44.67	5.146	2.794	1.29	47259.85	4.06	1.00	8103	16.41	17.29	16808	1091.99	0.311
MR-130	44.44	7.64	4.247	1.403	64877.85	5.13	1.44	6148	13.68	14.09	23078	1569.99	0.237
MR-131	44.02	7.63	3.601	1.749	61823.45	5.15	1.31	11103	25.57	23.44	29788	1480.99	0.714
MR-132	31.99	5.671	2.938	1.306	52089.85	4.32	1.11	8175	18.57	19.04	35448	1442.99	0.546
MR-133	57.76	8.899	4.947	1.599	66018.65	5.93	1.85	14379	27.21	23.96	18798	1621.99	0.704
MR-134	39.42	7.612	4.574	1.586	58824.25	5.88	1.69	10722	25.08	22.87	20318	1095.99	0.534
MR-135	54.07	8.81	5.061	1.6	62/89.45	6.27	1.70	9445	23.58	28.90	26868	13/9.99	0.662
MR-136 MD 127	35.39	1.744	4.115	1.547	58180.25	5.00	1.55	11948	22.14	26.20	22908	1001.99	0.654
MR-137	30.21	4.069	2.168	0.755	50260.25	2.65	0.76	4//6	9.28	24.27	21408	1268.00	0.29
MD 120	42.4	0.44	3.217	1.420	20205.05	4.38	1.20	13318	24.87	34.27	20969	1208.99	0.755
MR-139	45.5	7.033	3.923	1.525	64225.05	4.03	1.50	10201	17.19	22.45	29808	1408.00	0.69
MR-141	40.5	7.005	2 780	1.078	64785.05	J.12 4 50	1.31	8110	20.57	22.00	20208	1125 00	0.547
MR-141 MR-142	45.28	65	3.647	1 399	65393.05	5.10	1.40	8528	19.55	28.36	25588	1186.99	0.347
MR-143	36.73	9 559	5 782	1.999	65025.05	6.94	2.13	9530	27.86	26.30	21678	1367.99	0.499
MR-144	47.48	8 146	4 4 3 9	1.602	63157.45	5.88	1.63	9662	24.99	29.90	29368	1419 99	0.434
MR-145	68.4	6.636	3.348	1.339	65926.65	4.14	1.38	6771	17.13	30.36	39258	1230.99	0.524
MR-146	73.76	11.14	5.967	2.019	82698.25	7.87	2.29	8329	31.51	24.37	17338	1927.99	1.115
MR-147	82.58	7.631	4.407	1.456	63295.45	5.10	1.61	7131	19.48	26.32	37368	1458.99	0.432
MR-148	48.16	9.955	5.273	2.314	66763.85	6.83	2.04	9930	28.14	19.65	18418	2156.99	0.687
MR-149	45.63	8.454	4.455	1.886	60544.65	5.92	1.57	10897	25.34	25.62	17168	1298.99	0.645
MR-150	41.79	10.566	5.963	2.108	70710.65	7.50	2.28	8524	27.43	16.92	18718	2063.99	0.746
MR-151	32.58	6.273	4.118	1.427	53092.65	4.51	1.40	10320	21.58	19.69	21078	958.79	0.506
MR-152	27.51	9.059	4.988	1.934	74399.85	7.21	1.83	8582	27.07	18.01	23238	1628.99	1.259
MR-153	39.17	9.532	4.94	1.701	63976.25	6.31	1.94	10856	30.00	31.85	21718	1213.99	0.797
MR-154	40.26	9.064	4.787	1.901	59302.65	7.02	1.73	5301	20.36	22.72	33478	1216.99	0.453
MR-155	23.1	8.51	4.79	1.809	58382.65	5.80	1.64	12071	24.95	23.23	14608	1316.99	0.637
MR-156	32.42	6.967	4.375	1.65	56340.25	5.18	1.47	16521	24.71	29.87	16458	1687.99	0.667
MR-157	35.2	7.137	4.138	1.477	60581.45	4.79	1.34	14924	24.42	27.16	1/058	1410.99	0.679
MR-158	32.20	9.309	4.5//	1./19	03323.05	5.07	1.68	11059	25.62	27.78	18958	1438.99	0.552
MD 160	33.8 35.66	10.302	6 201	1.981	78245 45	7.33	2.01	13/30	25.79	24.08	17618	2015.00	0.628
MR-161	47.00	7.686	5.000	1.546	65328.65	5.41	1.67	13307	20.22	24.07	10/38	1622.00	0.028
MR-162	39.02	10.828	5 788	1.931	83020.25	7.50	2.17	13184	27.24	31.62	21278	1842.99	1 131
MR-163	29.92	11.34	6 157	2.228	78309.85	7.30	2.17	14080	27.72	23.28	23548	1657.99	0.483
MR-164	32.61	10.891	6.749	1.981	87601.85	7.10	2.40	14667	21.95	22.60	22858	1730.99	0.63
MR-165	28.4	9.986	5.881	2.008	81051.45	6.57	1.94	13946	27.57	25.41	19858	1424.99	1.081
MR-166	42.4	9.127	4.93	1.626	68097.85	5.38	1.75	14646	29.04	35.07	22808	1259.99	0.858
MR-167	38.75	10.922	5.56	1.964	76276.65	8.21	1.95	8015	25.61	26.01	27898	1466.99	0.444
MR-168	42.87	8.154	4.181	1.562	61262.25	6.00	1.58	17376	38.02	31.80	18838	1507.99	0.887
MR-169	35.53	7.666	4.366	1.627	51611.45	6.01	1.41	23154	42.11	25.03	14038	1082.99	0.745
MR-170	40.31	6.639	3.472	1.463	55015.45	5.15	1.32	19117	39.74	44.92	17988	1219.99	1.189
MR-171	37.16	7.338	4.003	1.609	57269.45	5.59	1.40	17324	32.21	39.39	16898	1379.99	0.996
MR-172	38.83	10.424	5.795	2.012	74464.25	6.39	1.89	13472	31.72	29.20	23448	1731.99	1.292
MR-173	68.75	9.804	5.3	1.905	82992.65	6.73	1.88	11721	26.25	35.08	26218	1927.99	1.032
MR-174	62.32	8.59	4.873	1.734	83609.05	6.08	1.75	11896	24.39	30.73	26238	1900.99	1.015
MR-175	44.15	8.95	5.015	1.615	64123.45	5.97	1.73	10280	18.52	21.20	23868	1313.99	0.753
MR-176	27.95	7.11	4.263	1.551	50084.25	5.04	1.58	13853	19.58	15.74	21088	1459.99	0.774
MR-177	40.22	6.998	4.229	1.17	60765.45	4.69	1.54	6942	13.76	15.27	46898	1192.99	0.47

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Na(ppm)	Nb(ppm)	Nd(ppm)	Ni(ppm)	P(ppm)	Pb(ppm)	Pr(ppm)	Rb(ppm)	S(ppm)	Sb(ppm)	Sc(ppm)	Sm(ppm)	Sn(ppm)
MR-119	9871	15.664	32.577	93.41	781.6	24.30	8.60	109	417.00	1.01	19.2	6.018	2.12
MR-120	16526	11.737	23.087	67.22	909.2	9.00	5.83	45.07	649.00	0.39	20.09	5.284	1.89
MR-121	10926	5.085	13.857	39.17	413.3	4.10	2.92	25.88	333.00	0.18	10.05	3.125	1.15
MR-122	22436	14.047	32.487	69.56	1609.7	16.10	8.20	106.1	477.00	0.58	18.53	6.524	2.37
MR-123	13296	8.361	21.527	70.02	2592.8	19.40	5.01	39.89	2656.00	0.40	15.7	4.913	2.07
MR-124	18696	8.086	18.517	54.58	808.4	10.00	4.50	26.4	499.00	0.25	19.15	4.242	1.81
MR-125	8285	12.111	36.547	99.9	653.8	20.10	9.33	102.9	522.00	0.68	22.17	6.463	2.49
MR-126	16406	12.089	28.607	100.8	825.5	16.70	6.96	67.93	601.00	0.48	22.06	6.254	2.75
MR-127	15416	12.089	28.927	81.41	885.4	17.70	6.54	45.08	470.00	0.40	19.76	6.105	2.29
MR-128	14446	13.651	33.577	130.6	914.4	18.40	7.63	67.23	512.00	0.63	20.62	7.635	2.72
MR-129	10476	6.689	18.297	78.44	879.2	6.20	4.45	38.37	764.00	0.28	15.41	4.473	1.94
MR-130	15026	6.646	19.187	78.87	873.6	9.40	3.95	22.06	682.00	0.27	17.63	3.94	1.7
MR-131	12056	11.858	26.237	271.8	695.4	12.10	6.57	60.34	482.00	0.53	20.53	6.094	2.67
MR-132	10216	8.696	17.587	360.5	458.1	7.80	4.59	45.89	391.00	0.34	15.77	3.907	1.72
MR-133	19616	13.2	29.157	70.24	1214.6	14.90	6.96	61.81	681.00	0.58	17.89	6.335	3.06
MR-134	13136	9.736	25.247	92.5	1846.5	11.70	5.88	49.21	1046.00	0.39	17.61	5.582	1.81
MR-135	23186	11.396	27.147	98.09	1859.3	10.30	6.00	45.33	809.00	0.37	20.89	5.93	2.69
MR-136	19086	11.583	22.557	81.12	1468.9	9.40	5.66	44.48	5/8.00	0.26	20.15	4.723	1.67
MR-13/	14326	4.05/	9.88/	51./1	/65	15.40	2.49	18.//	496.00	0.10	11.5	2.216	0.76
MR-138 MD 120	16266	0.242	25.1//	98.33	1038.5	0.70	5.82	62.86	532.00	0.68	17.01	5.053	1.92
MR-139	22816	9.243	18.287	60.59 91.01	1808.3	8.70	4.40	28.38	/04.00	0.26	23.24	4.293	1.48
MD 141	214/0	9.424	24.007	81.91	2338.3	7.00	5.10	4/.0/	805.00	0.23	20.15	4./80	1.72
MR-141	22740	0.055	21.307	70.28	1697.9	6.80	3.10	32.47 40.25	510.00	0.24	20.13	3.07	1.70
MR-142	20740	12 025	20.277	68.86	2720.8	11.00	7.05	24.55	522.00	0.30	10.82	7 260	1.02
MR-143	19166	11.605	29.427	71 77	2/20.8	10.90	6.53	54.95	561.00	0.20	17.03	6 3 9 9	2 25
MR-145	15846	10.081	17 997	139.4	1763.3	7 10	4 42	34.34	786.00	0.23	19.69	4.07	1 34
MR-146	18046	25 311	35 427	74 21	2385.4	11.60	9.08	41.22	487.00	0.44	18.8	8 151	3.17
MR-147	18786	8 963	24 737	90.21	1814 5	7 10	5.48	34.08	758.00	0.26	24.62	5.6	2.3
MR-148	17396	13.013	30.527	89.11	897.8	18.30	7.38	43.4	493.00	0.45	19.62	6.628	3.02
MR-149	14446	13.288	26.987	79.33	894.6	18.60	6.32	65.04	452.00	0.56	20.26	6.662	2.82
MR-150	18626	14.201	34.427	80.38	1705.7	17.60	8.19	33.74	516.00	0.40	17.32	7.441	2.75
MR-151	18856	9.414	23.447	68.49	2251	8.80	5.41	40.77	849.00	0.33	16.34	4.654	1.54
MR-152	24256	16.962	34.357	73.7	3662.8	5.60	6.83	34.31	651.00	0.32	19.31	7.116	2.3
MR-153	18846	14.058	32.127	74.39	3190.5	11.60	7.62	50.08	656.00	0.42	20.07	6.956	2.16
MR-154	24896	6.85	27.187	96.1	3342.8	4.70	5.83	24.56	682.00	0.16	19.66	7.152	1.22
MR-155	25106	14.894	24.357	67.84	935	12.80	6.11	56.98	351.00	0.50	16.97	5.572	2.06
MR-156	16276	13.486	28.537	91.24	1216.2	15.90	6.30	70.61	391.00	0.55	16.11	6.143	2.33
MR-157	16076	14.08	24.447	84.09	1042.8	21.00	6.00	63.93	653.00	0.83	14.44	4.822	2.88
MR-158	21026	15.235	24.087	75.65	964.6	13.90	6.14	37.97	394.00	0.54	17.08	5.19	2.51
MR-159	20716	16.544	32.687	61.66	1721.1	12.40	6.94	63.44	410.00	0.56	16.57	8.073	3.3
MR-160	23756	16.06	31.907	61.57	1526.5	17.90	7.14	66.15	428.00	0.55	14.36	7.78	3.72
MR-161	22306	11.374	24.557	64.97	1669.9	17.50	5.85	48	897.00	0.46	18.74	5.199	2.01
MR-162	21956	14.905	31.917	67.91	1627.6	13.40	7.15	56.52	597.00	0.60	23.09	7.597	2.9
MR-103	25216	13.5/4	33.557	44.98	1960.4	12.30	/./4	56.75	641.00	0.44	18.52	/.88/	3.27
MD 165	10526	14.995	20.727	61.96	10/3./	13.70	6.00	40.10	929.00	0.44	22.18	6.546	2.42
MR-166	19536	12.820	20.047	77.18	2576.1	14.20	7.10	66.00	718.00	0.44	24.28	6 784	2.40
MR-167	26156	11.387	31.937	46.45	3788 3	7 20	6.85	35.85	725.00	0.30	24.38	7 757	1.83
MR-168	16176	13 53	35.687	94.52	959.1	17.90	8.97	90.01	513.00	0.17	23.62	6.937	2.99
MR-169	15716	10.78	35 727	60.34	1131.6	34.00	9.50	109.6	621.00	0.89	13.95	6 477	2.59
MR-170	10356	13.244	32.317	121 5	671.9	19.90	8.66	114.8	556.00	1.16	20 51	6.651	2.68
MR-171	12446	12.452	29,427	97.55	747.5	19.20	7.38	92.84	448.00	0.67	23.32	5,483	2.45
MR-172	17766	11.517	33.467	84.21	1219.2	31.50	7.80	57.8	569.00	0.44	22.68	7.796	2.13
MR-173	13466	11.924	33.257	100	1632.8	19.60	7.75	57.43	603.00	0.48	25.16	6.819	2.91
MR-174	13726	11.077	27.827	93.43	1686.5	16.80	7.00	49.19	602.00	0.43	22.9	6.512	2.8
MR-175	19706	9.811	24.937	48.99	1086.6	9.20	5.55	41.88	1173.00	0.31	18.12	5.721	2.63
MR-176	29876	9.188	22.587	74.32	904.3	11.40	5.68	45.04	749.00	0.22	13.16	4.931	1.85
MR-177	24546	7.952	16.897	86.24	823.7	7.10	3.93	22.69	792.00	0.16	22.15	4.07	1.39

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Sr(ppm)	Tb(ppm)	Te(ppm)	Th(ppm)	Ti(ppm)	Tl(ppm)	Tm(ppm)	U(ppm)	V(ppm)	W(ppm)	Y(ppm)	Yb(ppm)	Zn(ppm)	Zr(ppm)
MR-119	222.002	1.014	0.06	9.321	8081.71	0.53	0.58	1.739	159.50	1.50	1.68	3.49	124.36	72.196
MR-120	153.102	0.972	0.14	4.348	11813.71	0.36	0.49	1.199	171.30	0.90	1.68	3.573	117.49	81.315
MR-121	97.672	0.631	< 0.05	2.396	5132.11	0.24	0.28	0.521	89.30	0.50	1.68	2.019	59.66	37.898
MR-122	211.802	1.183	< 0.05	8.097	9761.71	0.60	0.60	1.604	179.70	1.20	1.68	4.641	121.03	61.262
MR-123	321.402	0.998	0.17	3.967	7892.11	0.14	0.51	0.935	164.20	0.80	1.68	3.565	285.45	76.079
MR-124	188.202	1.083	0.06	3.372	9173.71	0.27	0.59	0.767	173.30	0.60	1.68	3.802	119.99	62.912
MR-125	198.202	1	0.07	9.95	5548.51	0.32	0.66	1.678	135.50	1.40	1.68	3.473	100.78	73.824
MR-126	235.802	1.2	0.24	6.75	9474.91	0.35	0.61	1.477	174.80	0.90	1.68	3.526	154.1	88.52
MR-127	120.002	1.404	0.07	6.06	11423.71	0.39	0.71	1.505	184.20	1.00	1.68	5.162	114.79	78.136
MR-128	148.402	1.423	0.05	7.717	11577.31	0.23	0.77	1.315	197.10	1.30	1.68	4.258	119.37	85.539
MR-129	122,402	0.819	0.05	3.218	6549.31	0.28	0.38	0.678	136.60	0.70	1.68	2.71	89.7	63.374
MR-130	150.402	1.112	< 0.05	3.19	8152.51	0.12	0.60	0.795	181.80	0.60	1.68	4.069	85.99	80.93
MR-131	158.302	1.142	0.05	6.095	9603.31	0.25	0.55	1.188	177.60	1.20	1.68	3.58	105.73	81.282
MR-132	114,702	0.801	< 0.05	4.223	7797.31	0.35	0.40	0.811	138.10	0.80	1.68	2,786	80.75	51.923
MR-133	167.102	1.262	0.05	6.826	10222.51	0.29	0.75	1.157	165.50	1.30	1.68	4.82	112.4	74.66
MR-134	167.902	1.247	0.14	6.598	6101.71	0.43	0.58	1.297	151.80	1.00	1.68	4.073	98.2	52,693
MR-135	258,802	1.248	0.06	5.148	11295.31	0.21	0.68	0.936	169.70	0.90	1.68	4.03	118.85	59.249
MR-136	159,902	1.041	0.16	4.888	10744.51	0.27	0.59	1.02	190.90	0.80	1.68	3.88	86.91	51.285
MR-137	126,102	0.568	0.07	2.857	3368.11	0.30	0.29	0.556	70.30	0.40	1.68	2.532	58.7	21.871
MR-138	193,702	0.9	0.38	6.091	7150.51	0.24	0.53	1.118	127.30	1.10	1.68	3.055	115.93	61.273
MR-139	227 402	0.861	0.26	3 138	13259 71	0.06	0.65	0.669	232.90	0.70	1.68	3 401	105 33	46 841
MR-140	227.502	1.131	0.13	6.719	10528.51	0.40	0.63	1.333	189.40	1.00	1.68	4.411	81.97	46.665
MR-141	234,102	1.015	< 0.05	3.871	9167.71	0.25	0.62	0.706	139.00	0.70	1.68	3.526	106.7	59.029
MR-142	255.902	0.986	0.12	7.659	11805.31	0.43	0.49	1.426	212.40	0.90	1.68	3.65	109.8	54.761
MR-143	228,002	1.273	0.18	5.817	9927.31	0.08	0.84	1.13	163.80	1.10	1.68	4.664	95.56	48.788
MR-144	232.702	1.199	0.14	6.174	8559.31	0.44	0.58	1.196	153.70	0.90	1.68	4.778	98.23	38.998
MR-145	236.902	0.901	0.12	3.125	10376.11	0.45	0.52	0.747	158.50	0.70	1.68	3.191	91.3	44.3
MR-146	168.602	1.525	0.09	6.629	22763.71	0.14	0.94	1.456	262.30	1.90	1.68	5.744	126.54	68.236
MR-147	257.002	1.055	< 0.05	3.997	9184.51	0.42	0.65	0.869	199.40	1.30	1.68	4.999	79.55	42.43
MR-148	146.302	1.402	0.16	6.087	13463.71	0.30	0.83	1.303	216.80	1.30	1.68	5.901	115.62	79.973
MR-149	147.202	1.165	0.16	6.386	10191.31	0.33	0.72	1.42	165.10	1.00	1.68	4.207	109.07	95.934
MR-150	132.602	1.522	< 0.05	5.478	14195.71	0.15	0.97	1.018	206.30	1.20	1.68	5.808	111.98	67.939
MR-151	190.102	1.013	0.74	4.593	10053.31	0.42	0.50	0.89	160.80	0.70	1.68	3.733	92.28	44.399
MR-152	231.202	1.366	0.24	5.69	21011.71	0.29	0.69	1.266	266.60	1.40	1.68	4.44	106.33	59.392
MR-153	191.502	1.275	0.05	5.967	14483.71	0.44	0.66	1.183	236.20	0.90	1.68	4.867	118.22	63.539
MR-154	299.602	1.388	0.38	4.355	7916.11	0.36	0.61	0.904	148.90	0.60	1.68	4.21	84.96	50.9
MR-155	175.702	1.184	< 0.05	6.447	12239.71	0.39	0.70	1.216	142.70	1.50	1.68	4.963	95.29	46.291
MR-156	139.802	1.16	0.06	8.432	9141.31	0.58	0.57	1.852	148.50	1.50	1.68	4.129	115.52	60.646
MR-157	131.102	0.94	0.37	6.856	11547.31	0.32	0.68	1.172	168.00	1.90	1.68	3.829	106.74	50.856
MR-158	151.502	1.195	0.14	6.46	14075.71	0.37	0.72	1.343	182.50	1.10	1.68	4.624	86.65	48.337
MR-159	138.902	1.59	0.33	6.673	13463.71	0.42	0.84	1.289	156.10	1.30	1.68	5.365	111.15	53.1
MR-160	171.102	1.454	0.17	7.297	14471.71	0.31	0.97	1.3	188.80	1.40	1.68	5.99	128.1	45.169
MR-161	174.602	1.148	< 0.05	5.491	11106.91	0.45	0.67	1.055	178.00	1.20	1.68	4.46	148.59	33.102
MR-162	159.702	1.477	< 0.05	6.409	16907.71	0.38	0.76	1.292	195.40	1.10	1.68	4.941	145.99	72.988
MR-163	179.802	1.631	0.15	6.303	14291.71	0.44	0.95	1.159	183.70	1.10	1.68	6.291	131.95	59.084
MR-164	112.902	1.534	0.21	5.483	17375.71	0.37	0.93	1.233	224.20	1.00	1.68	5.956	127.27	37.788
MR-165	117.702	1.502	0.16	5.744	14195.71	0.32	0.76	1.349	166.50	0.90	1.68	5.433	113.02	50.801
MR-166	202.602	1.241	< 0.05	7.475	12059.71	0.40	0.67	1.447	183.60	1.30	1.68	4.399	137.67	63.099
MR-167	248.002	1.492	0.12	4.961	13247.71	0.29	0.74	1.121	206.10	1.00	1.68	5.044	96.26	43.706
MR-168	162.902	1.067	0.05	7.998	10851.31	0.52	0.62	1.4//	173.60	1.30	1.68	3.884	116.04	65.31
MR-169	189.302	1.165	0.32	10.681	6599.71	0.54	0.68	1.828	120.40	1.80	1.68	3.397	97.79	47.006
MR-170	199.302	0.935	0.10	10.629	2021.21	0.52	0.49	1.698	149.60	1.70	1.68	3.208	145.78	82.052
MD 172	1/5./02	1.003	<0.05	8.316	8086.51	0.35	0.59	1.0/5	105.80	1.10	1.68	5.004	110.01	/0.469
MD 172	131.802	1.333	0.05	5.243	11000.21	0.49	0.70	1.30/	191.40	1.10	1.08	5.024	113.41	62 154
MD 174	124.302	1.320	0.05	5.17	11009.31	0.30	0.79	1./31	207.30	1.00	1.08	5.133	129.14	55 211
MD 175	98.082	1.239	0.13	3.1/	0400 51	0.31	0.09	1.394	205.00	1.10	1.08	5.1/4	00.26	33.311
MR-176	156.902	1.2	0.05	4.43/	5450.31 6102.01	0.21	0.87	0.740	05.00	0.80	1.08	J.2/4 1.61	90.30 80.10	40.422
MR-170	164 402	0.875	0.13	3 525	6489 31	0.23	0.07	0.749	106.80	0.80	1.00	4 315	75 19	30.836
	107.402	0.075	0.07	5.545	0707.31	0.24	0.75	0.000	100.00	0.00	1.00	ч.515	13.17	50.050

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Au(ppb)	Ag(ppm)	Al(ppm)	As(ppm)	Ba(ppm)	Be(ppm)	Bi(ppm)	Ca(ppm)	Cd(ppm)	Ce(ppm)	Co(ppm)	Cr(ppm)	Cs(ppm)
MR-178	1	< 0.01	78523	4.1	263.11	1.08	0.03	41136	0.36	49.95	26.52	75.3	3.04
MR-179	<	< 0.01	80610	4.9	228.41	1.21	0.02	35603	0.28	53.04	26.33	84.9	3.33
MR-180	1	< 0.01	80110	7	253.11	1.54	0.11	31649	0.14	64.14	26.84	91.7	3.16
MR-181	1	< 0.01	84162	0.7	217.81	1.76	0.06	39376	0.42	65.32	26.84	92.6	4.35
MR-182	1	< 0.01	77368	2.5	261.41	1.57	0.04	35476	0.07	51.93	27.68	50.2	1.91
MR-183	<	< 0.01	85927	1.5	204.21	1.61	0.09	41030	0.29	54.19	28.22	101.7	3.19
MR-184	1	< 0.01	78201	5.7	228.21	0.74	0.07	32741	0.44	57.89	43.96	95.3	2.8
MR-185	1	< 0.01	79255	3.6	259.01	1.70	0.08	39217	0.20	62.63	31.76	52.7	2.59
MR-186	<	< 0.01	86803	5.1	151.91	0.91	0.08	47083	0.16	34.63	46.45	155.7	1.68
MR-187	<	< 0.01	77391	7	248.11	2.49	0.13	25766	0.45	75.95	29.25	90	3.88
MR-188	<	< 0.01	77768	4	112.81	0.36	0.08	54322	0.28	28.11	45.23	40.3	1.95
MR-189	1	< 0.01	86926	6.5	225.51	1.18	0.06	39005	0.23	57.06	31.42	123.8	3.52
MR-190	1	< 0.01	73628	5	185.21	1.24	0.06	35147	0.03	45.69	28.38	135.2	2.13
MR-191	<	< 0.01	91499	3	164.51	1.01	0.04	58213	0.12	35.50	37.35	86.3	5.14
MR-192	1	< 0.01	76769	6.3	205.91	1.13	0.12	30313	0.38	53.77	41.17	172.7	4.32
MR-193	1	< 0.01	69687	4.2	211.61	1.02	0.14	35772	0.25	49.38	26.21	125.8	5.05
MR-194	1	< 0.01	78046	7.1	247.31	0.71	0.14	29391	0.48	63.12	31.05	146.5	2.92
MR-195	3	< 0.01	84306	3.1	160.11	1.30	0.04	43245	0.11	42.19	33.32	150.5	2.64
MR-196	<	< 0.01	62328	5.3	147.71	1.02	0.09	30197	0.41	37.97	23.69	133.8	10.28
MR-197	<	< 0.01	75559	3.8	144.51	1.34	0.05	40627	0.25	40.97	28.8	180.3	4.02
MR-198	<	< 0.01	82153	5	198.71	1.89	0.06	35327	0.17	54.91	36.88	129.5	2.9
MR-199	<	< 0.01	73728	3.3	202.11	1.18	0.08	34310	0.17	54.51	27.35	101.6	2.98
MR-200	<	< 0.01	82264	3.4	100.01	1.2/	0.05	4115/	0.26	49.39	32.49	101.9	1.95
MR-201 MD 202	<	< 0.01	86160	2.4	1//./1	1.8/	0.07	45206	0.30	49.48	25.96	108.1	1.04
MD 202		< 0.01	811/0	2.4	211.01	1.05	0.03	J11/4 41070	0.55	44.81 55.42	20.80	111.0	3.21
MD 204		< 0.01	80857	2.8	105 41	1.15	0.06	418/8	0.44	50.22	39.19	162.9	2.73
MR-204		<0.01	82285	5.0	103.41	1.05	0.00	36000	0.23	50.33	20.84	102.0	2.31
MR-205	~	<0.01	90067	2.4	170.41	1.65	0.10	/30090	0.14	<u> </u>	29.04	143.1	2.68
MR-207	1	<0.01	79422	5.7	191 71	1.05	0.00	35709	0.17	54 25	38.81	128.5	4 77
MR-208	1	< 0.01	85460	7.6	172 51	1.31	0.06	45874	0.37	49.42	46.55	166.7	4 28
MR-209	2	< 0.01	82441	10.4	311.01	1.15	0.00	22893	0.25	68 73	26 79	123.8	4 66
MR-210	1	< 0.01	55024	11.4	350.41	1.91	0.25	12664	0.31	84.15	23.41	115.3	7.21
MR-211	1	< 0.01	64348	11.4	375.61	2.00	0.20	7178	0.37	123.43	22.1	114	8.2
MR-212	1	< 0.01	50784	10.4	359.61	1.34	0.20	11922	0.32	101.93	24.12	103.3	6.87
MR-213	1	< 0.01	61606	13.2	286.11	1.58	0.17	25830	0.73	83.59	20.06	86.7	6.78
MR-214	1	< 0.01	70131	5.8	283.81	1.49	0.10	41878	0.50	68.80	24.34	94.7	3.85
MR-215	1	< 0.01	69976	6.9	295.31	1.25	0.09	21632	0.31	80.07	24.39	101.6	4.87
MR-216	1	< 0.01	81897	7.4	257.31	1.24	0.14	18844	0.35	81.15	34.38	218.8	4.48
MR-217	1	< 0.01	81043	10.8	303.21	1.22	0.12	16311	0.48	109.03	31.27	112.7	4.63
MR-218	1	< 0.01	73273	5.1	350.01	1.94	0.18	16989	0.60	84.56	33.45	138.9	5.66
MR-219	1	< 0.01	61873	10.1	344.81	1.46	0.14	16279	0.28	101.33	29.03	155	4.72
MR-220	1	< 0.01	68699	6.8	311.81	1.06	0.20	16618	0.36	78.79	28.72	143	4.27
MR-221	1	< 0.01	74793	6.1	182.11	1.17	0.06	33705	0.23	60.67	35.62	108.7	2.91
MR-222	1	< 0.01	77468	9.8	174.71	1.33	0.08	31140	0.30	58.77	41.59	180.6	2.92
MR-223	2	< 0.01	73117	8.7	205.41	1.27	0.08	34882	0.38	53.51	26.94	138.8	4.43
MR-224	2	< 0.01	72274	10.5	262.41	1.42	0.14	23158	0.41	81.54	38.86	150.5	4.63
MR-225	1	< 0.01	78068	6.1	179.51	0.95	0.05	31119	0.25	68.18	41.98	166.8	3.8
MR-226	2	< 0.01	71885	9.2	159.31	0.63	0.07	26550	0.21	53.33	45.59	140.2	3.03
MR-227	2	< 0.01	8/2/0	5.1	152.91	1.30	0.04	28448	0.31	46.98	37.8	143.5	2.41
MR 220	< -	<0.01	67000	11.2	18/.51	1.13	0.08	20/10	0.34	36.22	45	1.54./	3.33
MR_230	5	<0.01	76070	78	140.71	1 21	0.00	30017	0.30	53.05	37.65	110	2.40
MR_231	2	<0.01	71706	9.5	280.21	0.03	0.07	24303	0.43	58.05	22.25	121.5	4 00
MR-231	1	<0.01	78245	69	165 71	1.07	0.00	35783	0.23	54 46	38.01	113	2.65
MR-233	1	<0.01	79844	4.1	181 81	1.07	0.11	37882	0.22	57 35	36.06	131.5	2.67
MR-234	<	< 0.01	86026	65	135.21	1.50	0.08	44115	0.26	49 37	39.49	159.9	2.07
MR-235	1	< 0.01	78390	6.3	200.31	0.89	0.09	31225	0.42	61.21	36.21	135.1	3.07
MR-236	1	< 0.01	88036	5.7	166.71	0.55	0.06	57598	0.25	31.62	32.49	66.1	3.05

پیوست ۱- نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

Analyte	Cu(ppm)	Dy(ppm)	Er(ppm)	Eu(ppm)	Fe(ppm)	Gd(ppm)	Ho(ppm)	K(ppm)	La(ppm)	Li(ppm)	Mg(ppm)	Mn(ppm)	Mo(ppm)
MR-178	31.54	7.398	4.805	1.594	67334.25	5.48	1.60	12102	23.42	22.52	19998	1473.99	1.039
MR-179	25.24	8.285	5.143	1.625	67610.25	5.50	1.64	11896	23.31	21.73	21028	1208.99	0.818
MR-180	22.09	9.861	5.247	2.029	70821.05	6.06	1.88	13915	23.85	22.18	20518	1394.99	0.697
MR-181	28.22	13.079	7.276	2.011	77656.65	7.72	2.44	11371	27.34	19.87	24598	1449.99	0.666
MR-182	24.92	10.531	6.784	2.026	81824.25	6.42	2.25	13019	24.19	15.07	20048	1465.99	0.44
MR-183	34.06	9.949	6.918	1.752	79726.65	6.49	2.23	12071	25.41	23.29	28038	1483.99	0.923
MR-184	37.64	10.984	6.248	2.112	86737.05	7.16	2.12	14718	23.64	23.55	23288	2226.99	0.871
MR-185	31.13	11.913	7.267	2.173	92615.85	7.14	2.63	13555	26.93	21.87	23358	1682.99	1.33
MR-186	64.81	9.491	4.911	1.841	75549.85	6.33	1.80	7720	15.32	20.96	32018	1792.99	0.641
MR-187	32.31	11.726	5.857	2.343	82937.45	7.55	2.26	12638	33.82	54.24	19348	1572.99	1.133
MR-188	46.64	5.551	2.698	1.038	54518.65	3.41	0.99	4605	12.16	14.68	39618	978.89	0.669
MR-189	48.64	9.523	5.692	2.048	76718.25	6.77	1.92	12216	23.54	25.90	30478	1470.99	1.227
MR-190	33.26	8.197	4.485	1.559	63654.25	5.64	1.67	9148	20.92	17.51	21938	1272.99	0.557
MR-191	57.36	5.83	3.184	1.333	60121.45	4.15	1.14	7566	16.66	19.35	45468	1113.99	0.381
MR-192	50.4	7.42	4.46	1.627	63957.85	5.30	1.50	12123	21.02	27.42	26358	1469.99	0.774
MR-193	49.61	6.54	3.507	1.251	55779.05	4.18	1.39	11917	22.59	26.05	24238	1117.99	0.808
MR-194	42.95	8.433	4.933	1.737	67435.45	5.82	1.68	14770	26.19	27.29	26698	1361.99	0.728
MR-195	35.59	8.595	4.905	1.498	68493.45	4.89	1.58	10232	18.06	19.22	30238	1345.99	0.53
MR-196	32.66	5.3	3.038	1.044	45254.25	3.94	1.06	10444	16.52	32.28	20148	875.49	0.901
MR-197	35.22	7.516	4.342	1.175	59063.45	4.82	1.54	9438	16.59	23.29	28028	1224.99	0.845
MR-198	54.07	10.029	5.971	1.82	72697.85	6.40	1.84	12329	22.65	29.63	25328	1507.99	0.579
MR-199	35.59	9.662	5.746	1.833	67159.45	6.55	2.15	13441	22.46	23.07	22808	1339.99	0.556
MR-200	32.31	9.466	5.485	1.674	70719.85	6.43	1.99	10866	20.50	18.43	25008	1407.99	0.744
MR-201	27.03	9.965	6.303	1.709	69661.85	6.20	2.22	10598	22.09	15.33	24348	1252.99	0.439
MR-202	39.92	8.461	5.401	1.567	66377.45	5.53	1.98	10475	19.35	22.58	23568	1314.99	0.746
MR-203	51.33	9.436	5.667	1.647	78944.65	6.29	1.97	11598	23.97	27.55	28388	1597.99	0.908
MR-204	48.45	9.992	6.042	1.634	74970.25	6.28	2.19	11052	22.33	21.95	28008	1580.99	0.499
MR-205	38.7	9.798	5.334	1.569	72532.25	5.82	1.92	10774	21.26	26.53	26888	1301.99	0.732
MR-206	53.69	11.276	6.046	1.844	74427.45	7.43	2.00	10835	21.34	21.54	27008	1563.99	0.471
MR-207	41.37	10.523	5.892	1.641	81143.45	6.01	2.23	11525	23.92	27.68	30898	1407.99	0.773
MR-208	40.94	10.402	5.478	1.747	76175.45	6.76	1.95	9671	20.87	26.20	33728	1648.99	0.673
MR-209	48.24	7.952	4.039	1.729	61050.65	5.51	1.46	13544	26.22	24.86	19948	1376.99	0.826
MR-210	30.16	6.765	3.063	1.55	47581.85	5.29	1.18	18179	27.00	51.73	11858	1026.99	0.683
MR-211	30.48	7.777	4.234	1.946	47747.45	7.82	1.59	18262	46.70	48.99	11688	1126.99	0.788
MR-212	30.62	6.582	3.013	1.567	49145.85	5.34	1.13	17510	31.07	44.83	12348	1429.99	0.672
MR-213	26.67	5.983	2.832	1.474	45410.65	5.62	1.03	18313	33.04	47.52	12838	1160.99	0.782
MR-214	28.91	7.9/1	4.936	1.932	62559.45	5.97	1.68	18025	28.52	25.01	14578	985.19	0.431
MR-215	30.28	9.146	4.55	1.789	/0609.45	5.81	1.74	15913	28.94	24.41	1/248	1040.99	0.697
MD 217	44.70	8.013	4.800	2.032	71006.65	0.79	1.07	15120	27.51	20.79	20/18	1393.99	0.700
MD 218	33.32 49.01	9.38	3.203	1.24	/1900.03	6.24	1.95	13130	31.98	27.40	21108	1/82.99	1.082
MR-210	40.01	8.009	4.279	1.80	62402.05	5.84	1.07	16054	31.12	21.92	20808	1502.00	1.000
MR-21)	34.32	7 884	4 613	1.62	62550.25	5.92	1.70	16984	28.30	26.83	20008	1518.99	1.105
MR-220	40.4	9.633	4 865	1.073	78089.05	6.72	1.92	9727	21.54	19.87	21168	2075 99	0.847
MR-222	50.23	9.629	4 898	1 993	75798.25	5.97	1.82	8157	23.66	23.46	26398	1866.99	0.922
MR-223	35.72	6.604	3.725	1.276	58474.65	4.54	1.33	12298	23.38	29.93	22318	1146.99	0.511
MR-224	51.12	9.056	4.924	1.779	71538.65	6.62	1.84	10877	30.06	37.13	21768	1727.99	1.098
MR-225	69.42	7.686	4.256	1.85	68107.05	4.96	1.56	7988	21.29	25.36	25138	1740.99	0.753
MR-226	55.54	9.341	4.909	2.076	76543.45	6.24	1.74	9222	19.01	21.82	27648	1877.99	0.438
MR-227	65.27	10.367	6.182	2.002	86773.85	7.11	2.19	10588	19.67	22.21	31248	1513.99	0.336
MR-228	53.85	8.749	4.762	1.738	74823.05	6.27	1.77	10980	20.75	32.99	24698	1830.99	0.789
MR-229	51.42	6.671	3.476	1.22	72688.65	4.18	1.27	7600	14.64	22.84	25318	1582.99	0.652
MR-230	44.3	9.208	5.813	2.076	80361.45	6.44	2.07	11536	22.76	18.49	25488	1667.99	0.616
MR-231	32.4	7.355	3.91	1.554	57609.85	5.83	1.40	14183	24.04	26.52	17238	1274.99	0.847
MR-232	42.62	10.06	5.125	2.115	80278.65	6.70	2.03	10671	20.38	18.18	26188	1706.99	0.419
MR-233	41.29	10.325	5.1	2.007	79561.05	6.35	1.92	9441	22.89	22.99	26378	1500.99	0.625
MR-234	44.48	8.905	5.326	1.869	77537.05	5.78	1.89	8121	19.52	18.40	29658	1522.99	0.62
MR-235	38.63	8.907	4.851	1.893	71511.05	6.22	1.65	11484	21.83	21.76	25508	1521.99	0.696
MR-236	34.41	4.878	2.702	1.021	55677.85	3.32	1.11	7766	13.00	19.69	42348	1013.99	0.465

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

جدول ۲-۲- نتایج آنالیز نمونه های ژئوشیمیایی برداشت شده (ادامه)

Analyte	Na(ppm)	Nb(ppm)	Nd(ppm)	Ni(ppm)	P(ppm)	Pb(ppm)	Pr(ppm)	Rb(ppm)	S(ppm)	Sb(ppm)	Sc(ppm)	Sm(ppm)	Sn(ppm)
MR-178	25616	14.366	24.577	50.95	1631.5	6.80	5.92	53.85	982.00	0.30	15.67	5.913	2.82
MR-179	26476	13.222	26.767	62.29	1278.8	8.10	5.85	62.85	657.00	0.28	17.06	6.428	3.09
MR-180	26056	11.352	26.677	57.35	1254.5	9.80	6.68	55.6	569.00	0.32	16.27	6.498	2.2
MR-181	34006	17.039	29.167	47.66	1477.9	9.70	6.89	57.31	670.00	0.33	24.26	7.262	3.49
MR-182	28736	12.936	27.547	30.72	1635.3	4.80	6.49	40.49	536.00	0.19	15.22	6.324	2.24
MR-183	28056	14.971	28.227	52.29	1586.7	10.20	6.56	45.94	660.00	0.31	19.45	5.985	2.73
MR-184	22906	15.125	30.837	65.56	1742.8	13.50	7.08	52.48	974.00	0.38	20.2	7.325	3.28
MR-185	26246	15.675	30.007	39.57	2149.9	10.50	7.31	48.57	776.00	0.45	19.58	7.394	2.81
MR-186	24126	8.019	23.877	69.2	1269.5	9.90	4.97	31.1	754.00	0.42	23.75	5.363	2.26
MR-187	18956	14.41	33.257	68.26	1586.7	13.70	8.35	61.18	652.00	0.59	21.57	7.783	3.68
MR-188	17996	6.11	14.997	47.94	938.6	5.30	3.35	18.25	869.00	0.12	27.75	3.934	1.38
MR-189	24386	11.506	27.597	70.78	1986	14.30	7.00	44.54	739.00	0.29	19.94	6.656	2.52
MR-190	25846	9.891	22.737	49.56	884.7	5.80	5.62	31.2	652.00	0.24	20.88	5.059	2.12
MR-191	21856	9.153	17.487	89.11	1111.8	4.20	4.09	31.27	952.00	0.10	31.24	3.807	1.85
MR-192	16666	9.979	23.137	103.8	924.5	9.90	6.09	60.96	809.00	0.41	21.85	5.243	2.07
MR-193	11386	11.055	22.157	85.9	1840.1	20.20	5.45	60.45	1622.00	0.47	18.72	4.895	1.77
MR-194	17396	12.738	26.067	84.46	1226.9	16.10	6.53	54.26	841.00	0.39	19.13	6.15	2.94
MR-195	24856	8.921	19.657	67.82	911.9	5.10	4.67	42.19	956.00	0.24	23.76	5.151	2.08
MR-196	14346	7.579	19.937	78.27	1255.9	10.70	4.38	66.78	2387.00	0.33	15.05	4.507	1.89
MR-197	23366	8.902	18.387	63.73	978.3	6.70	4.49	42.57	1421.00	0.24	24.29	4.793	2.17
MR-198	22216	11.198	30.217	84.65	1203.2	9.60	6.33	60.22	913.00	0.70	23.07	7.702	2.73
MR-199	19836	0.727	25.937	55.78	13/4.2	10.10	5.95	48.73	1029.00	0.29	18.68	5.675	1.96
MR-200	29956	9.727	26.297	48.44	1144.9	7.40	5.36	44.34	/03.00	0.31	19.37	6.61/	2.63
MR-201 MD 202	29666	10.093	25.527	51.01	1193.2	/.50	6.04 5.04	51.05	599.00	0.16	19.09	5.262	2.19
MD 202	24706	10.377	20.337	31.01	1127.8	0.20	5.04	52.02	938.00	0.30	18.49	4.914	2.21
MR-203	24/00	12.397	28.827	80.32 60.29	1329.1	9.20	6.02	32.02	/31.00	0.31	21.82	0.808	3.42
MR-204	23880	12 286	23.197	70.21	1151.6	0.00	5.46	39.02 45.14	702.00	0.23	24.04	5.526	2.07
MR-205	20320	0.001	25.847	62 71	1205.0	9.40	5.40	40.88	600.00	0.34	24.90	5.852	2.41
MR-207	18236	12 166	26.137	98.82	1203.7	75.10	6.02	52 35	631.00	0.33	29.17	5.866	2.77
MR-208	22616	10.839	25.977	123.4	1319.2	10.40	5.71	50.96	642.00	0.22	20.27	7 284	2.63
MR-209	12146	7 819	24 897	64.89	943.2	17.10	6.68	64.12	709.00	0.36	20.74	5 974	1.86
MR-210	6024	8.098	31.457	94.38	895.7	23.20	7.45	122.8	713.00	0.74	23.04	7.578	2.14
MR-211	4907	8.253	44,787	87.64	717.7	19.40	11.55	116.4	325.00	0.93	32.37	8.864	2.41
MR-212	6722	8.084	32.537	96.48	1048.1	17.90	7.70	105.6	680.00	0.57	23.11	7.051	2.45
MR-213	5381	7.55	30.167	69.61	1904.1	21.80	8.21	119.5	632.00	0.61	15.01	6.79	2.42
MR-214	11026	10.978	27.717	58.54	2347	14.00	6.86	61.71	899.00	0.41	15.59	5.8	2
MR-215	13766	11.572	29.227	66.24	1792.8	10.90	7.01	66.96	748.00	0.37	22.16	6.581	2.78
MR-216	7689	7.798	27.247	109.9	1095.5	16.00	6.74	61.87	567.00	0.45	28.53	6.248	1.63
MR-217	11996	11.22	35.247	82.34	1686.5	17.90	8.96	76.46	592.00	0.56	21.96	8.027	2.88
MR-218	11326	12.639	31.447	96.77	1623.8	22.50	7.56	87.12	659.00	0.58	28.93	6.466	2.51
MR-219	11496	11.077	31.897	83.81	1590.5	19.90	7.77	79.88	610.00	0.53	29.82	6.327	2.35
MR-220	11326	10.016	27.677	83.44	1584.1	18.80	6.74	74.06	631.00	0.54	24.24	6.253	2.13
MR-221	21086	11.693	27.227	70.4	1084.9	9.10	6.50	43.23	631.00	0.22	21.32	6.311	2.68
MR-222	20176	9.743	27.627	84.82	1016.4	10.50	6.08	34.62	777.00	0.28	27.75	6.156	2.18
MR-223	11666	7.419	23.037	60.85	760.1	15.20	5.61	51.86	1171.00	0.48	18.32	4.876	1.82
MR-224	14356	11.308	31.447	101.7	818	10.50	7.30	59.24	443.00	0.58	25.71	7.512	2.39
MR-225	16066	8.225	24.187	102.8	999.9	11.20	5.93	44.01	645.00	0.31	29.79	6.63	3.04
MR-226	18/46	8.569	26.547	73.95	981.9	8.00	5.98	42.66	560.00	0.36	23.93	5.69/	2.68
MD 220	20006	9.836	25.86/	/1.20	1202	10.00	3.1/	54.61	644.00	0.51	30.09	6.2/9	2.22
MR 220	14050	9.43/ 7.912	20.247	/9./4 62	992.8	12.70	0.08	20.22	044.00	0.58	24.78	0.307	2.3/
MR-229	10056	10 172	26 117	57.0	1200 9	0.90	5.80	30.33	901.00	0.34	25.94	6 272	2.00
MR_231	10776	7 317	20.447	70.46	1227	13.30	5.07	59.02	954.00	0.35	16.24	5 3/6	2.20
MR-231	22056	10 156	23 787	62 12	988 7	11.80	5.90	38.02	675.00	0.45	20.9	6 218	2.15
MR-233	20296	11 44	24 287	67.16	1059.2	9 30	5 57	36.72	512.00	0.31	28.01	5 987	2.51
MR-234	21706	9.308	23.747	68 47	1030.9	16 50	5.23	30.06	566.00	0.30	24.4	6.241	4.74
MR-235	17766	9.624	24.717	84.65	1099.3	16.00	6.36	46.98	549.00	0.33	21.73	6.215	2.31
MR-236	14756	5.278	15.017	54.09	526.6	13.00	3.83	33.8	1094.00	0.31	26	3.568	1.26

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

جدول ۲-۲- نتایج آنالیز نمونه های ژئوشیمیایی برداشت شده (ادامه)

Analyte	Sr(ppm)	Tb(ppm)	Te(ppm)	Th(ppm)	Ti(ppm)	Tl(ppm)	Tm(ppm)	U(ppm)	V(ppm)	W(ppm)	Y(ppm)	Yb(ppm)	Zn(ppm)	Zr(ppm)
MR-178	217.702	1.071	0.05	5.496	11157.31	0.22	0.70	1.171	152.90	0.90	1.68	4.137	127.48	39.966
MR-179	201.202	1.243	0.16	5.893	12095.71	0.26	0.71	1.119	180.40	1.00	1.68	4.258	103.36	36.479
MR-180	171.502	1.367	< 0.05	9.733	10960.51	0.47	0.86	1.443	163.10	1.20	1.68	6.104	84.89	41.154
MR-181	196.702	1.794	0.48	7.453	14699.71	0.44	1.10	1.428	170.10	1.00	1.68	7.667	128.21	46.852
MR-182	152.502	1.433	0.16	4.906	15407.71	0.33	0.91	0.716	199.90	1.20	1.68	6.138	103.17	20.859
MR-183	175.902	1.542	0.44	8.328	14279.71	0.34	0.95	1.493	207.30	1.00	1.68	6.555	103.42	64.265
MR-184	129.002	1.59	0.05	5.43	17627.71	0.24	0.85	1.135	204.40	1.10	1.68	6.108	130.6	42.705
MR-185	149.802	1.677	< 0.05	5.064	20963.71	0.40	1.18	1.163	258.70	1.00	1.68	6.46	123.32	58.677
MR-186	183.702	1.374	0.16	3.007	12275.71	0.23	0.65	0.613	190.90	0.90	1.68	5.309	109.9	44.85
MR-187	143.902	1.631	< 0.05	6.971	13331.71	0.38	0.82	3.413	170.00	1.30	1.68	5.494	137.98	56.84
MR-188	296.802	0.72	0.05	1.955	7803.31	0.15	0.38	0.499	185.10	0.40	1.68	2.97	69.11	65.662
MR-189	167.302	1.432	0.16	4.938	11652.91	0.27	0.75	1.113	166.70	1.60	1.68	5.397	105.2	63.792
MR-190	187.002	1.174	< 0.05	3.223	12491.71	0.24	0.61	0.802	202.70	0.90	1.68	4.221	78.37	80.127
MR-191	297.902	0.809	0.05	2.972	8308.51	0.13	0.45	0.545	166.50	0.50	1.68	3.292	92.85	67.323
MR-192	161.002	1.038	0.06	5.848	8804.11	0.35	0.56	1.669	187.40	1.10	1.68	4.588	112.5	57.368
MR-193	147.902	0.9	0.06	5.689	8291.71	0.31	0.49	1.512	162.40	1.10	1.68	3.391	133.93	64.21
MR-194	123.702	1.351	< 0.05	6.173	8836.51	0.42	0.76	1.413	159.10	1.00	1.68	4.333	150.82	67.653
MR-195	146.102	1.158	0.15	3.283	9990.91	0.20	0.73	0.691	172.40	0.80	1.68	4.314	109.28	40.857
MR-196	136.202	0.759	0.05	3.946	6564.91	0.19	0.52	1.815	143.80	1.40	1.68	2.795	100.8	48.997
MR-197	150.402	0.985	0.16	3.081	11666.11	0.21	0.62	0.769	216.60	0.80	1.68	3.896	87.82	47.314
MR-198	158.702	1.46	0.06	5.233	11117.71	0.28	0.81	1.258	187.10	1.00	1.68	4.946	131.43	49.206
MR-199	130.302	1.334	< 0.05	4.917	10790.11	0.32	0.74	1.074	172.20	1.00	1.68	5.312	110.11	42.617
MR-200	148.502	1.479	0.14	4.294	12059.71	0.26	0.73	0.911	175.30	1.00	1.68	5.265	110.94	48.656
MR-201	122.502	1.406	0.15	4.016	12059.71	0.29	0.94	0.939	192.30	1.00	1.68	5.976	97.65	57.302
MR-202	150.502	1.205	0.17	4.185	10514.11	0.21	0.76	1.278	205.50	0.80	1.68	4.653	122.28	38.624
MR-203	168.602	1.399	0.16	5.103	12863.71	0.27	0.89	0.933	193.40	0.90	1.68	4.554	141.41	63.055
MR-204	132.202	1.371	0.05	4.042	12239.71	0.24	0.83	0.835	212.60	1.00	1.68	5.764	109.49	58.831
MR-205	122.902	1.332	0.15	4.4/4	14699.71	0.38	0.78	1.066	195.70	0.70	1.68	5.051	104.89	62.12
MR-206 MR-207	151.102	1.6/	<0.05	4.4/3	12715 71	0.28	0.88	0.989	1/2./0	1.20	1.68	5.505	112.92	4/.248
MR-207	128.402	1.452	0.3	5.306	13/15./1	0.46	0.83	1.191	253.70	0.90	1.68	5.85	121.24	104.415
MD 200	101.302	1.334	0.17	5.201	7750.51	0.28	0.91	0.949	204.70	0.90	1.08	2.04	94.30	/8.334
MR-209	123.402	1.124	0.15	0.264	//30.31	0.42	0.67	1.055	137.20	1.00	1.08	2.94	98.97	72 602
MR-210	104 502	1.040	0.05	9.204	3704 11	0.49	0.42	1.657	148.20	1.00	1.00	3.846	117.52	58 9/1
MR-211 MR-212	137 102	0.995	0.00	8 938	4716.91	0.47	0.38	1.500	127 50	1.10	1.68	2 941	115.62	69 072
MR-213	144 402	0.914	0.17	7 983	3436 51	0.33	0.41	1 301	127.10	1.00	1.68	2.232	151.09	44 971
MR-214	179 402	1 341	0.17	6 408	10138 51	0.55	0.73	1.501	146 40	0.90	1.68	4 353	140.06	103.7
MR-215	140.302	1.301	0.06	5.133	11873.71	0.30	0.67	1.478	151.20	0.80	1.68	3.773	125.61	93.041
MR-216	115.802	1.376	0.15	7.259	7817.71	0.41	0.71	1.828	153.60	0.90	1.68	4.317	86.98	77.333
MR-217	138.202	1.462	0.15	7.433	9436.51	0.36	0.68	1.741	149.10	1.10	1.68	4.696	107.93	74.858
MR-218	161.202	1.282	0.05	8.656	7781.71	0.49	0.55	1.735	154.70	1.10	1.68	3.909	150.46	109.266
MR-219	136.302	1.231	0.23	9.688	7109.71	0.52	0.68	1.777	169.80	1.20	1.68	4.365	123.01	105.163
MR-220	122.102	1.163	0.06	8.762	6797.71	0.57	0.62	1.911	143.80	1.00	1.68	4.01	105.16	95.956
MR-221	161.402	1.422	0.06	4.229	15083.71	0.28	0.77	0.923	231.80	0.80	1.68	5.155	111.05	103.766
MR-222	130.202	1.285	0.06	3.679	15179.71	0.29	0.70	0.992	289.90	2.10	1.68	4.627	120.61	70.381
MR-223	102.702	0.917	< 0.05	5.539	7670.11	0.34	0.51	0.97	196.10	0.70	1.68	3.241	88.96	57.522
MR-224	157.902	1.426	< 0.05	5.839	9758.11	0.38	0.62	1.335	204.70	0.80	1.68	3.904	126.44	92.293
MR-225	197.102	1.083	0.05	3.716	9390.91	0.18	0.58	1.041	207.60	0.70	1.68	4.046	141.62	111.224
MR-226	155.402	1.417	< 0.05	3.334	11201.71	0.33	0.68	0.843	216.50	0.70	1.68	5.019	102.22	95.12
MR-227	153.102	1.548	0.23	3.383	13379.71	0.22	0.84	0.949	232.00	1.60	1.68	4.874	116.04	95.109
MR-228	131.702	1.378	0.06	5.313	9885.31	0.27	0.68	1.432	212.80	1.00	1.68	4.11	105.65	86.925
MR-229	101.002	1.021	0.05	2.332	10630.51	0.21	0.47	0.741	195.80	0.30	1.68	3.112	105.76	68.522
MR-230	126.802	1.366	0.15	5.286	13139.71	0.34	0.76	0.894	224.90	0.70	1.68	4.57	109.9	92.634
MR-231	118.302	1.083	0.07	5./58 2.576	0101.71	0.22	0.59	0.932	142.10	0.80	1.68	5.201	91.32	53.067
MR 232	132.102	1.311	0.06	3.3/0	121/9./1	0.28	0.79	0.851	188.50	0.90	1.08	3.331	95.79	37.093 72.0
MR-233	139.302	1.2/8	0.00	2.552	13103.71	0.32	0.75	0.788	226.90	0.80	1.08	4.333	100.90	72.9 80.091
MR-234	126 802	1.345	<0.00	5 082	11108 11	0.31	0.70	1 148	183.40	0.70	1.00	4 45	91 18	75 287
MR-236	218.602	0.764	0.13	3.09	6069.31	0.23	0.40	0.686	157.30	0.60	1.68	3.007	69.01	56.048

پیوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

د داشت شده	کاف سنگین	نمونه هام.	مختصات محا	_ شماره م	1-1 1000
برداست سده	تاتی سندین	موته های	محتصات محل	– سمارہ و	جدوں ا-ا

D		Coordinate(UTMWGSXY		D	C L. N.	Coordinate(U	J TM WGS 84)
Row	Sample No.	X	Y	Row	Sample No.	X	Y
1	MR-1-H	702530.516	3844356.984	26	MR-26-H	696944.6	3850056.651
2	MR-2-H	703959.303	3846852.529	27	MR-27-H	696951.234	3851362.272
3	MR-3-H	703393.778	3846548.131	28	MR-28-H	696755.419	3851286.991
4	MR-4-H	703435.1667	3846393.159	29	MR-29-H	695265.301	3850308.664
5	MR-5-H	704165.728	3847089.891	30	MR-30-H	695583.965	3851579.24
6	MR-6-H	700854.6104	3847318.626	31	MR-31-H	693724.575	3850788.183
7	MR-7-H	700885.977	3847394.963	32	MR-32-H	693903.6418	3852897.851
8	MR-8-H	701000	3846776.198	33	MR-33-H	693951.8389	3853000
9	MR-9-H	701224.378	3847376.151	34	MR-34-H	698198.012	3846573.596
10	MR-10-H	701597.984	3847893.072	35	MR-35-H	698025.7299	3846642.752
11	MR-11-H	704375.86	3847598.783	36	MR-36-H	697184.069	3847125.252
12	MR-12-H	702232.58	3848576.797	37	MR-37-H	696627.227	3847308.553
13	MR-13-H	702958.561	3848219.442	38	MR-38-H	696177.5857	3847633.8
14	MR-14-H	700350.8859	3848627.398	39	MR-39-H	694217.5372	3850687.256
15	MR-15-H	701853.243	3848609.284	40	MR-40-H	694291.987	3850469.238
16	MR-16-H	698146.492	3846329.489	41	MR-41-H	694231.471	3850386.366
17	MR-17-H	700931.242	3849147.506	42	MR-42-H	693398.3542	3850809.614
18	MR-18-H	700342.703	3849608.815	43	MR-43-H	692817.773	3851080.838
19	MR-19-H	699783.0608	3849997.752	44	MR-44-H	692364.095	3849761.719
20	MR-20-H	699720.95	3849900.067	45	MR-45-H	692477.243	3849722.263
21	MR-21-H	698861.548	3850379.137	46	MR-46-H	693006.213	3849731.3
22	MR-22-H	698380.338	3849714.157	47	MR-47-H	694629.142	3848555.578
23	MR-23-H	698110.3854	3849263.212	48	MR-48-H	694976.503	3848317.997
24	MR-24-H	698024.234	3850619.648	49	MR-49-H	695161.0612	3848228.129
25	MR-25-H	697645.488	3850202.961				

یوست ۱– نتایع نمونه های ژئوشیمی و کانی سنگین فاز I

جدول 3-4- نتایج آنالیز نمونه های کانی سنگین برداشت شده

Sample	MR-1-H	MR-2-H	MR-3-H	MR-4-H	MR-5-H	MR-6-H	MR-7-H	MR-8-H	MR-9-H	MR-10-H
Magnetite	0.05	5	0.01	0.01	4.8	18	8	32	9.5	4.5
Titanomagnetite	0	0	0	0	0	2	0	8	0.5	0
Apatite	0	0	0	0	0	0	0.01	0.03	0.03	0.03
Zircon	0.01	0.01	0.01	0.01	0.01	0.15	0.5	0.5	1.25	0.1
Rutile	0	0	0	0	0	0	0	0	0	0
Anatase	0	0	0	0	0	0	0	0	0	0
Sphene	0	0	0	0	0	0	0.01	0.75	0.25	0.03
Leucoxene	0	0	0	0	0	0	0	0	0	0
Barite	0.01	0.1	0	0.01	0	0	0	0	0	0
Pyrite	0	0.01	0	0	0	0	0	0	0	0
Carbonates	0	0	0	0	0	0	0	0	0	0.01
FQ	0.01	1.25	0.05	0.05	0.05	2.5	2.5	2.3	3	1.5
Nigrine	0	0	0	0	0	0	0	0	0	0
Celestite	0	0	0	0	0	0	0	0	0	0
Galena	0.01	0	0	0	0	0	0	0	0	0
Cerussite	0.01	0	0	0	0	0	0	0	0	0
Malachite	0	0	0	0	0	0	0	0	0	0
Gold	0	0	0	0	0	0	0	0	0	0
Sapphir	0	0	0	0	0	0	0	0	0	0
Cinnabar	0	0	0	0	0	0	0	0	0	0
Scheelite	0	0	0	0	0	0	0	0	0	0
Fluorite	0	0	0	0	0	0	0	0	0	0
Silver	0	0	0	0	0	0	0	0	0	0
Andalusite	0	0	0	0	0	0	0	0	0	0
Monazite	0	0	0	0	0	0	0	0	0	0
Hematite	90	0.5	1	3	5	8	1.8	9	4.5	0.5
Goethite	2	0	0	0	0	0	0	0	0	0
Limonite	3	0	0	0	0	0	0.01	0	0.01	0
Pyriteoxide	0.01	0.01	0.01	10	0.5	0.01	0.45	0.01	0.01	0
Pyritelimonite	0.01	0.01	0	0.5	0	0	0	0	0	0
Oligiste	0	0	0	0	0	0	0	0	0	0
Pyroxens	0.5	20	5	15	5	12	18	6	18	15
Amphibols	0.01	5	2	5	3	2.4	4.5	1.2	4.5	50
Epidots	0.01	3	2	2	1	0.4	1.8	0.3	0.9	2
Garnets	0.01	0	0	0	0	0	0	0	0	0
Chlorite	0	0.01	0.01	0.5	0.01	0	0.01	0.01	0.01	0.5
Biotite	0.01	0	0	0	0	0	0	0	0	0
Ilmenite	0	0.01	0	0	0.01	40	2.7	36	45	0.5
Martite	0	0	0	0	0	0	0	0	0	0
Sericite	0.01	0	0	0	0.01	0	0.01	0	0.01	0
Altreadsillicate	0.5	73	80	65	80	19	58	8	23	30

ییوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

جدول 3-4- نتایج آنالیز نمونه های کانی سنگین برداشت شده (ادامه)

Sample	MR-11-H	MR-12-H	MR-13-H	MR-14-H	MR-15-H	MR-16-H	MR-17-H	MR-18-H	MR-19-H	MR-20-H
Magnetite	10	18	5	1.5	5	9	5	4.8	0.05	4.5
Titanomagnetite	0.05	2	0	0	0	0.5	0	0	0	0
Apatite	0.01	0	0	0.01	0.01	0.03	0	0	0	0.03
Zircon	0.15	0.25	0.1	0.05	0.03	0.25	0.01	0.01	0.01	0.15
Rutile	0	0	0	0.01	0	0	0	0	0	0
Anatase	0	0	0	0	0	0	0	0	0	0
Sphene	0.01	0.01	0	0	0	0.05	0	0	0	0
Leucoxene	0	0	0	0	0	0	0	0	0.01	0
Barite	0	0	0.03	0.03	0.1	0.03	0.1	0	0.01	0
Pyrite	0	0	0.01	0.01	0.03	0	0.25	0	0	0
Carbonates	0	0	0	0	0	0.01	0	0	0	0
FQ	2.5	1.5	3	2.3	2.5	2.5	1.5	1	1.5	2
Nigrine	0	0	0	0	0	0	0	0	0	0
Celestite	0	0	0	0	0	0	0	0	0	0
Galena	0	0	0	0	0	0	0	0	0	0
Cerussite	0	0	0	0	0	0	0	0	0	0
Malachite	0	0	0	0	0	0	0	0	0	0
Gold	0	0	0	0	0	0	0	0	0	0
Sapphir	0	0	0	0	0	0	0	0	0	0
Cinnabar	0	0	0	0	0	0	0	0	0	0
Scheelite	0	0	0	0	0	0	0	0	0	0
Fluorite	0	0	0	0	0	0	0	0	0	0
Silver	0	0	0	0	0	0	0	0	0	0
Andalusite	0	0	0	0	0	0	0	0	0.01	0
Monazite	0	0	0	0	0	0	0	0	0	0
Hematite	1.8	4	3	15	5	9	3	5	0.5	5
Goethite	0	0	0	0.5	0.01	0.45	0	0	0	0
Limonite	0	0	0	0.01	0.01	0.01	0	0	0	0
Pyriteoxide	0	0.01	0	0.5	0.01	0.01	0.5	0.01	0.01	0.01
Pyritelimonite	0	0	0	0	0	0	0.01	0	0	0
Oligiste	0	0	0	0	0	0	0	0	0	0
Pyroxens	13.5	8	20	15	20	18	20	15	15	20
Amphibols	2.7	1.6	5	30	5	9	10	5	7	30
Epidots	1.8	0.4	1	2	5	2.7	5	3	5	5
Garnets	0	0	0	0	0	0	0	0	0.01	0
Chlorite	0.01	0.01	0.01	0.5	0.01	0.01	0.5	0.01	0.5	0.5
Biotite	0	0	0	0	0	0.01	0	0	0	0
Ilmenite	4.5	40	7	0.5	5	9	1	0.5	0.01	0.01
Martite	0	0	0	0	0	0	0	0	0	0
Sericite	0	0	0.01	0.01	0	0.01	0	0	0	0
Altreadsillicate	65	27	62	39	72	48	63	74	73	43

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

جدول 3-4- نتایج آنالیز نمونه های کانی سنگین برداشت شده (ادامه)

Sample	MR-21-H	MR-22-H	MR-23-H	MR-24-H	MR-25-H	MR-26-H	MR-27-H	MR-28-H	MR-29-H	MR-30-H
Magnetite	0.5	3.5	0.05	10	5	0.05	4.8	4.8	4.8	4.5
Titanomagnetite	0.03	0	0	0	0	0	0	0	0	0
Apatite	0.01	0	0.01	0.01	0	0	0	0	0	0
Zircon	0.03	0.01	0.03	0.1	0.01	0.01	0.01	0.03	0.01	0.01
Rutile	0	0	0	0.01	0	0	0	0	0	0
Anatase	0	0	0	0.01	0	0	0	0	0	0
Sphene	0	0	0	0	0	0	0	0.01	0.01	0.01
Leucoxene	0.01	0	0	0	0	0	0	0	0	0
Barite	0.01	0.01	0	0	0	0	0	0	0	0
Pyrite	0	0	0	0	0	0	0	0	0	0
Carbonates	0	0	0	0	0	0	0	0	0	0
FQ	1.25	2	2.5	1.5	1.25	1.5	2	3	2.5	3
Nigrine	0	0	0	0	0	0	0	0	0	0
Celestite	0	0	0	0	0	0	0	0	0	0
Galena	0	0	0	0	0	0	0	0	0	0
Cerussite	0	0	0	0	0	0	0	0	0	0
Malachite	0	0	0	0	0	0	0	0	0	0
Gold	0	0	0	0	0	0	0	0	0	0
Sapphir	0	0	0	0.01	0	0	0	0	0	0
Cinnabar	0	0	0	0	0	0	0	0	0	0
Scheelite	0	0	0	0	0	0	0	0	0	0
Fluorite	0	0	0	0	0	0	0	0	0	0
Silver	0.01	0	0	0	0	0	0	0	0	0
Andalusite	0.01	0	0	0.01	0	0	0.01	0	0	0
Monazite	0	0	0	0	0	0	0	0	0	0
Hematite	2	0.5	0.5	0.45	0.01	0.5	0.01	5	3	10
Goethite	0	0	0	0	0	0	0	0.5	0.01	3
Limonite	0.01	0	0	0	0	0.01	0	2	0.5	2
Pyriteoxide	0.01	0	0	0	0	0.01	0.01	0.5	0.5	1
Pyritelimonite	0	0	0	0	0	0	0	0.01	0.01	0.01
Oligiste	0	0	0	0	0	0	0	0	0	0
Pyroxens	30	5	15	9	20	15	20	10	15	20
Amphibols	20	5	20	9	15	10	15	5	10	10
Epidots	5	3	3	1.8	3	3	5	10	3	10
Garnets	0.01	0	0	0	0	0	0	0	0	0.01
Chlorite	0.01	0.5	0.5	0.01	0.01	0.5	0.01	0.5	0.01	0.5
Biotite	0	0	0	0	0	0	0	0	0	0
Ilmenite	3	0	0	0.45	0	0	0.01	0.5	0.01	0
Martite	0	0	0	0	0	0	0	0	0	0
Sericite	0	0	0	0	0	0.01	0	0.01	0	0.01
Altreadsillicate	43	90	62	66	64	73	63	62	67	42

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

جدول 3-4- نتایج آنالیز نمونه های کانی سنگین برداشت شده (ادامه)

Sample	MR-31-H	MR-32-H	MR-33-H	MR-34-H	MR-35-H	MR-36-H	MR-37-H	MR-38-H	MR-39-H	MR-40-H
Magnetite	10	0.01	0.01	0.05	0.5	0.05	9	10	16	2.5
Titanomagnetite	0	0	0	0	0	0	1	0	4	0
Apatite	0.75	0	0.01	0	0	0.01	0.03	0.01	0.25	0
Zircon	2.5	0.01	0.01	0.01	0.01	0.03	0.25	0.1	1.5	0.01
Rutile	0.01	0	0	0	0	0	0	0	0	0
Anatase	0	0	0	0	0	0	0	0	0	0
Sphene	0.25	0	0	0	0	0	0.01	0.01	0.15	0
Leucoxene	0	0	0	0	0	0	0	0	0	0
Barite	0	0	0	0.03	0.01	0.01	0	0	0	0
Pyrite	0	0	0	0	0	0	0	0	0	0
Carbonates	0	0	0	0	0	0	0	0	0	0
FQ	1.5	0.05	0.05	2.5	2	1.5	2	1	2.5	1.5
Nigrine	0	0	0	0	0	0	0	0	0	0
Celestite	0	0	0	0	0	0	0	0	0	0
Galena	0	0	0	0	0	0	0	0	0	0
Cerussite	0	0	0	0	0	0	0	0	0	0
Malachite	0	0	0	0	0	0	0	0	0	0
Gold	0	0	0	0	0	0	0	0	0	0
Sapphir	0.02	0	0	0	0	0	0	0	0	0
Cinnabar	0	0	0	0	0	0	0	0	0	0
Scheelite	0	0	0	0	0	0	0	0	0	0
Fluorite	0	0	0	0	0	0	0	0	0	0
Silver	0	0	0	0	0	0	0	0	0	0
Andalusite	0	0	0	0	0	0	0	0	0	0
Monazite	0	0	0	0	0	0	0	0	0	0
Hematite	4.5	3	5	3	2	0.5	9	0.45	4	73
Goethite	0.01	0	0	0.01	0	0	0	0	0	2
Limonite	0	0.01	0.01	0.01	0	0	0	0	0	0
Pyriteoxide	0.01	0	0.01	0	0	0.01	0.01	0	0	0.01
Pyritelimonite	0	0	0	0	0	0	0	0	0	0
Oligiste	0	0	0	0	0	0	0	0	0	0
Pyroxens	27	5	5	3	3	3	4.5	18	12	3
Amphibols	18	5	10	5	5	2	9	31	8	2
Epidots	2.7	5	3	2	0.5	0.5	2.7	1.8	2.4	0.5
Garnets	0	0.01	0	0	0	0	0.45	0	0	0
Chlorite	0.01	0.01	0.01	0	0.01	0.01	0.01	0.01	0.01	0
Biotite	0.01	0	0	0	0	0	0.01	0	0	0
Ilmenite	1.8	0	0	0	0	0	18	0.45	32	0
Martite	0	0	0	0	0	0	0	0	0	0
Sericite	0.01	0	0	0	0	0.01	0.01	0	0	0
Altreadsillicate	36	80	70	82	87	93	47	39	21	22

پیوست ۱– نتایج نمونه های ژئوشیمی و کانی سنگین فاز I

جدول 3-2- نتایج آنالیز نمونه های کانی سنگین برداشت شده (ادامه)

Sample	MR-41-H	MR-42-H	MR-43-H	MR-44-H	MR-45-H	MR-46-H	MR-47-H	MR-48-H	MR-49-H
Magnetite	0.05	18	4.8	9	16	4.5	0.01	5	5
Titanomagnetite	0	2	0.25	1	4	0	0	0	0
Apatite	0.03	0	0.5	0.25	0.1	0.03	0.01	0.01	0.01
Zircon	0.25	0.05	2.5	3	3.5	0.15	0.03	0.01	0.03
Rutile	0	0	0	0	0	0	0	0	0
Anatase	0	0	0	0	0	0	0	0	0
Sphene	0.05	0	0.1	0.15	0.15	0.03	0.01	0	0
Leucoxene	0	0	0	0	0	0	0	0	0
Barite	0	0	0	0	0.25	0	0	0	0
Pyrite	0	0	0	0	0	0	0	0	0
Carbonates	0	0	0	0	0	0	0	0	0
FQ	2.5	3	1.5	0.75	0.5	3	1	0.01	1.5
Nigrine	0	0	0	0	0	0	0	0	0
Celestite	0	0	0	0	0	0	0	0	0
Galena	0	0	0	0	0.01	0	0	0	0
Cerussite	0	0	0	0	0.01	0	0	0	0
Malachite	0	0	0	0	0	0	0	0	0
Gold	0	0	0	0	0	0	0	0	0
Sapphir	0	0	0	0	0	0	0	0	0
Cinnabar	0	0	0	0	0	0	0	0	0
Scheelite	0	0	0	0	0	0	0	0	0
Fluorite	0	0	0	0	0	0	0	0	0
Silver	0	0	0	0	0	0	0	0	0
Andalusite	0	0	0	0	0	0	0	0	0
Monazite	0	0	0	0	0.01	0	0	0	0
Hematite	5	2.1	3	1.8	4	5	5	0.5	3
Goethite	0.5	0	0	0	0	0.01	0.5	0	0
Limonite	0	0	0	0	0	0.01	0.01	0	0
Pyriteoxide	0.01	0	0	0	0.01	0.01	0.01	0	0
Pyritelimonite	0	0	0	0	0.01	0	0	0	0
Oligiste	0	0	0	0	0	0	0	0	0
Pyroxens	10	10.5	10	13	8	10	5	5	5
Amphibols	15	7	15	18	4	20	15	5	10
Epidots	2	0.35	1	2.7	0.4	3	0.5	0.01	0.5
Garnets	0	0	0	0	0	0	0	0	0
Chlorite	0.5	0.01	0.5	0.01	0.01	0.5	0.01	0	0.01
Biotite	0.01	0.01	0.01	0.45	0.01	0.5	0	0	0
Ilmenite	0.5	35	40	27	56	0.01	0.01	0	0
Martite	0	0	0	0	0	0	0	0	0
Sericite	0.01	0.01	0.01	0.01	0.01	0.5	0.5	0.01	0.01
Altreadsillicate	62	21	30	28	9	62	74	90	84

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲ – جداول و نمودارهای فطا گیری

جداول و نمودارهای خطاگیری

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Au(ppb)						Al(ppn	ı)		
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین «۱۰	اختلاف» ۱۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین * ۱۰۰	اختلاف*۱۰۰
MR-104	SR-85-ED	3	0.75	1.875	2.25	MR-104	SR-85-ED	63638	63627	63632.5	11
MR-106	CT-83-PM	0.75	1	0.875	0.25	MR-106	CT-83-PM	76913	71730	74321.5	5183
MR-109	VF-80-FD	0.75	0.75	0.75	0	MR-109	VF-80-FD	107061	114076	110568.5	7015
MR-110	RX-76-BM	0.75	1	0.875	0.25	MR-110	RX-76-BM	73273	74838	74055.5	1565
MR-113	KL-65-ER	0.75	1	0.875	0.25	MR-113	KL-65-ER	86149	97004	91576.5	10855
MR-12	BC-55-DF	2	2	2	0	MR-12	BC-55-DF	79733	77424	78578.5	2309
MR-133	BA-83-FR	1	6	3.5	5	MR-133	BA-83-FR	77679	73361	75520	4318
MR-139	MT-93-DF	0.75	0.75	0.75	0	MR-139	MT-93-DF	86848	87547	87197.5	699
MR-14	SS-38-HJ	2	1	1.5	1	MR-14	SS-38-HJ	74038	77968	76003	3930
MR-146	НН-45-РЈ	0.75	1	0.875	0.25	MR-146	НН-45-РЈ	74704	76014	75359	1310
MR-148	DK-29-JG	2	1	1.5	1	MR-148	DK-29-JG	64870	81087	72978.5	16217
MR-159	ZB-56-AB	1	1	1	0	MR-159	ZB-56-AB	64570	75604	70087	11034
MR-162	DB-45-JH	0.75	0.75	0.75	0	MR-162	DB-45-JH	75304	77912	76608	2608
MR-169	FD-76-PM	0.75	1	0.875	0.25	MR-169	FD-76-PM	74327	68677	71502	5650
MR-17	TF-29-JK	1	0.75	0.875	0.25	MR-17	TF-29-JK	81731	82097	81914	366
MR-174	KN-12-LM	0.75	2	1.375	1.25	MR-174	KN-12-LM	86504	86737	86620.5	233
MR-186	DV-32-AS	0.75	1	0.875	0.25	MR-186	DV-32-AS	86803	92886	89844.5	6083
MR-205	WE-54-TF	0.75	1	0.875	0.25	MR-205	WE-54-TF	83285	83396	83340.5	111
MR-213	HI-23-GG	1	1	1	0	MR-213	HI-23-GG	61606	68411	65008.5	6805
MR-218	FK-72-KJ	1	1	1	0	MR-218	FK-72-KJ	73273	66013	69643	7260
MR-221	CF-44-BM	1	1	1	0	MR-221	CF-44-BM	74793	75792	75292.5	999
MR-235	EA-34-GH	1	0.75	0.875	0.25	MR-235	EA-34-GH	78390	79422	78906	1032
MR-31	BB-42-BV	1	0.75	0.875	0.25	MR-31	BB-42-BV	85760	89978	87869	4218
MR-37	RW-88-TF	0.75	1	0.875	0.25	MR-37	RW-88-TF	76813	70853	73833	5960
MR-5	ZY-55-MR	3	1	2	2	MR-5	ZY-55-MR	80343	78756	79549.5	1587
MR-57	EE-48-ZS	0.75	1	0.875	0.25	MR-57	EE-48-ZS	86604	86926	86765	322
MR-64	DE-22-FG	0.75	1	0.875	0.25	MR-64	DE-22-FG	80932	82030	81481	1098
MR-66	SK-98-HB	1	2	1.5	1	MR-66	SK-98-HB	75382	82563	78972.5	7181
MR-71	DN-43-RT	1	4	2.5	3	MR-71	DN-43-RT	85449	84872	85160.5	577
MR-85	BN-89-MN	0.75	1	0.875	0.25	MR-85	BN-89-MN	85372	76780	81076	8592

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

	As	s(ppm)						Ba(ppm)			
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین	اختلاف	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین	اختلاف
MR-104	SR-85-ED	10.9	11.7	11.3	0.8	MR-104	SR-85-ED	398.21	440.31	419.26	42.1
MR-106	CT-83-PM	4.6	6	5.3	1.4	MR-106	CT-83-PM	197.51	182.51	190.01	15
MR-109	VF-80-FD	1.4	1.7	1.55	0.3	MR-109	VF-80-FD	158.21	175.91	167.06	17.7
MR-110	RX-76-BM	7.5	5.6	6.55	1.9	MR-110	RX-76-BM	246.71	235.61	241.16	11.1
MR-113	KL-65-ER	8.4	7.9	8.15	0.5	MR-113	KL-65-ER	182.41	228.91	205.66	46.5
MR-12	BC-55-DF	3.4	4.1	3.75	0.7	MR-12	BC-55-DF	173.31	158.61	165.96	14.7
MR-133	BA-83-FR	5.4	5.6	5.5	0.2	MR-133	BA-83-FR	362.01	349.81	355.91	12.2
MR-139	MT-93-DF	4.4	3.8	4.1	0.6	MR-139	MT-93-DF	180.51	163.71	172.11	16.8
MR-14	SS-38-HJ	6.3	7	6.65	0.7	MR-14	SS-38-HJ	209.21	285.31	247.26	76.1
MR-146	НН-45-РЈ	11.1	7.7	9.4	3.4	MR-146	НН-45-РЈ	238.31	198.81	218.56	39.5
MR-148	DK-29-JG	11.4	8.3	9.85	3.1	MR-148	DK-29-JG	283.11	293.11	288.11	10
MR-159	ZB-56-AB	7.8	6.7	7.25	1.1	MR-159	ZB-56-AB	288.71	277.41	283.06	11.3
MR-162	DB-45-JH	6.3	5.1	5.7	1.2	MR-162	DB-45-JH	280.91	242.71	261.81	38.2
MR-169	FD-76-PM	16.4	13.1	14.75	3.3	MR-169	FD-76-PM	347.21	404.11	375.66	56.9
MR-17	TF-29-JK	3.3	5	4.15	1.7	MR-17	TF-29-JK	192.21	204.91	198.56	12.7
MR-174	KN-12-LM	8.5	8	8.25	0.5	MR-174	KN-12-LM	250.11	296.01	273.06	45.9
MR-186	DV-32-AS	5.1	5.8	5.45	0.7	MR-186	DV-32-AS	151.91	168.51	160.21	16.6
MR-205	WE-54-TF	5.4	4.5	4.95	0.9	MR-205	WE-54-TF	181.51	188.11	184.81	6.6
MR-213	HI-23-GG	13.2	12.4	12.8	0.8	MR-213	HI-23-GG	286.11	293.41	289.76	7.3
MR-218	FK-72-KJ	5.1	8.4	6.75	3.3	MR-218	FK-72-KJ	350.01	355.51	352.76	5.5
MR-221	CF-44-BM	6.1	3.4	4.75	2.7	MR-221	CF-44-BM	182.11	171.41	176.76	10.7
MR-235	EA-34-GH	6.3	6.7	6.5	0.4	MR-235	EA-34-GH	200.31	248.61	224.46	48.3
MR-31	BB-42-BV	3.3	2.6	2.95	0.7	MR-31	BB-42-BV	119.91	114.31	117.11	5.6
MR-37	RW-88-TF	6	4.9	5.45	1.1	MR-37	RW-88-TF	277.01	220.01	248.51	57
MR-5	ZY-55-MR	8.7	46.7	27.7	38	MR-5	ZY-55-MR	224.31	290.11	257.21	65.8
MR-57	EE-48-ZS	6.2	6.5	6.35	0.3	MR-57	EE-48-ZS	177.81	173.91	175.86	3.9
MR-64	DE-22-FG	3.2	5.7	4.45	2.5	MR-64	DE-22-FG	174.91	168.91	171.91	6
MR-66	SK-98-HB	15.6	13.3	14.45	2.3	MR-66	SK-98-HB	191.91	211.11	201.51	19.2
MR-71	DN-43-RT	6.7	8.2	7.45	1.5	MR-71	DN-43-RT	186.71	164.31	175.51	22.4
MR-85	BN-89-MN	5.3	2.5	3.9	2.8	MR-85	BN-89-MN	177.51	157.81	167.66	19.7

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Be(ppn	n)					Bi(pp	m)		
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین* ۱۰۰	اختلاف* ۱۰۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین٭۱۰۰۰	اختلاف * ۱۰۰۰
MR-104	SR-85-ED	1.89	1.913	1.9015	0.023	MR-104	SR-85-ED	0.352	0.381	0.3665	0.029
MR-106	CT-83-PM	1.004	1.598	1.301	0.594	MR-106	CT-83-PM	0.169	0.112	0.1405	0.057
MR-109	VF-80-FD	0.751	1.2	0.9755	0.449	MR-109	VF-80-FD	0.144	0.068	0.106	0.076
MR-110	RX-76-BM	1.14	1.147	1.1435	0.007	MR-110	RX-76-BM	0.161	0.198	0.1795	0.037
MR-113	KL-65-ER	0.789	0.942	0.8655	0.153	MR-113	KL-65-ER	0.108	0.127	0.1175	0.019
MR-12	BC-55-DF	1.68	1.129	1.4045	0.551	MR-12	BC-55-DF	0.103	0.082	0.0925	0.021
MR-133	BA-83-FR	1.672	1.221	1.4465	0.451	MR-133	BA-83-FR	0.13	0.23	0.18	0.1
MR-139	MT-93-DF	0.643	0.976	0.8095	0.333	MR-139	MT-93-DF	0.273	0.093	0.183	0.18
MR-14	SS-38-HJ	1.093	2.087	1.59	0.994	MR-14	SS-38-HJ	0.171	0.133	0.152	0.038
MR-146	HH-45-PJ	1.201	0.726	0.9635	0.475	MR-146	HH-45-PJ	0.149	0.12	0.1345	0.029
MR-148	DK-29-JG	1.279	1.166	1.2225	0.113	MR-148	DK-29-JG	0.146	0.172	0.159	0.026
MR-159	ZB-56-AB	1.5	1.331	1.4155	0.169	MR-159	ZB-56-AB	0.089	0.121	0.105	0.032
MR-162	DB-45-JH	1.739	1.6	1.6695	0.139	MR-162	DB-45-JH	0.127	0.136	0.1315	0.009
MR-169	FD-76-PM	1.206	1.571	1.3885	0.365	MR-169	FD-76-PM	0.435	0.352	0.3935	0.083
MR-17	TF-29-JK	0.945	1.269	1.107	0.324	MR-17	TF-29-JK	0.058	0.078	0.068	0.02
MR-174	KN-12-LM	1.243	1.895	1.569	0.652	MR-174	KN-12-LM	0.074	0.129	0.1015	0.055
MR-186	DV-32-AS	0.914	1.955	1.4345	1.041	MR-186	DV-32-AS	0.079	0.044	0.0615	0.035
MR-205	WE-54-TF	1.617	1.291	1.454	0.326	MR-205	WE-54-TF	0.1	0.122	0.111	0.022
MR-213	HI-23-GG	1.58	2.377	1.9785	0.797	MR-213	HI-23-GG	0.167	0.206	0.1865	0.039
MR-218	FK-72-KJ	1.94	2.278	2.109	0.338	MR-218	FK-72-KJ	0.183	0.138	0.1605	0.045
MR-221	CF-44-BM	1.168	1.096	1.132	0.072	MR-221	CF-44-BM	0.061	0.086	0.0735	0.025
MR-235	EA-34-GH	0.885	1.7	1.2925	0.815	MR-235	EA-34-GH	0.085	0.079	0.082	0.006
MR-31	BB-42-BV	0.886	1.153	1.0195	0.267	MR-31	BB-42-BV	0.072	0.089	0.0805	0.017
MR-37	RW-88-TF	1.398	1.079	1.2385	0.319	MR-37	RW-88-TF	0.061	0.13	0.0955	0.069
MR-5	ZY-55-MR	1.61	1.851	1.7305	0.241	MR-5	ZY-55-MR	0.118	0.388	0.253	0.27
MR-57	EE-48-ZS	0.825	1.156	0.9905	0.331	MR-57	EE-48-ZS	0.117	0.074	0.0955	0.043
MR-64	DE-22-FG	2.12	2.124	2.122	0.004	MR-64	DE-22-FG	0.029	0.034	0.0315	0.005
MR-66	SK-98-HB	1.23	1.048	1.139	0.182	MR-66	SK-98-HB	0.072	0.149	0.1105	0.077
MR-71	DN-43-RT	1.094	0.833	0.9635	0.261	MR-71	DN-43-RT	0.08	0.088	0.084	0.008
MR-85	BN-89-MN	1.622	1.353	1.4875	0.269	MR-85	BN-89-MN	0.055	0.08	0.0675	0.025

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

		Ca(ppm	l)					Cd(pp	m)		
شماره نمونه اوليه	سماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین / ۱۰۰	اختلاف/١٠٠	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین * ۱۰۰۰	اختلاف« ۱۰۰۰
MR-104	SR-85-ED	19777	19650	19713.5	127	MR-104	SR-85-ED	0.396	0.609	0.5025	0.213
MR-106	CT-83-PM	32539	29624	31081.5	2915	MR-106	CT-83-PM	0.441	0.435	0.438	0.006
MR-109	VF-80-FD	67562	67763	67662.5	201	MR-109	VF-80-FD	0.162	0.159	0.1605	0.003
MR-110	RX-76-BM	46977	45503	46240	1474	MR-110	RX-76-BM	0.146	0.23	0.188	0.084
MR-113	KL-65-ER	38210	41284	39747	3074	MR-113	KL-65-ER	0.062	0.326	0.194	0.264
MR-12	BC-55-DF	37733	38306	38019.5	573	MR-12	BC-55-DF	0.157	0.197	0.177	0.04
MR-133	BA-83-FR	32932	33430	33181	498	MR-133	BA-83-FR	0.57	0.161	0.3655	0.409
MR-139	MT-93-DF	48821	47729	48275	1092	MR-139	MT-93-DF	0.251	0.1	0.1755	0.151
MR-14	SS-38-HJ	23275	26741	25008	3466	MR-14	SS-38-HJ	0.26	0.225	0.2425	0.035
MR-146	НН-45-РЈ	37617	35603	36610	2014	MR-146	НН-45-РЈ	0.23	0.258	0.244	0.028
MR-148	DK-29-JG	34288	33790	34039	498	MR-148	DK-29-JG	0.277	0.358	0.3175	0.081
MR-159	ZB-56-AB	25300	26879	26089.5	1579	MR-159	ZB-56-AB	0.4	0.522	0.461	0.122
MR-162	DB-45-JH	31437	29465	30451	1972	MR-162	DB-45-JH	0.252	0.157	0.2045	0.095
MR-169	FD-76-PM	30674	29868	30271	806	MR-169	FD-76-PM	0.615	0.459	0.537	0.156
MR-17	TF-29-JK	37691	37765	37728	74	MR-17	TF-29-JK	0.286	0.047	0.1665	0.239
MR-174	KN-12-LM	29497	27324	28410.5	2173	MR-174	KN-12-LM	0.437	0.634	0.5355	0.197
MR-186	DV-32-AS	47083	51429	49256	4346	MR-186	DV-32-AS	0.156	0.147	0.1515	0.009
MR-205	WE-54-TF	36090	34394	35242	1696	MR-205	WE-54-TF	0.142	0.274	0.208	0.132
MR-213	HI-23-GG	25830	23741	24785.5	2089	MR-213	HI-23-GG	0.726	0.719	0.7225	0.007
MR-218	FK-72-KJ	16989	15844	16416.5	1145	MR-218	FK-72-KJ	0.596	0.246	0.421	0.35
MR-221	CF-44-BM	33705	32031	32868	1674	MR-221	CF-44-BM	0.229	0.328	0.2785	0.099
MR-235	EA-34-GH	31225	29190	30207.5	2035	MR-235	EA-34-GH	0.422	0.107	0.2645	0.315
MR-31	BB-42-BV	59357	64032	61694.5	4675	MR-31	BB-42-BV	0.218	0.144	0.181	0.074
MR-37	RW-88-TF	26635	25469	26052	1166	MR-37	RW-88-TF	0.351	0.577	0.464	0.226
MR-5	ZY-55-MR	27557	29518	28537.5	1961	MR-5	ZY-55-MR	0.283	4.611	2.447	4.328
MR-57	EE-48-ZS	46627	46489	46558	138	MR-57	EE-48-ZS	0.25	0.195	0.2225	0.055
MR-64	DE-22-FG	32264	33896	33080	1632	MR-64	DE-22-FG	0.116	0.17	0.143	0.054
MR-66	SK-98-HB	37924	38698	38311	774	MR-66	SK-98-HB	0.275	0.28	0.2775	0.005
MR-71	DN-43-RT	40882	41486	41184	604	MR-71	DN-43-RT	0.447	0.033	0.24	0.414
MR-85	BN-89-MN	36196	33006	34601	3190	MR-85	BN-89-MN	0.1	0.21	0.155	0.11

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

		Ce(ppn	1)				Co	(ppm)			
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین	اختلاف	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین	اختلاف
MR-104	SR-85-ED	90.107	113.227	101.667	23.12	MR-104	SR-85-ED	26.56	27.02	26.79	0.46
MR-106	CT-83-PM	48.617	46.227	47.422	2.39	MR-106	CT-83-PM	43.52	40.14	41.83	3.38
MR-109	VF-80-FD	20.727	21.607	21.167	0.88	MR-109	VF-80-FD	37.88	37.32	37.6	0.56
MR-110	RX-76-BM	47.557	54.907	51.232	7.35	MR-110	RX-76-BM	28.83	26.6	27.715	2.23
MR-113	KL-65-ER	25.547	40.937	33.242	15.39	MR-113	KL-65-ER	29.11	27.23	28.17	1.88
MR-12	BC-55-DF	59.787	54.177	56.982	5.61	MR-12	BC-55-DF	39.88	32.52	36.2	7.36
MR-133	BA-83-FR	59.407	65.757	62.582	6.35	MR-133	BA-83-FR	31.71	31.51	31.61	0.2
MR-139	MT-93-DF	38.547	41.687	40.117	3.14	MR-139	MT-93-DF	33.33	33.53	33.43	0.2
MR-14	SS-38-HJ	63.157	79.427	71.292	16.27	MR-14	SS-38-HJ	33.75	43.08	38.415	9.33
MR-146	HH-45-PJ	79.747	68.757	74.252	10.99	MR-146	HH-45-PJ	35.48	30.59	33.035	4.89
MR-148	DK-29-JG	75.537	79.777	77.657	4.24	MR-148	DK-29-JG	46.04	51.66	48.85	5.62
MR-159	ZB-56-AB	60.457	86.237	73.347	25.78	MR-159	ZB-56-AB	33.92	30.27	32.095	3.65
MR-162	DB-45-JH	68.797	59.037	63.917	9.76	MR-162	DB-45-JH	37.01	30.18	33.595	6.83
MR-169	FD-76-PM	106.627	111.527	109.077	4.9	MR-169	FD-76-PM	20.88	24.24	22.56	3.36
MR-17	TF-29-JK	52.927	55.647	54.287	2.72	MR-17	TF-29-JK	38.79	45.72	42.255	6.93
MR-174	KN-12-LM	65.427	62.667	64.047	2.76	MR-174	KN-12-LM	37.53	46.43	41.98	8.9
MR-186	DV-32-AS	34.627	39.327	36.977	4.7	MR-186	DV-32-AS	46.45	37.55	42	8.9
MR-205	WE-54-TF	50.737	49.437	50.087	1.3	MR-205	WE-54-TF	29.84	30.43	30.135	0.59
MR-213	HI-23-GG	83.587	79.937	81.762	3.65	MR-213	HI-23-GG	20.06	19.67	19.865	0.39
MR-218	FK-72-KJ	84.557	91.167	87.862	6.61	MR-218	FK-72-KJ	33.45	35.72	34.585	2.27
MR-221	CF-44-BM	60.667	48.777	54.722	11.89	MR-221	CF-44-BM	35.62	37.29	36.455	1.67
MR-235	EA-34-GH	61.207	63.557	62.382	2.35	MR-235	EA-34-GH	36.21	45.1	40.655	8.89
MR-31	BB-42-BV	35.827	34.657	35.242	1.17	MR-31	BB-42-BV	46.39	44.97	45.68	1.42
MR-37	RW-88-TF	61.597	57.187	59.392	4.41	MR-37	RW-88-TF	34.89	36.69	35.79	1.8
MR-5	ZY-55-MR	63.837	72.887	68.362	9.05	MR-5	ZY-55-MR	30.96	31.46	31.21	0.5
MR-57	EE-48-ZS	44.957	47.227	46.092	2.27	MR-57	EE-48-ZS	26.06	28.36	27.21	2.3
MR-64	DE-22-FG	58.317	65.887	62.102	7.57	MR-64	DE-22-FG	33.88	36.33	35.105	2.45
MR-66	SK-98-HB	46.577	48.637	47.607	2.06	MR-66	SK-98-HB	27.72	29.56	28.64	1.84
MR-71	DN-43-RT	41.327	47.517	44.422	6.19	MR-71	DN-43-RT	34.74	29.62	32.18	5.12
MR-85	BN-89-MN	51.357	44.477	47.917	6.88	MR-85	BN-89-MN	42.61	30.28	36.445	12.33

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

		Cr(ppn	1)					Cs(ppn	n)		
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین	اختلاف	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین٭۱۰۰	اختلاف* ۱۰۰
MR-104	SR-85-ED	126.6	133.8	130.2	7.2	MR-104	SR-85-ED	7.1	7.07	7.085	0.03
MR-106	CT-83-PM	271.7	232.6	252.15	39.1	MR-106	CT-83-PM	2.83	2.87	2.85	0.04
MR-109	VF-80-FD	38.9	33.5	36.2	5.4	MR-109	VF-80-FD	3.04	3.47	3.255	0.43
MR-110	RX-76-BM	81.4	99.7	90.55	18.3	MR-110	RX-76-BM	4.77	5.11	4.94	0.34
MR-113	KL-65-ER	72.1	77	74.55	4.9	MR-113	KL-65-ER	11.86	18.58	15.22	6.72
MR-12	BC-55-DF	131.5	118.1	124.8	13.4	MR-12	BC-55-DF	2.36	2.36	2.36	0
MR-133	BA-83-FR	107.4	97.8	102.6	9.6	MR-133	BA-83-FR	10.44	10.18	10.31	0.26
MR-139	MT-93-DF	146.1	174.2	160.15	28.1	MR-139	MT-93-DF	2.96	2.87	2.915	0.09
MR-14	SS-38-HJ	123.6	145.7	134.65	22.1	MR-14	SS-38-HJ	3.37	5.14	4.255	1.77
MR-146	НН-45-РЈ	105	117.1	111.05	12.1	MR-146	HH-45-PJ	5.49	4.62	5.055	0.87
MR-148	DK-29-JG	139.8	153.3	146.55	13.5	MR-148	DK-29-JG	3.33	4.18	3.755	0.85
MR-159	ZB-56-AB	73.7	81.3	77.5	7.6	MR-159	ZB-56-AB	2.93	3.77	3.35	0.84
MR-162	DB-45-JH	88.7	86.7	87.7	2	MR-162	DB-45-JH	3.63	3.19	3.41	0.44
MR-169	FD-76-PM	106.3	97.8	102.05	8.5	MR-169	FD-76-PM	10.8	12.54	11.67	1.74
MR-17	TF-29-JK	129	140.2	134.6	11.2	MR-17	TF-29-JK	2.71	2.88	2.795	0.17
MR-174	KN-12-LM	142.2	155.1	148.65	12.9	MR-174	KN-12-LM	4.17	5.16	4.665	0.99
MR-186	DV-32-AS	155.7	148.7	152.2	7	MR-186	DV-32-AS	1.68	2.09	1.885	0.41
MR-205	WE-54-TF	145.1	156.8	150.95	11.7	MR-205	WE-54-TF	3.24	3.24	3.24	0
MR-213	HI-23-GG	86.7	93.8	90.25	7.1	MR-213	HI-23-GG	6.78	7.5	7.14	0.72
MR-218	FK-72-KJ	138.9	151	144.95	12.1	MR-218	FK-72-KJ	5.66	5.1	5.38	0.56
MR-221	CF-44-BM	108.7	106.3	107.5	2.4	MR-221	CF-44-BM	2.91	2.6	2.755	0.31
MR-235	EA-34-GH	135.1	155	145.05	19.9	MR-235	EA-34-GH	3.07	3.88	3.475	0.81
MR-31	BB-42-BV	278.1	293.7	285.9	15.6	MR-31	BB-42-BV	2.44	2.17	2.305	0.27
MR-37	RW-88-TF	134.2	115.5	124.85	18.7	MR-37	RW-88-TF	3.53	3.47	3.5	0.06
MR-5	ZY-55-MR	146.2	138.9	142.55	7.3	MR-5	ZY-55-MR	3.85	4.73	4.29	0.88
MR-57	EE-48-ZS	135.3	119.1	127.2	16.2	MR-57	EE-48-ZS	2.31	2.05	2.18	0.26
MR-64	DE-22-FG	52.9	55.5	54.2	2.6	MR-64	DE-22-FG	2.47	2.41	2.44	0.06
MR-66	SK-98-HB	110.4	113.4	111.9	3	MR-66	SK-98-HB	2.39	2.95	2.67	0.56
MR-71	DN-43-RT	119	162.1	140.55	43.1	MR-71	DN-43-RT	3.58	3.23	3.405	0.35
MR-85	BN-89-MN	151.4	130.9	141.15	20.5	MR-85	BN-89-MN	2.77	2.15	2.46	0.62

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Cu(ppm))					Dy(ppn	1)		
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین* ۱۰	اختلاف* ۱۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكرارى	میانگین* ۱۰۰	اختلاف* ۱۰۰
MR-104	SR-85-ED	33.18	33.44	33.31	0.26	MR-104	SR-85-ED	7.823	8.643	8.233	0.82
MR-106	CT-83-PM	41.85	39.32	40.585	2.53	MR-106	CT-83-PM	9.002	8.233	8.6175	0.769
MR-109	VF-80-FD	36.06	35.1	35.58	0.96	MR-109	VF-80-FD	4.074	3.475	3.7745	0.599
MR-110	RX-76-BM	30.72	32.4	31.56	1.68	MR-110	RX-76-BM	5.31	6.066	5.688	0.756
MR-113	KL-65-ER	23.08	30.62	26.85	7.54	MR-113	KL-65-ER	4.465	4.338	4.4015	0.127
MR-12	BC-55-DF	39.12	33.32	36.22	5.8	MR-12	BC-55-DF	12.032	10.543	11.2875	1.489
MR-133	BA-83-FR	57.76	50.25	54.005	7.51	MR-133	BA-83-FR	8.899	8.721	8.81	0.178
MR-139	MT-93-DF	43.3	40.44	41.87	2.86	MR-139	MT-93-DF	7.053	7.138	7.0955	0.085
MR-14	SS-38-HJ	33.23	55.6	44.415	22.37	MR-14	SS-38-HJ	9.231	9.416	9.3235	0.185
MR-146	НН-45-РЈ	73.76	58.98	66.37	14.78	MR-146	НН-45-РЈ	11.14	10.584	10.862	0.556
MR-148	DK-29-JG	48.16	50.95	49.555	2.79	MR-148	DK-29-JG	9.955	9.935	9.945	0.02
MR-159	ZB-56-AB	35.8	27.76	31.78	8.04	MR-159	ZB-56-AB	10.302	11.938	11.12	1.636
MR-162	DB-45-JH	39.02	32.35	35.685	6.67	MR-162	DB-45-JH	10.828	10.817	10.8225	0.011
MR-169	FD-76-PM	35.53	45.84	40.685	10.31	MR-169	FD-76-PM	7.666	7.395	7.5305	0.271
MR-17	TF-29-JK	47.16	55.52	51.34	8.36	MR-17	TF-29-JK	10.039	10.46	10.2495	0.421
MR-174	KN-12-LM	62.32	75.9	69.11	13.58	MR-174	KN-12-LM	8.59	10.195	9.3925	1.605
MR-186	DV-32-AS	64.81	62.24	63.525	2.57	MR-186	DV-32-AS	9.491	9.537	9.514	0.046
MR-205	WE-54-TF	38.7	38.51	38.605	0.19	MR-205	WE-54-TF	9.798	9.479	9.6385	0.319
MR-213	HI-23-GG	26.67	30.33	28.5	3.66	MR-213	HI-23-GG	5.983	5.806	5.8945	0.177
MR-218	FK-72-KJ	48.01	46.73	47.37	1.28	MR-218	FK-72-KJ	8.089	8.617	8.353	0.528
MR-221	CF-44-BM	40.4	37.44	38.92	2.96	MR-221	CF-44-BM	9.633	8.718	9.1755	0.915
MR-235	EA-34-GH	38.63	59.11	48.87	20.48	MR-235	EA-34-GH	8.907	9.676	9.2915	0.769
MR-31	BB-42-BV	52.37	46.05	49.21	6.32	MR-31	BB-42-BV	7.641	8.483	8.062	0.842
MR-37	RW-88-TF	41.2	40.89	41.045	0.31	MR-37	RW-88-TF	9.337	8.335	8.836	1.002
MR-5	ZY-55-MR	42.28	48.2	45.24	5.92	MR-5	ZY-55-MR	9.393	8.482	8.9375	0.911
MR-57	EE-48-ZS	33.73	33.36	33.545	0.37	MR-57	EE-48-ZS	8.171	7.897	8.034	0.274
MR-64	DE-22-FG	75.19	76.43	75.81	1.24	MR-64	DE-22-FG	11.654	12.363	12.0085	0.709
MR-66	SK-98-HB	32.82	40.36	36.59	7.54	MR-66	SK-98-HB	7.309	7.633	7.471	0.324
MR-71	DN-43-RT	46.07	34.12	40.095	11.95	MR-71	DN-43-RT	7.508	7.94	7.724	0.432
MR-85	BN-89-MN	46.78	34.06	40.42	12.72	MR-85	BN-89-MN	11.092	9.472	10.282	1.62

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Er(ppn	1)					Eu(ppn	n)		
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین٭۱۰۰	اختلاف* ۱۰۰	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین٭۱۰۰	اختلاف* ۱۰۰
MR-104	SR-85-ED	4.107	4.382	4.2445	0.275	MR-104	SR-85-ED	1.695	1.878	1.7865	0.183
MR-106	CT-83-PM	4.831	4.392	4.6115	0.439	MR-106	CT-83-PM	1.822	1.735	1.7785	0.087
MR-109	VF-80-FD	2.301	2.251	2.276	0.05	MR-109	VF-80-FD	0.951	1.019	0.985	0.068
MR-110	RX-76-BM	2.56	2.97	2.765	0.41	MR-110	RX-76-BM	1.346	1.142	1.244	0.204
MR-113	KL-65-ER	2.385	2.244	2.3145	0.141	MR-113	KL-65-ER	1.188	0.949	1.0685	0.239
MR-12	BC-55-DF	6.12	5.529	5.8245	0.591	MR-12	BC-55-DF	2.11	1.902	2.006	0.208
MR-133	BA-83-FR	4.947	4.866	4.9065	0.081	MR-133	BA-83-FR	1.599	1.816	1.7075	0.217
MR-139	MT-93-DF	3.925	4.142	4.0335	0.217	MR-139	MT-93-DF	1.323	1.612	1.4675	0.289
MR-14	SS-38-HJ	4.859	5.38	5.1195	0.521	MR-14	SS-38-HJ	1.847	2.016	1.9315	0.169
MR-146	НН-45-РЈ	5.967	6.515	6.241	0.548	MR-146	НН-45-РЈ	2.019	1.764	1.8915	0.255
MR-148	DK-29-JG	5.273	5.521	5.397	0.248	MR-148	DK-29-JG	2.314	2.347	2.3305	0.033
MR-159	ZB-56-AB	5.593	6.391	5.992	0.798	MR-159	ZB-56-AB	1.981	2.47	2.2255	0.489
MR-162	DB-45-JH	5.788	5.675	5.7315	0.113	MR-162	DB-45-JH	1.931	2.012	1.9715	0.081
MR-169	FD-76-PM	4.366	3.739	4.0525	0.627	MR-169	FD-76-PM	1.627	1.813	1.72	0.186
MR-17	TF-29-JK	5.333	5.237	5.285	0.096	MR-17	TF-29-JK	1.767	1.919	1.843	0.152
MR-174	KN-12-LM	4.873	4.965	4.919	0.092	MR-174	KN-12-LM	1.734	2.141	1.9375	0.407
MR-186	DV-32-AS	4.911	5.166	5.0385	0.255	MR-186	DV-32-AS	1.841	1.741	1.791	0.1
MR-205	WE-54-TF	5.334	5.296	5.315	0.038	MR-205	WE-54-TF	1.569	1.851	1.71	0.282
MR-213	HI-23-GG	2.832	2.682	2.757	0.15	MR-213	HI-23-GG	1.474	1.282	1.378	0.192
MR-218	FK-72-KJ	4.279	4.678	4.4785	0.399	MR-218	FK-72-KJ	1.86	1.881	1.8705	0.021
MR-221	CF-44-BM	4.865	4.848	4.8565	0.017	MR-221	CF-44-BM	1.974	1.969	1.9715	0.005
MR-235	EA-34-GH	4.851	5.108	4.9795	0.257	MR-235	EA-34-GH	1.893	1.831	1.862	0.062
MR-31	BB-42-BV	3.846	5.209	4.5275	1.363	MR-31	BB-42-BV	1.313	1.575	1.444	0.262
MR-37	RW-88-TF	5.529	4.546	5.0375	0.983	MR-37	RW-88-TF	1.867	1.647	1.757	0.22
MR-5	ZY-55-MR	5.076	4.492	4.784	0.584	MR-5	ZY-55-MR	1.983	1.75	1.8665	0.233
MR-57	EE-48-ZS	4.649	4.264	4.4565	0.385	MR-57	EE-48-ZS	1.63	1.686	1.658	0.056
MR-64	DE-22-FG	6.565	7.069	6.817	0.504	MR-64	DE-22-FG	1.94	2.138	2.039	0.198
MR-66	SK-98-HB	3.743	3.629	3.686	0.114	MR-66	SK-98-HB	1.3	1.742	1.521	0.442
MR-71	DN-43-RT	3.744	4.688	4.216	0.944	MR-71	DN-43-RT	1.323	1.66	1.4915	0.337
MR-85	BN-89-MN	5.977	5.244	5.6105	0.733	MR-85	BN-89-MN	2.092	1.584	1.838	0.508

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Fe(ppm)						Gd(ppn	n)		
شماره نمونه اوليه	سماره نمونه تكرارى	مقدار اوليه	بقدار تكرارى	میانگین/۱۰۰	اختلاف/۱۰۰	شماره نمونه اوليه	سماره نمونه تكرارى	مقدار اوليه	ىقدار تكرارى	میانگین٭۱۰۰	اختلاف » ۱۰۰
MR-104	SR-85-ED	51869.048	58741.448	55305.248	6872.4	MR-104	SR-85-ED	6.21	6.947	6.5785	0.737
MR-106	CT-83-PM	69293.848	65613.848	67453.848	3680	MR-106	CT-83-PM	6.065	5.922	5.9935	0.143
MR-109	VF-80-FD	47066.648	48823.848	47945.248	1757.2	MR-109	VF-80-FD	2.79	2.956	2.873	0.166
MR-110	RX-76-BM	45870.648	50167.048	48018.848	4296.4	MR-110	RX-76-BM	3.882	4.072	3.977	0.19
MR-113	KL-65-ER	45953.448	49734.648	47844.048	3781.2	MR-113	KL-65-ER	3.696	3.056	3.376	0.64
MR-12	BC-55-DF	89681.048	82560.248	86120.648	7120.8	MR-12	BC-55-DF	6.693	6.259	6.476	0.434
MR-133	BA-83-FR	66018.648	63093.048	64555.848	2925.6	MR-133	BA-83-FR	5.934	5.929	5.9315	0.005
MR-139	MT-93-DF	69385.848	72385.048	70885.448	2999.2	MR-139	MT-93-DF	4.627	4.926	4.7765	0.299
MR-14	SS-38-HJ	71005.048	80481.048	75743.048	9476	MR-14	SS-38-HJ	6.222	7.287	6.7545	1.065
MR-146	НН-45-РЈ	82698.248	81373.448	82035.848	1324.8	MR-146	HH-45-PJ	7.868	7.402	7.635	0.466
MR-148	DK-29-JG	66763.848	73360.248	70062.048	6596.4	MR-148	DK-29-JG	6.827	7.804	7.3155	0.977
MR-159	ZB-56-AB	76065.048	83921.848	79993.448	7856.8	MR-159	ZB-56-AB	7.328	8.624	7.976	1.296
MR-162	DB-45-JH	83020.248	84492.248	83756.248	1472	MR-162	DB-45-JH	7.504	6.57	7.037	0.934
MR-169	FD-76-PM	51611.448	51041.048	51326.248	570.4	MR-169	FD-76-PM	6.006	5.979	5.9925	0.027
MR-17	TF-29-JK	80959.448	82744.248	81851.848	1784.8	MR-17	TF-29-JK	6.163	6.78	6.4715	0.617
MR-174	KN-12-LM	83609.048	84538.248	84073.648	929.2	MR-174	KN-12-LM	6.075	6.964	6.5195	0.889
MR-186	DV-32-AS	75549.848	78355.848	76952.848	2806	MR-186	DV-32-AS	6.326	5.62	5.973	0.706
MR-205	WE-54-TF	72532.248	74068.648	73300.448	1536.4	MR-205	WE-54-TF	5.822	6.496	6.159	0.674
MR-213	HI-23-GG	45410.648	45981.048	45695.848	570.4	MR-213	HI-23-GG	5.622	5.201	5.4115	0.421
MR-218	FK-72-KJ	62964.248	63350.648	63157.448	386.4	MR-218	FK-72-KJ	6.341	6.581	6.461	0.24
MR-221	CF-44-BM	78089.048	76387.048	77238.048	1702	MR-221	CF-44-BM	6.723	5.901	6.312	0.822
MR-235	EA-34-GH	71511.048	73415.448	72463.248	1904.4	MR-235	EA-34-GH	6.221	6.861	6.541	0.64
MR-31	BB-42-BV	73286.648	77748.648	75517.648	4462	MR-31	BB-42-BV	4.405	5.566	4.9855	1.161
MR-37	RW-88-TF	71511.048	66331.448	68921.248	5179.6	MR-37	RW-88-TF	6.548	5.837	6.1925	0.711
MR-5	ZY-55-MR	69008.648	71566.248	70287.448	2557.6	MR-5	ZY-55-MR	6.367	6.028	6.1975	0.339
MR-57	EE-48-ZS	56404.648	61685.448	59045.048	5280.8	MR-57	EE-48-ZS	5.073	5.103	5.088	0.03
MR-64	DE-22-FG	87187.848	86617.448	86902.648	570.4	MR-64	DE-22-FG	7.131	8.671	7.901	1.54
MR-66	SK-98-HB	61759.048	61179.448	61469.248	579.6	MR-66	SK-98-HB	4.551	4.607	4.579	0.056
MR-71	DN-43-RT	60057.048	58971.448	59514.248	1085.6	MR-71	DN-43-RT	4.934	4.8	4.867	0.134
MR-85	BN-89-MN	76782.648	70287.448	73535.048	6495.2	MR-85	BN-89-MN	7.162	5.979	6.5705	1.183

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– مداول و نمودارهای فطا گیری

		Ho(pp	m)					K(ppm	ı)		
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین٭۱۰۰	اختلاف∗۱۰۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین/۱۰۰	اختلاف/١٠٠
MR-104	SR-85-ED	1.536	1.569	1.5525	0.033	MR-104	SR-85-ED	21867	21743	21805	124
MR-106	CT-83-PM	1.687	1.666	1.6765	0.021	MR-106	CT-83-PM	9758	9695	9726.5	63
MR-109	VF-80-FD	0.78	0.795	0.7875	0.015	MR-109	VF-80-FD	4803	4645	4724	158
MR-110	RX-76-BM	0.958	1.123	1.0405	0.165	MR-110	RX-76-BM	12339	13668	13003.5	1329
MR-113	KL-65-ER	0.949	0.9	0.9245	0.049	MR-113	KL-65-ER	8517	8891	8704	374
MR-12	BC-55-DF	2.263	2.061	2.162	0.202	MR-12	BC-55-DF	8939	8068	8503.5	871
MR-133	BA-83-FR	1.845	1.732	1.7885	0.113	MR-133	BA-83-FR	14379	12607	13493	1772
MR-139	MT-93-DF	1.364	1.536	1.45	0.172	MR-139	MT-93-DF	7976	8466	8221	490
MR-14	SS-38-HJ	1.67	1.911	1.7905	0.241	MR-14	SS-38-HJ	12020	12761	12390.5	741
MR-146	HH-45-PJ	2.291	1.878	2.0845	0.413	MR-146	НН-45-РЈ	8329	8145	8237	184
MR-148	DK-29-JG	2.041	1.885	1.963	0.156	MR-148	DK-29-JG	9930	10722	10326	792
MR-159	ZB-56-AB	2.009	2.329	2.169	0.32	MR-159	ZB-56-AB	13750	14729	14239.5	979
MR-162	DB-45-JH	2.165	2.09	2.1275	0.075	MR-162	DB-45-JH	13184	13730	13457	546
MR-169	FD-76-PM	1.405	1.345	1.375	0.06	MR-169	FD-76-PM	23154	23278	23216	124
MR-17	TF-29-JK	1.941	2.007	1.974	0.066	MR-17	TF-29-JK	9374	9508	9441	134
MR-174	KN-12-LM	1.752	1.947	1.8495	0.195	MR-174	KN-12-LM	11896	12555	12225.5	659
MR-186	DV-32-AS	1.796	1.924	1.86	0.128	MR-186	DV-32-AS	7720	7934	7827	214
MR-205	WE-54-TF	1.923	1.854	1.8885	0.069	MR-205	WE-54-TF	10774	11103	10938.5	329
MR-213	HI-23-GG	1.032	1.093	1.0625	0.061	MR-213	HI-23-GG	18313	19374	18843.5	1061
MR-218	FK-72-KJ	1.667	1.651	1.659	0.016	MR-218	FK-72-KJ	17036	17180	17108	144
MR-221	CF-44-BM	1.918	1.789	1.8535	0.129	MR-221	CF-44-BM	9727	9556	9641.5	171
MR-235	EA-34-GH	1.645	1.94	1.7925	0.295	MR-235	EA-34-GH	11484	12143	11813.5	659
MR-31	BB-42-BV	1.402	1.665	1.5335	0.263	MR-31	BB-42-BV	5016	5246	5131	230
MR-37	RW-88-TF	1.947	1.632	1.7895	0.315	MR-37	RW-88-TF	13482	12236	12859	1246
MR-5	ZY-55-MR	1.841	1.618	1.7295	0.223	MR-5	ZY-55-MR	11896	13019	12457.5	1123
MR-57	EE-48-ZS	1.663	1.538	1.6005	0.125	MR-57	EE-48-ZS	8818	9828	9323	1010
MR-64	DE-22-FG	2.432	2.598	2.515	0.166	MR-64	DE-22-FG	8760	8722	8741	38
MR-66	SK-98-HB	1.373	1.486	1.4295	0.113	MR-66	SK-98-HB	10222	11474	10848	1252
MR-71	DN-43-RT	1.393	1.453	1.423	0.06	MR-71	DN-43-RT	10080	9842	9961	238
MR-85	BN-89-MN	2.109	1.879	1.994	0.23	MR-85	BN-89-MN	9610	8605	9107.5	1005

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		La(ppm))					Li(ppm	ı)		
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین * ۱۰	اختلاف* ۱۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكرارى	میانگین* ۱۰	اختلاف* ۱۰
MR-104	SR-85-ED	40.762	46.492	43.627	5.73	MR-104	SR-85-ED	33.46	39.79	36.625	6.33
MR-106	CT-83-PM	21.402	20.092	20.747	1.31	MR-106	CT-83-PM	24.9	24.4	24.65	0.5
MR-109	VF-80-FD	9.862	10.402	10.132	0.54	MR-109	VF-80-FD	20.02	25.36	22.69	5.34
MR-110	RX-76-BM	23.342	24.242	23.792	0.9	MR-110	RX-76-BM	25.25	22.89	24.07	2.36
MR-113	KL-65-ER	13.192	16.662	14.927	3.47	MR-113	KL-65-ER	58.37	66.07	62.22	7.7
MR-12	BC-55-DF	25.102	23.122	24.112	1.98	MR-12	BC-55-DF	18.81	17.12	17.965	1.69
MR-133	BA-83-FR	27.212	26.852	27.032	0.36	MR-133	BA-83-FR	23.96	22.61	23.285	1.35
MR-139	MT-93-DF	17.192	19.052	18.122	1.86	MR-139	MT-93-DF	22.45	19.19	20.82	3.26
MR-14	SS-38-HJ	25.312	31.932	28.622	6.62	MR-14	SS-38-HJ	23.83	36.52	30.175	12.69
MR-146	HH-45-PJ	31.512	29.732	30.622	1.78	MR-146	НН-45-РЈ	24.37	17.3	20.835	7.07
MR-148	DK-29-JG	28.142	30.722	29.432	2.58	MR-148	DK-29-JG	19.65	21.64	20.645	1.99
MR-159	ZB-56-AB	25.792	28.502	27.147	2.71	MR-159	ZB-56-AB	24.68	22.31	23.495	2.37
MR-162	DB-45-JH	27.242	24.692	25.967	2.55	MR-162	DB-45-JH	31.62	23.57	27.595	8.05
MR-169	FD-76-PM	42.112	45.212	43.662	3.1	MR-169	FD-76-PM	25.03	36.59	30.81	11.56
MR-17	TF-29-JK	22.572	23.072	22.822	0.5	MR-17	TF-29-JK	24.92	25.88	25.4	0.96
MR-174	KN-12-LM	24.392	27.142	25.767	2.75	MR-174	KN-12-LM	30.73	44.18	37.455	13.45
MR-186	DV-32-AS	15.322	16.642	15.982	1.32	MR-186	DV-32-AS	20.96	21.55	21.255	0.59
MR-205	WE-54-TF	21.262	21.822	21.542	0.56	MR-205	WE-54-TF	26.53	23.53	25.03	3
MR-213	HI-23-GG	33.042	36.212	34.627	3.17	MR-213	HI-23-GG	47.52	45.18	46.35	2.34
MR-218	FK-72-KJ	31.122	30.912	31.017	0.21	MR-218	FK-72-KJ	41.03	35.04	38.035	5.99
MR-221	CF-44-BM	21.542	19.872	20.707	1.67	MR-221	CF-44-BM	19.87	19.22	19.545	0.65
MR-235	EA-34-GH	21.832	27.862	24.847	6.03	MR-235	EA-34-GH	21.76	29.41	25.585	7.65
MR-31	BB-42-BV	14.492	14.912	14.702	0.42	MR-31	BB-42-BV	18.6	16.98	17.79	1.62
MR-37	RW-88-TF	27.782	24.072	25.927	3.71	MR-37	RW-88-TF	23.87	20.34	22.105	3.53
MR-5	ZY-55-MR	24.742	27.972	26.357	3.23	MR-5	ZY-55-MR	21.49	25.09	23.29	3.6
MR-57	EE-48-ZS	21.132	20.712	20.922	0.42	MR-57	EE-48-ZS	17	13.79	15.395	3.21
MR-64	DE-22-FG	25.722	26.832	26.277	1.11	MR-64	DE-22-FG	13.12	14.35	13.735	1.23
MR-66	SK-98-HB	19.772	21.482	20.627	1.71	MR-66	SK-98-HB	17.97	26.78	22.375	8.81
MR-71	DN-43-RT	18.892	19.312	19.102	0.42	MR-71	DN-43-RT	24.7	19.1	21.9	5.6
MR-85	BN-89-MN	22.702	19.422	21.062	3.28	MR-85	BN-89-MN	26.7	18.78	22.74	7.92

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– مداول و نمودارهای فطا گیری

		Mg(ppn	n)]	Mn(ppm)			
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین/ ۱۰۰	اختلاف/ ۱۰۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكرارى	میانگین/۱۰	اختلاف/ ۱۰
MR-104	SR-85-ED	12018	13058	12538	1040	MR-104	SR-85-ED	1138.99	1789.99	1464.49	651
MR-106	CT-83-PM	33918	33668	33793	250	MR-106	CT-83-PM	1766.99	1705.99	1736.49	61
MR-109	VF-80-FD	32568	36948	34758	4380	MR-109	VF-80-FD	843.19	804.89	824.04	38.3
MR-110	RX-76-BM	15328	17208	16268	1880	MR-110	RX-76-BM	983.29	934.89	959.09	48.4
MR-113	KL-65-ER	28538	30588	29563	2050	MR-113	KL-65-ER	897.59	843.89	870.74	53.7
MR-12	BC-55-DF	24368	23928	24148	440	MR-12	BC-55-DF	2003.99	1746.99	1875.49	257
MR-133	BA-83-FR	18798	19848	19323	1050	MR-133	BA-83-FR	1621.99	1818.99	1720.49	197
MR-139	MT-93-DF	29868	32448	31158	2580	MR-139	MT-93-DF	1190.99	1244.99	1217.99	54
MR-14	SS-38-HJ	19858	21678	20768	1820	MR-14	SS-38-HJ	1642.99	2113.99	1878.49	471
MR-146	HH-45-PJ	17338	18038	17688	700	MR-146	НН-45-РЈ	1927.99	1646.99	1787.49	281
MR-148	DK-29-JG	18418	20358	19388	1940	MR-148	DK-29-JG	2156.99	2391.99	2274.49	235
MR-159	ZB-56-AB	17218	18788	18003	1570	MR-159	ZB-56-AB	1788.99	1631.99	1710.49	157
MR-162	DB-45-JH	21278	22028	21653	750	MR-162	DB-45-JH	1842.99	1635.99	1739.49	207
MR-169	FD-76-PM	14038	13898	13968	140	MR-169	FD-76-PM	1082.99	1092.99	1087.99	10
MR-17	TF-29-JK	24968	26468	25718	1500	MR-17	TF-29-JK	1717.99	2034.99	1876.49	317
MR-174	KN-12-LM	26238	26928	26583	690	MR-174	KN-12-LM	1900.99	1851.99	1876.49	49
MR-186	DV-32-AS	32018	32658	32338	640	MR-186	DV-32-AS	1792.99	1466.99	1629.99	326
MR-205	WE-54-TF	26888	27738	27313	850	MR-205	WE-54-TF	1301.99	1380.99	1341.49	79
MR-213	HI-23-GG	12838	13108	12973	270	MR-213	HI-23-GG	1160.99	1014.99	1087.99	146
MR-218	FK-72-KJ	21108	20968	21038	140	MR-218	FK-72-KJ	1678.99	1694.99	1686.99	16
MR-221	CF-44-BM	21168	20818	20993	350	MR-221	CF-44-BM	2075.99	1806.99	1941.49	269
MR-235	EA-34-GH	25508	26568	26038	1060	MR-235	EA-34-GH	1521.99	1837.99	1679.99	316
MR-31	BB-42-BV	46468	48868	47668	2400	MR-31	BB-42-BV	1520.99	1406.99	1463.99	114
MR-37	RW-88-TF	25008	23958	24483	1050	MR-37	RW-88-TF	1460.99	1570.99	1515.99	110
MR-5	ZY-55-MR	23188	24478	23833	1290	MR-5	ZY-55-MR	1437.99	2987.99	2212.99	1550
MR-57	EE-48-ZS	24458	25538	24998	1080	MR-57	EE-48-ZS	1182.99	1137.99	1160.49	45
MR-64	DE-22-FG	25288	24738	25013	550	MR-64	DE-22-FG	1404.99	1761.99	1583.49	357
MR-66	SK-98-HB	22578	22548	22563	30	MR-66	SK-98-HB	1171.99	1345.99	1258.99	174
MR-71	DN-43-RT	25928	25228	25578	700	MR-71	DN-43-RT	1354.99	1284.99	1319.99	70
MR-85	BN-89-MN	26898	24878	25888	2020	MR-85	BN-89-MN	1649.99	1310.99	1480.49	339

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Mo(pp	om)					Na(ppm)		
شماره نمونه اوليه	سماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین » ۱۰۰۰	اختلاف * ۱۰۰۰	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین / ۱۰۰	اختلاف/۱۰۰
MR-104	SR-85-ED	0.626	0.859	0.7425	0.233	MR-104	SR-85-ED	12556	14156	13356	1600
MR-106	CT-83-PM	0.746	0.485	0.6155	0.261	MR-106	CT-83-PM	18656	17666	18161	990
MR-109	VF-80-FD	0.206	0.288	0.247	0.082	MR-109	VF-80-FD	17806	18766	18286	960
MR-110	RX-76-BM	0.291	0.27	0.2805	0.021	MR-110	RX-76-BM	13666	15196	14431	1530
MR-113	KL-65-ER	0.578	0.502	0.54	0.076	MR-113	KL-65-ER	10996	11346	11171	350
MR-12	BC-55-DF	0.728	0.8	0.764	0.072	MR-12	BC-55-DF	24246	22906	23576	1340
MR-133	BA-83-FR	0.704	0.728	0.716	0.024	MR-133	BA-83-FR	19616	19086	19351	530
MR-139	MT-93-DF	0.69	0.816	0.753	0.126	MR-139	MT-93-DF	22816	24266	23541	1450
MR-14	SS-38-HJ	0.819	1.187	1.003	0.368	MR-14	SS-38-HJ	16226	17816	17021	1590
MR-146	HH-45-PJ	1.115	0.618	0.8665	0.497	MR-146	HH-45-PJ	18046	17866	17956	180
MR-148	DK-29-JG	0.687	1.029	0.858	0.342	MR-148	DK-29-JG	17396	18696	18046	1300
MR-159	ZB-56-AB	0.811	0.933	0.872	0.122	MR-159	ZB-56-AB	20716	22336	21526	1620
MR-162	DB-45-JH	1.131	0.791	0.961	0.34	MR-162	DB-45-JH	21956	22856	22406	900
MR-169	FD-76-PM	0.745	0.603	0.674	0.142	MR-169	FD-76-PM	15716	15816	15766	100
MR-17	TF-29-JK	0.572	0.612	0.592	0.04	MR-17	TF-29-JK	23386	23726	23556	340
MR-174	KN-12-LM	1.015	1.398	1.2065	0.383	MR-174	KN-12-LM	13726	14536	14131	810
MR-186	DV-32-AS	0.641	0.437	0.539	0.204	MR-186	DV-32-AS	24126	25106	24616	980
MR-205	WE-54-TF	0.732	0.732	0.732	0	MR-205	WE-54-TF	20326	21106	20716	780
MR-213	HI-23-GG	0.782	0.7	0.741	0.082	MR-213	HI-23-GG	5381	5704	5542.5	323
MR-218	FK-72-KJ	1.088	1.092	1.09	0.004	MR-218	FK-72-KJ	11326	11656	11491	330
MR-221	CF-44-BM	0.847	0.734	0.7905	0.113	MR-221	CF-44-BM	21086	20686	20886	400
MR-235	EA-34-GH	0.696	0.843	0.7695	0.147	MR-235	EA-34-GH	17766	18956	18361	1190
MR-31	BB-42-BV	0.621	0.552	0.5865	0.069	MR-31	BB-42-BV	20796	21926	21361	1130
MR-37	RW-88-TF	0.846	0.788	0.817	0.058	MR-37	RW-88-TF	17986	16516	17251	1470
MR-5	ZY-55-MR	0.533	0.677	0.605	0.144	MR-5	ZY-55-MR	17916	16896	17406	1020
MR-57	EE-48-ZS	0.191	0.427	0.309	0.236	MR-57	EE-48-ZS	26696	29026	27861	2330
MR-64	DE-22-FG	0.634	0.927	0.7805	0.293	MR-64	DE-22-FG	29726	29386	29556	340
MR-66	SK-98-HB	0.518	0.468	0.493	0.05	MR-66	SK-98-HB	24236	23516	23876	720
MR-71	DN-43-RT	0.494	0.343	0.4185	0.151	MR-71	DN-43-RT	23346	22976	23161	370
MR-85	BN-89-MN	0.356	0.532	0.444	0.176	MR-85	BN-89-MN	23876	21346	22611	2530

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

		Nb(ppm))					Nd(ppn	1)		
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین * ۱۰	اختلاف* ۱۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكرارى	میانگین*۱۰	اختلاف* ۱۰
MR-104	SR-85-ED	16.687	14.696	15.6915	1.991	MR-104	SR-85-ED	34.497	46.327	40.412	11.83
MR-106	CT-83-PM	11.275	9.882	10.5785	1.393	MR-106	CT-83-PM	27.437	25.337	26.387	2.1
MR-109	VF-80-FD	4.162	4.054	4.108	0.108	MR-109	VF-80-FD	10.757	10.847	10.802	0.09
MR-110	RX-76-BM	8.379	8.461	8.42	0.082	MR-110	RX-76-BM	21.377	21.557	21.467	0.18
MR-113	KL-65-ER	5.743	6.335	6.039	0.592	MR-113	KL-65-ER	15.247	16.107	15.677	0.86
MR-12	BC-55-DF	15.499	15.07	15.2845	0.429	MR-12	BC-55-DF	27.437	26.347	26.892	1.09
MR-133	BA-83-FR	13.2	10.905	12.0525	2.295	MR-133	BA-83-FR	29.157	28.857	29.007	0.3
MR-139	MT-93-DF	9.243	8.359	8.801	0.884	MR-139	MT-93-DF	18.287	20.147	19.217	1.86
MR-14	SS-38-HJ	10.289	16.434	13.3615	6.145	MR-14	SS-38-HJ	26.467	33.667	30.067	7.2
MR-146	HH-45-PJ	25.311	19.745	22.528	5.566	MR-146	HH-45-PJ	35.427	29.737	32.582	5.69
MR-148	DK-29-JG	13.013	13.75	13.3815	0.737	MR-148	DK-29-JG	30.527	35.877	33.202	5.35
MR-159	ZB-56-AB	16.544	12.067	14.3055	4.477	MR-159	ZB-56-AB	32.687	33.227	32.957	0.54
MR-162	DB-45-JH	14.905	15.664	15.2845	0.759	MR-162	DB-45-JH	31.917	26.247	29.082	5.67
MR-169	FD-76-PM	10.78	11.539	11.1595	0.759	MR-169	FD-76-PM	35.727	36.367	36.047	0.64
MR-17	TF-29-JK	13.354	13.75	13.552	0.396	MR-17	TF-29-JK	26.667	28.547	27.607	1.88
MR-174	KN-12-LM	11.077	14.003	12.54	2.926	MR-174	KN-12-LM	27.827	30.177	29.002	2.35
MR-186	DV-32-AS	8.019	7.704	7.8615	0.315	MR-186	DV-32-AS	23.877	20.797	22.337	3.08
MR-205	WE-54-TF	12.386	12.892	12.639	0.506	MR-205	WE-54-TF	23.347	26.487	24.917	3.14
MR-213	HI-23-GG	7.55	8.644	8.097	1.094	MR-213	HI-23-GG	30.167	32.187	31.177	2.02
MR-218	FK-72-KJ	12.639	11.902	12.2705	0.737	MR-218	FK-72-KJ	31.447	31.777	31.612	0.33
MR-221	CF-44-BM	11.693	11	11.3465	0.693	MR-221	CF-44-BM	27.227	24.177	25.702	3.05
MR-235	EA-34-GH	9.624	12.375	10.9995	2.751	MR-235	EA-34-GH	24.717	28.267	26.492	3.55
MR-31	BB-42-BV	8.348	8.388	8.368	0.04	MR-31	BB-42-BV	18.627	17.367	17.997	1.26
MR-37	RW-88-TF	12.771	10.075	11.423	2.696	MR-37	RW-88-TF	28.357	26.947	27.652	1.41
MR-5	ZY-55-MR	10.626	10.544	10.585	0.082	MR-5	ZY-55-MR	27.977	30.727	29.352	2.75
MR-57	EE-48-ZS	9.143	8.537	8.84	0.606	MR-57	EE-48-ZS	19.977	21.837	20.907	1.86
MR-64	DE-22-FG	13.805	12.705	13.255	1.1	MR-64	DE-22-FG	27.817	34.847	31.332	7.03
MR-66	SK-98-HB	9.44	9.558	9.499	0.118	MR-66	SK-98-HB	21.067	22.657	21.862	1.59
MR-71	DN-43-RT	9.129	7.387	8.258	1.742	MR-71	DN-43-RT	18.777	20.187	19.482	1.41
MR-85	BN-89-MN	10.557	10.506	10.5315	0.051	MR-85	BN-89-MN	28.207	21.657	24.932	6.55

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

	Ni	i(ppm)						P(ppm)			
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین	اختلاف	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین/۱۰	اختلاف/١٠
MR-104	SR-85-ED	83.19	92.84	88.015	9.65	MR-104	SR-85-ED	823.7	908.1	865.9	84.4
MR-106	CT-83-PM	148.7	139.6	144.15	9.1	MR-106	CT-83-PM	935.3	843.9	889.6	91.4
MR-109	VF-80-FD	41.05	45.89	43.47	4.84	MR-109	VF-80-FD	512.9	397.7	455.3	115.2
MR-110	RX-76-BM	63.31	52.54	57.925	10.77	MR-110	RX-76-BM	742.3	717.6	729.95	24.7
MR-113	KL-65-ER	85.1	82.11	83.605	2.99	MR-113	KL-65-ER	427.3	459	443.15	31.7
MR-12	BC-55-DF	66.98	52.96	59.97	14.02	MR-12	BC-55-DF	1145.6	1050.4	1098	95.2
MR-133	BA-83-FR	70.24	64.53	67.385	5.71	MR-133	BA-83-FR	1214.6	1051.4	1133	163.2
MR-139	MT-93-DF	60.59	59.56	60.075	1.03	MR-139	MT-93-DF	1868.3	1946.4	1907.35	78.1
MR-14	SS-38-HJ	85.63	103	94.315	17.37	MR-14	SS-38-HJ	949.2	1187.6	1068.4	238.4
MR-146	НН-45-РЈ	74.21	64.49	69.35	9.72	MR-146	HH-45-PJ	2385.4	2076.9	2231.15	308.5
MR-148	DK-29-JG	89.11	95.98	92.545	6.87	MR-148	DK-29-JG	897.8	930.9	914.35	33.1
MR-159	ZB-56-AB	61.66	58.96	60.31	2.7	MR-159	ZB-56-AB	1721.1	1813.2	1767.15	92.1
MR-162	DB-45-JH	67.91	59.44	63.675	8.47	MR-162	DB-45-JH	1627.6	1572.6	1600.1	55
MR-169	FD-76-PM	60.34	87.11	73.725	26.77	MR-169	FD-76-PM	1131.6	1115	1123.3	16.6
MR-17	TF-29-JK	80.51	82.26	81.385	1.75	MR-17	TF-29-JK	1162.7	1119.7	1141.2	43
MR-174	KN-12-LM	93.43	118.3	105.865	24.87	MR-174	KN-12-LM	1686.5	1626.4	1656.45	60.1
MR-186	DV-32-AS	69.2	66.43	67.815	2.77	MR-186	DV-32-AS	1269.5	1362.7	1316.1	93.2
MR-205	WE-54-TF	70.21	67.87	69.04	2.34	MR-205	WE-54-TF	1151.6	1215.7	1183.65	64.1
MR-213	HI-23-GG	69.61	74.88	72.245	5.27	MR-213	HI-23-GG	1904.1	1915.6	1909.85	11.5
MR-218	FK-72-KJ	96.77	105.1	100.935	8.33	MR-218	FK-72-KJ	1623.8	1485.6	1554.7	138.2
MR-221	CF-44-BM	70.4	65.1	67.75	5.3	MR-221	CF-44-BM	1084.9	1128.4	1106.65	43.5
MR-235	EA-34-GH	84.65	107.3	95.975	22.65	MR-235	EA-34-GH	1099.3	1162	1130.65	62.7
MR-31	BB-42-BV	158	130.2	144.1	27.8	MR-31	BB-42-BV	925.7	970.4	948.05	44.7
MR-37	RW-88-TF	81.07	86.55	83.81	5.48	MR-37	RW-88-TF	1653.2	1495.8	1574.5	157.4
MR-5	ZY-55-MR	71.92	68.38	70.15	3.54	MR-5	ZY-55-MR	988.3	1104.9	1046.6	116.6
MR-57	EE-48-ZS	46.36	52.61	49.485	6.25	MR-57	EE-48-ZS	871.4	954	912.7	82.6
MR-64	DE-22-FG	38.21	39.77	38.99	1.56	MR-64	DE-22-FG	1393.4	1451	1422.2	57.6
MR-66	SK-98-HB	58.46	70.92	64.69	12.46	MR-66	SK-98-HB	1002.5	969.5	986	33
MR-71	DN-43-RT	69.71	55.51	62.61	14.2	MR-71	DN-43-RT	920.1	891.3	905.7	28.8
MR-85	BN-89-MN	97.37	59.54	78.455	37.83	MR-85	BN-89-MN	1083.5	977.8	1030.65	105.7

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Pb(ppn	1)			Pr(ppm)						
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین «۱۰	اختلاف» ۱۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین * ۱۰۰	اختلاف« ۱۰۰	
MR-104	SR-85-ED	29.6	24.6	27.1	5	MR-104	SR-85-ED	8.294	11.487	9.8905	3.193	
MR-106	CT-83-PM	12	10.8	11.4	1.2	MR-106	CT-83-PM	6.285	5.794	6.0395	0.491	
MR-109	VF-80-FD	10.3	10.8	10.55	0.5	MR-109	VF-80-FD	2.319	2.528	2.4235	0.209	
MR-110	RX-76-BM	12.1	15.6	13.85	3.5	MR-110	RX-76-BM	5.44	5.371	5.4055	0.069	
MR-113	KL-65-ER	15.9	14.5	15.2	1.4	MR-113	KL-65-ER	3.47	4.187	3.8285	0.717	
MR-12	BC-55-DF	8.9	5.8	7.35	3.1	MR-12	BC-55-DF	6.656	5.813	6.2345	0.843	
MR-133	BA-83-FR	14.9	12.8	13.85	2.1	MR-133	BA-83-FR	6.959	7.623	7.291	0.664	
MR-139	MT-93-DF	8.7	10.7	9.7	2	MR-139	MT-93-DF	4.459	4.577	4.518	0.118	
MR-14	SS-38-HJ	14.5	13.4	13.95	1.1	MR-14	SS-38-HJ	6.186	8.06	7.123	1.874	
MR-146	HH-45-PJ	11.6	14.2	12.9	2.6	MR-146	HH-45-PJ	9.084	7.018	8.051	2.066	
MR-148	DK-29-JG	18.3	17.9	18.1	0.4	MR-148	DK-29-JG	7.382	7.987	7.6845	0.605	
MR-159	ZB-56-AB	12.4	14.1	13.25	1.7	MR-159	ZB-56-AB	6.943	8.042	7.4925	1.099	
MR-162	DB-45-JH	13.4	13.9	13.65	0.5	MR-162	DB-45-JH	7.147	6.226	6.6865	0.921	
MR-169	FD-76-PM	34	27	30.5	7	MR-169	FD-76-PM	9.504	10.057	9.7805	0.553	
MR-17	TF-29-JK	8.2	9.1	8.65	0.9	MR-17	TF-29-JK	6.219	6.291	6.255	0.072	
MR-174	KN-12-LM	16.8	17.3	17.05	0.5	MR-174	KN-12-LM	6.996	7.465	7.2305	0.469	
MR-186	DV-32-AS	9.9	7.4	8.65	2.5	MR-186	DV-32-AS	4.965	4.801	4.883	0.164	
MR-205	WE-54-TF	9.4	11.4	10.4	2	MR-205	WE-54-TF	5.46	6.167	5.8135	0.707	
MR-213	HI-23-GG	21.8	18.9	20.35	2.9	MR-213	HI-23-GG	8.205	8.221	8.213	0.016	
MR-218	FK-72-KJ	22.5	14.6	18.55	7.9	MR-218	FK-72-KJ	7.56	7.407	7.4835	0.153	
MR-221	CF-44-BM	9.1	9.1	9.1	0	MR-221	CF-44-BM	6.503	5.511	6.007	0.992	
MR-235	EA-34-GH	16	11.7	13.85	4.3	MR-235	EA-34-GH	6.361	6.754	6.5575	0.393	
MR-31	BB-42-BV	4.7	6.2	5.45	1.5	MR-31	BB-42-BV	4.265	4.052	4.1585	0.213	
MR-37	RW-88-TF	21.7	14.7	18.2	7	MR-37	RW-88-TF	7.044	6.017	6.5305	1.027	
MR-5	ZY-55-MR	13.5	456.7	235.1	443.2	MR-5	ZY-55-MR	6.826	7.29	7.058	0.464	
MR-57	EE-48-ZS	6.5	11.2	8.85	4.7	MR-57	EE-48-ZS	5.16	5.209	5.1845	0.049	
MR-64	DE-22-FG	6.2	3.8	5	2.4	MR-64	DE-22-FG	6.735	7.814	7.2745	1.079	
MR-66	SK-98-HB	6.9	10.4	8.65	3.5	MR-66	SK-98-HB	4.922	5.52	5.221	0.598	
MR-71	DN-43-RT	9.1	10.1	9.6	1	MR-71	DN-43-RT	4.789	4.703	4.746	0.086	
MR-85	BN-89-MN	17.2	7.4	12.3	9.8	MR-85	BN-89-MN	6.388	5.187	5.7875	1.201	

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

		Rb(ppn	I)			S(ppm)						
شماره نمونه اوليه	سماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین* ۱۰	اختلاف» ۱۰	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین	اختلاف	
MR-104	SR-85-ED	114.3	125.7	120	11.4	MR-104	SR-85-ED	441	487	464	46	
MR-106	CT-83-PM	43.01	49.18	46.095	6.17	MR-106	CT-83-PM	533	563	548	30	
MR-109	VF-80-FD	15.55	18.64	17.095	3.09	MR-109	VF-80-FD	818	988	903	170	
MR-110	RX-76-BM	61.09	64.96	63.025	3.87	MR-110	RX-76-BM	631	821	726	190	
MR-113	KL-65-ER	38.5	53.29	45.895	14.79	MR-113	KL-65-ER	706	767	736.5	61	
MR-12	BC-55-DF	37.17	33.68	35.425	3.49	MR-12	BC-55-DF	697	636	666.5	61	
MR-133	BA-83-FR	61.81	61.91	61.86	0.1	MR-133	BA-83-FR	681	682	681.5	1	
MR-139	MT-93-DF	28.38	27.14	27.76	1.24	MR-139	MT-93-DF	704	810	757	106	
MR-14	SS-38-HJ	46.54	66.85	56.695	20.31	MR-14	SS-38-HJ	617	630	623.5	13	
MR-146	HH-45-PJ	41.22	34.22	37.72	7	MR-146	HH-45-PJ	487	573	530	86	
MR-148	DK-29-JG	43.4	48.69	46.045	5.29	MR-148	DK-29-JG	493	631	562	138	
MR-159	ZB-56-AB	63.44	59.73	61.585	3.71	MR-159	ZB-56-AB	410	501	455.5	91	
MR-162	DB-45-JH	56.52	49.99	53.255	6.53	MR-162	DB-45-JH	597	697	647	100	
MR-169	FD-76-PM	109.6	123	116.3	13.4	MR-169	FD-76-PM	621	639	630	18	
MR-17	TF-29-JK	39.43	41.46	40.445	2.03	MR-17	TF-29-JK	661	713	687	52	
MR-174	KN-12-LM	49.19	66.79	57.99	17.6	MR-174	KN-12-LM	602	687	644.5	85	
MR-186	DV-32-AS	31.1	26.26	28.68	4.84	MR-186	DV-32-AS	754	720	737	34	
MR-205	WE-54-TF	45.14	48.16	46.65	3.02	MR-205	WE-54-TF	792	868	830	76	
MR-213	HI-23-GG	119.5	99.9	109.7	19.6	MR-213	HI-23-GG	632	712	672	80	
MR-218	FK-72-KJ	87.12	86.48	86.8	0.64	MR-218	FK-72-KJ	659	665	662	6	
MR-221	CF-44-BM	43.23	36.48	39.855	6.75	MR-221	CF-44-BM	631	653	642	22	
MR-235	EA-34-GH	46.98	57.3	52.14	10.32	MR-235	EA-34-GH	549	620	584.5	71	
MR-31	BB-42-BV	23.14	19.84	21.49	3.3	MR-31	BB-42-BV	965	948	956.5	17	
MR-37	RW-88-TF	56.17	52.49	54.33	3.68	MR-37	RW-88-TF	769	695	732	74	
MR-5	ZY-55-MR	49.84	62.95	56.395	13.11	MR-5	ZY-55-MR	575	788	681.5	213	
MR-57	EE-48-ZS	37.74	34.61	36.175	3.13	MR-57	EE-48-ZS	683	768	725.5	85	
MR-64	DE-22-FG	36.81	41.62	39.215	4.81	MR-64	DE-22-FG	596	550	573	46	
MR-66	SK-98-HB	41.71	55.35	48.53	13.64	MR-66	SK-98-HB	806	780	793	26	
MR-71	DN-43-RT	43.73	36.1	39.915	7.63	MR-71	DN-43-RT	753	704	728.5	49	
MR-85	BN-89-MN	39.45	33.16	36.305	6.29	MR-85	BN-89-MN	666	593	629.5	73	

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

		Sb(ppn	l)			Sc(ppm)						
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین* ۱۰۰	اختلاف* ۱۰۰	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین	اختلاف	
MR-104	SR-85-ED	1.596	1.247	1.4215	0.349	MR-104	SR-85-ED	17.66	16.74	17.2	0.92	
MR-106	CT-83-PM	0.427	0.469	0.448	0.042	MR-106	CT-83-PM	20.16	20.6	20.38	0.44	
MR-109	VF-80-FD	0.44	0.629	0.5345	0.189	MR-109	VF-80-FD	25.32	22.73	24.025	2.59	
MR-110	RX-76-BM	0.501	0.364	0.4325	0.137	MR-110	RX-76-BM	16.71	17.02	16.865	0.31	
MR-113	KL-65-ER	0.828	0.747	0.7875	0.081	MR-113	KL-65-ER	19.24	24.87	22.055	5.63	
MR-12	BC-55-DF	0.37	0.347	0.3585	0.023	MR-12	BC-55-DF	29.25	23.93	26.59	5.32	
MR-133	BA-83-FR	0.58	0.477	0.5285	0.103	MR-133	BA-83-FR	17.89	17.51	17.7	0.38	
MR-139	MT-93-DF	0.26	0.219	0.2395	0.041	MR-139	MT-93-DF	23.24	21.24	22.24	2	
MR-14	SS-38-HJ	0.424	0.645	0.5345	0.221	MR-14	SS-38-HJ	18.01	27.02	22.515	9.01	
MR-146	НН-45-РЈ	0.443	0.497	0.47	0.054	MR-146	НН-45-РЈ	18.8	17.05	17.925	1.75	
MR-148	DK-29-JG	0.453	0.484	0.4685	0.031	MR-148	DK-29-JG	19.62	20.76	20.19	1.14	
MR-159	ZB-56-AB	0.56	0.337	0.4485	0.223	MR-159	ZB-56-AB	16.57	17.48	17.025	0.91	
MR-162	DB-45-JH	0.601	0.445	0.523	0.156	MR-162	DB-45-JH	23.09	21.36	22.225	1.73	
MR-169	FD-76-PM	0.891	1.333	1.112	0.442	MR-169	FD-76-PM	13.95	16.95	15.45	3	
MR-17	TF-29-JK	0.355	0.379	0.367	0.024	MR-17	TF-29-JK	22.53	27.48	25.005	4.95	
MR-174	KN-12-LM	0.433	0.541	0.487	0.108	MR-174	KN-12-LM	22.9	26.8	24.85	3.9	
MR-186	DV-32-AS	0.423	0.315	0.369	0.108	MR-186	DV-32-AS	23.75	29.39	26.57	5.64	
MR-205	WE-54-TF	0.343	0.35	0.3465	0.007	MR-205	WE-54-TF	24.96	22.98	23.97	1.98	
MR-213	HI-23-GG	0.609	0.671	0.64	0.062	MR-213	HI-23-GG	15.01	19.09	17.05	4.08	
MR-218	FK-72-KJ	0.584	0.642	0.613	0.058	MR-218	FK-72-KJ	28.93	34.37	31.65	5.44	
MR-221	CF-44-BM	0.22	0.261	0.2405	0.041	MR-221	CF-44-BM	21.32	19.66	20.49	1.66	
MR-235	EA-34-GH	0.331	0.446	0.3885	0.115	MR-235	EA-34-GH	21.73	28.28	25.005	6.55	
MR-31	BB-42-BV	0.229	0.257	0.243	0.028	MR-31	BB-42-BV	28.43	34.84	31.635	6.41	
MR-37	RW-88-TF	0.47	0.311	0.3905	0.159	MR-37	RW-88-TF	19.65	18.05	18.85	1.6	
MR-5	ZY-55-MR	0.488	1.788	1.138	1.3	MR-5	ZY-55-MR	21.29	20	20.645	1.29	
MR-57	EE-48-ZS	0.221	0.317	0.269	0.096	MR-57	EE-48-ZS	21.65	19.34	20.495	2.31	
MR-64	DE-22-FG	0.257	0.324	0.2905	0.067	MR-64	DE-22-FG	21.56	20.56	21.06	1	
MR-66	SK-98-HB	0.334	0.43	0.382	0.096	MR-66	SK-98-HB	21.52	20.56	21.04	0.96	
MR-71	DN-43-RT	0.338	0.266	0.302	0.072	MR-71	DN-43-RT	21.92	20.47	21.195	1.45	
MR-85	BN-89-MN	0.337	0.249	0.293	0.088	MR-85	BN-89-MN	23.69	19.98	21.835	3.71	

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		n)			Sn(ppm)						
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین * ۱۰۰	اختلاف* ۱۰۰	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین » ۱۰۰	اختلاف* ۱۰۰
MR-104	SR-85-ED	6.541	8.833	7.687	2.292	MR-104	SR-85-ED	2.77	3.51	3.14	0.74
MR-106	CT-83-PM	5.719	5.577	5.648	0.142	MR-106	CT-83-PM	2.2	2.5	2.35	0.3
MR-109	VF-80-FD	2.644	2.928	2.786	0.284	MR-109	VF-80-FD	0.91	0.91	0.91	0
MR-110	RX-76-BM	5.41	4.614	5.012	0.796	MR-110	RX-76-BM	2.24	1.78	2.01	0.46
MR-113	KL-65-ER	3.505	3.237	3.371	0.268	MR-113	KL-65-ER	1.89	1.2	1.545	0.69
MR-12	BC-55-DF	7.428	5.943	6.6855	1.485	MR-12	BC-55-DF	3.16	3.02	3.09	0.14
MR-133	BA-83-FR	6.335	6.489	6.412	0.154	MR-133	BA-83-FR	3.06	2.66	2.86	0.4
MR-139	MT-93-DF	4.293	4.565	4.429	0.272	MR-139	MT-93-DF	1.48	1.54	1.51	0.06
MR-14	SS-38-HJ	5.717	7.338	6.5275	1.621	MR-14	SS-38-HJ	2.43	3.1	2.765	0.67
MR-146	НН-45-РЈ	8.151	6.3	7.2255	1.851	MR-146	НН-45-РЈ	3.17	2.29	2.73	0.88
MR-148	DK-29-JG	6.628	7.5	7.064	0.872	MR-148	DK-29-JG	3.02	3.35	3.185	0.33
MR-159	ZB-56-AB	8.073	7.685	7.879	0.388	MR-159	ZB-56-AB	3.3	2.71	3.005	0.59
MR-162	DB-45-JH	7.597	6.131	6.864	1.466	MR-162	DB-45-JH	2.9	2.59	2.745	0.31
MR-169	FD-76-PM	6.477	7.564	7.0205	1.087	MR-169	FD-76-PM	2.59	3.3	2.945	0.71
MR-17	TF-29-JK	7.078	6.722	6.9	0.356	MR-17	TF-29-JK	3.37	3.32	3.345	0.05
MR-174	KN-12-LM	6.512	7.145	6.8285	0.633	MR-174	KN-12-LM	2.8	3.32	3.06	0.52
MR-186	DV-32-AS	5.363	5.386	5.3745	0.023	MR-186	DV-32-AS	2.26	2.24	2.25	0.02
MR-205	WE-54-TF	5.536	6.849	6.1925	1.313	MR-205	WE-54-TF	2.41	2.89	2.65	0.48
MR-213	HI-23-GG	6.79	5.949	6.3695	0.841	MR-213	HI-23-GG	2.42	1.71	2.065	0.71
MR-218	FK-72-KJ	6.466	6.642	6.554	0.176	MR-218	FK-72-KJ	2.51	2.62	2.565	0.11
MR-221	CF-44-BM	6.311	5.653	5.982	0.658	MR-221	CF-44-BM	2.68	3.07	2.875	0.39
MR-235	EA-34-GH	6.215	6.12	6.1675	0.095	MR-235	EA-34-GH	2.31	3.41	2.86	1.1
MR-31	BB-42-BV	5.139	4.766	4.9525	0.373	MR-31	BB-42-BV	2.1	2.18	2.14	0.08
MR-37	RW-88-TF	6.108	6.142	6.125	0.034	MR-37	RW-88-TF	2.56	2.54	2.55	0.02
MR-5	ZY-55-MR	6.551	7.126	6.8385	0.575	MR-5	ZY-55-MR	2.92	3.2	3.06	0.28
MR-57	EE-48-ZS	5.3	5.348	5.324	0.048	MR-57	EE-48-ZS	1.74	1.8	1.77	0.06
MR-64	DE-22-FG	7.072	8.201	7.6365	1.129	MR-64	DE-22-FG	2.97	3.36	3.165	0.39
MR-66	SK-98-HB	5.1	5.401	5.2505	0.301	MR-66	SK-98-HB	2.43	2.48	2.455	0.05
MR-71	DN-43-RT	4.792	4.518	4.655	0.274	MR-71	DN-43-RT	2.73	1.85	2.29	0.88
MR-85	BN-89-MN	6.623	4.978	5.8005	1.645	MR-85	BN-89-MN	3.19	1.94	2.565	1.25

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

					Tb(ppm)						
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین	اختلاف	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكرارى	میانگین* ۱۰۰	اختلاف* ۱۰۰
MR-104	SR-85-ED	179.602	226.802	203.202	47.2	MR-104	SR-85-ED	1.296	1.254	1.275	0.042
MR-106	CT-83-PM	123.302	123.802	123.552	0.5	MR-106	CT-83-PM	1.295	1.29	1.2925	0.005
MR-109	VF-80-FD	420.802	445.002	432.902	24.2	MR-109	VF-80-FD	0.625	0.582	0.6035	0.043
MR-110	RX-76-BM	209.202	239.402	224.302	30.2	MR-110	RX-76-BM	0.818	0.883	0.8505	0.065
MR-113	KL-65-ER	197.802	253.602	225.702	55.8	MR-113	KL-65-ER	0.724	0.691	0.7075	0.033
MR-12	BC-55-DF	150.102	145.502	147.802	4.6	MR-12	BC-55-DF	1.675	1.424	1.5495	0.251
MR-133	BA-83-FR	167.102	177.202	172.152	10.1	MR-133	BA-83-FR	1.262	1.23	1.246	0.032
MR-139	MT-93-DF	227.402	223.902	225.652	3.5	MR-139	MT-93-DF	0.861	1.041	0.951	0.18
MR-14	SS-38-HJ	102.602	175.202	138.902	72.6	MR-14	SS-38-HJ	1.382	1.416	1.399	0.034
MR-146	НН-45-РЈ	168.602	139.802	154.202	28.8	MR-146	НН-45-РЈ	1.525	1.502	1.5135	0.023
MR-148	DK-29-JG	146.302	155.102	150.702	8.8	MR-148	DK-29-JG	1.402	1.41	1.406	0.008
MR-159	ZB-56-AB	138.902	142.702	140.802	3.8	MR-159	ZB-56-AB	1.59	1.576	1.583	0.014
MR-162	DB-45-JH	159.702	122.702	141.202	37	MR-162	DB-45-JH	1.477	1.471	1.474	0.006
MR-169	FD-76-PM	189.302	217.502	203.402	28.2	MR-169	FD-76-PM	1.165	1.185	1.175	0.02
MR-17	TF-29-JK	148.302	183.902	166.102	35.6	MR-17	TF-29-JK	1.314	1.409	1.3615	0.095
MR-174	KN-12-LM	98.682	135.102	116.892	36.42	MR-174	KN-12-LM	1.259	1.399	1.329	0.14
MR-186	DV-32-AS	183.702	163.402	173.552	20.3	MR-186	DV-32-AS	1.374	1.304	1.339	0.07
MR-205	WE-54-TF	122.902	140.502	131.702	17.6	MR-205	WE-54-TF	1.332	1.419	1.3755	0.087
MR-213	HI-23-GG	144.402	131.602	138.002	12.8	MR-213	HI-23-GG	0.914	0.87	0.892	0.044
MR-218	FK-72-KJ	161.202	165.902	163.552	4.7	MR-218	FK-72-KJ	1.282	1.483	1.3825	0.201
MR-221	CF-44-BM	161.402	134.202	147.802	27.2	MR-221	CF-44-BM	1.422	1.214	1.318	0.208
MR-235	EA-34-GH	126.802	162.802	144.802	36	MR-235	EA-34-GH	1.285	1.39	1.3375	0.105
MR-31	BB-42-BV	198.502	178.502	188.502	20	MR-31	BB-42-BV	1.099	1.31	1.2045	0.211
MR-37	RW-88-TF	130.702	123.402	127.052	7.3	MR-37	RW-88-TF	1.318	1.244	1.281	0.074
MR-5	ZY-55-MR	127.902	137.602	132.752	9.7	MR-5	ZY-55-MR	1.314	1.274	1.294	0.04
MR-57	EE-48-ZS	222.302	208.602	215.452	13.7	MR-57	EE-48-ZS	1.091	1.059	1.075	0.032
MR-64	DE-22-FG	144.802	168.902	156.852	24.1	MR-64	DE-22-FG	1.772	1.827	1.7995	0.055
MR-66	SK-98-HB	192.302	220.902	206.602	28.6	MR-66	SK-98-HB	1.026	1.131	1.0785	0.105
MR-71	DN-43-RT	220.002	177.902	198.952	42.1	MR-71	DN-43-RT	1.124	1.121	1.1225	0.003
MR-85	BN-89-MN	140.302	118.602	129.452	21.7	MR-85	BN-89-MN	1.453	1.26	1.3565	0.193

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Te(ppn	1)			Th(ppm)					
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین * ۱۰۰	اختلاف» ۱۰۰	شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین* ۵۰	اختلاف» • ٥
MR-104	SR-85-ED	0.14	0.0375	0.08875	0.1025	MR-104	SR-85-ED	12.101	13.351	12.726	1.25
MR-106	CT-83-PM	0.15	0.05	0.1	0.1	MR-106	CT-83-PM	4.876	5.087	4.9815	0.211
MR-109	VF-80-FD	0.21	0.15	0.18	0.06	MR-109	VF-80-FD	1.934	1.917	1.9255	0.017
MR-110	RX-76-BM	0.05	0.06	0.055	0.01	MR-110	RX-76-BM	4.96	5.114	5.037	0.154
MR-113	KL-65-ER	0.15	0.14	0.145	0.01	MR-113	KL-65-ER	4.262	3.821	4.0415	0.441
MR-12	BC-55-DF	0.41	0.06	0.235	0.35	MR-12	BC-55-DF	4.827	4.415	4.621	0.412
MR-133	BA-83-FR	0.05	0.22	0.135	0.17	MR-133	BA-83-FR	6.826	7.31	7.068	0.484
MR-139	MT-93-DF	0.26	0.11	0.185	0.15	MR-139	MT-93-DF	3.138	4.174	3.656	1.036
MR-14	SS-38-HJ	0.18	0.25	0.215	0.07	MR-14	SS-38-HJ	6.211	6.947	6.579	0.736
MR-146	HH-45-PJ	0.09	0.0375	0.06375	0.0525	MR-146	HH-45-PJ	6.629	13.941	10.285	7.312
MR-148	DK-29-JG	0.16	0.05	0.105	0.11	MR-148	DK-29-JG	6.087	7.088	6.5875	1.001
MR-159	ZB-56-AB	0.33	0.07	0.2	0.26	MR-159	ZB-56-AB	6.673	7.231	6.952	0.558
MR-162	DB-45-JH	0.0375	0.06	0.04875	0.0225	MR-162	DB-45-JH	6.409	5.465	5.937	0.944
MR-169	FD-76-PM	0.32	0.14	0.23	0.18	MR-169	FD-76-PM	10.681	9.986	10.3335	0.695
MR-17	TF-29-JK	0.05	0.05	0.05	0	MR-17	TF-29-JK	7.744	4.838	6.291	2.906
MR-174	KN-12-LM	0.13	0.47	0.3	0.34	MR-174	KN-12-LM	5.17	5.241	5.2055	0.071
MR-186	DV-32-AS	0.16	0.14	0.15	0.02	MR-186	DV-32-AS	3.007	3.072	3.0395	0.065
MR-205	WE-54-TF	0.15	0.06	0.105	0.09	MR-205	WE-54-TF	4.474	4.59	4.532	0.116
MR-213	HI-23-GG	0.17	0.0375	0.10375	0.1325	MR-213	HI-23-GG	7.983	8.337	8.16	0.354
MR-218	FK-72-KJ	0.05	0.06	0.055	0.01	MR-218	FK-72-KJ	8.656	9.06	8.858	0.404
MR-221	CF-44-BM	0.06	0.22	0.14	0.16	MR-221	CF-44-BM	4.229	3.839	4.034	0.39
MR-235	EA-34-GH	0.0375	0.16	0.09875	0.1225	MR-235	EA-34-GH	5.082	4.923	5.0025	0.159
MR-31	BB-42-BV	0.15	0.2	0.175	0.05	MR-31	BB-42-BV	3.307	3.848	3.5775	0.541
MR-37	RW-88-TF	0.06	0.0375	0.04875	0.0225	MR-37	RW-88-TF	5.651	5.461	5.556	0.19
MR-5	ZY-55-MR	0.0375	0.06	0.04875	0.0225	MR-5	ZY-55-MR	5.012	6.015	5.5135	1.003
MR-57	EE-48-ZS	0.0375	0.0375	0.0375	0	MR-57	EE-48-ZS	3.286	3.503	3.3945	0.217
MR-64	DE-22-FG	0.13	0.18	0.155	0.05	MR-64	DE-22-FG	4.88	5.295	5.0875	0.415
MR-66	SK-98-HB	0.42	0.0375	0.22875	0.3825	MR-66	SK-98-HB	3.579	4.545	4.062	0.966
MR-71	DN-43-RT	0.0375	0.07	0.05375	0.0325	MR-71	DN-43-RT	3.844	4.254	4.049	0.41
MR-85	BN-89-MN	0.05	0.0375	0.04375	0.0125	MR-85	BN-89-MN	4.739	3.818	4.2785	0.921

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

		Ti(ppm)				Tl(ppm)					
شماره نمونه اوليه	سماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین	اختلاف	شماره نمونه اوليه	سماره نمونه تكرارى	مقدار اوليه	مقدار تكرارى	میانگین٭۱۰۰	اختلاف* ۱۰۰
MR-104	SR-85-ED	7853.71	8163.31	8008.51	309.6	MR-104	SR-85-ED	0.565	0.78	0.6725	0.215
MR-106	CT-83-PM	12047.71	11148.91	11598.31	898.8	MR-106	CT-83-PM	0.375	0.325	0.35	0.05
MR-109	VF-80-FD	6140.11	5570.11	5855.11	570	MR-109	VF-80-FD	0.312	0.136	0.224	0.176
MR-110	RX-76-BM	6240.91	7610.11	6925.51	1369.2	MR-110	RX-76-BM	0.317	0.392	0.3545	0.075
MR-113	KL-65-ER	5242.51	6146.11	5694.31	903.6	MR-113	KL-65-ER	0.248	0.283	0.2655	0.035
MR-12	BC-55-DF	26855.71	24635.71	25745.71	2220	MR-12	BC-55-DF	0.318	0.198	0.258	0.12
MR-133	BA-83-FR	10222.51	9222.91	9722.71	999.6	MR-133	BA-83-FR	0.289	0.369	0.329	0.08
MR-139	MT-93-DF	13259.71	10944.91	12102.31	2314.8	MR-139	MT-93-DF	0.058	0.249	0.1535	0.191
MR-14	SS-38-HJ	11157.31	15707.71	13432.51	4550.4	MR-14	SS-38-HJ	0.518	0.357	0.4375	0.161
MR-146	НН-45-РЈ	22763.71	18647.71	20705.71	4116	MR-146	HH-45-PJ	0.142	0.32	0.231	0.178
MR-148	DK-29-JG	13463.71	13943.71	13703.71	480	MR-148	DK-29-JG	0.297	0.34	0.3185	0.043
MR-159	ZB-56-AB	13463.71	12719.71	13091.71	744	MR-159	ZB-56-AB	0.42	0.473	0.4465	0.053
MR-162	DB-45-JH	16907.71	17675.71	17291.71	768	MR-162	DB-45-JH	0.381	0.384	0.3825	0.003
MR-169	FD-76-PM	6599.71	6825.31	6712.51	225.6	MR-169	FD-76-PM	0.536	0.62	0.578	0.084
MR-17	TF-29-JK	17051.71	20075.71	18563.71	3024	MR-17	TF-29-JK	0.168	0.257	0.2125	0.089
MR-174	KN-12-LM	10588.51	12803.71	11696.11	2215.2	MR-174	KN-12-LM	0.305	0.32	0.3125	0.015
MR-186	DV-32-AS	12275.71	13883.71	13079.71	1608	MR-186	DV-32-AS	0.225	0.179	0.202	0.046
MR-205	WE-54-TF	14699.71	13019.71	13859.71	1680	MR-205	WE-54-TF	0.381	0.373	0.377	0.008
MR-213	HI-23-GG	3436.51	4503.31	3969.91	1066.8	MR-213	HI-23-GG	0.327	0.501	0.414	0.174
MR-218	FK-72-KJ	7781.71	8661.31	8221.51	879.6	MR-218	FK-72-KJ	0.488	0.351	0.4195	0.137
MR-221	CF-44-BM	15083.71	14291.71	14687.71	792	MR-221	CF-44-BM	0.284	0.259	0.2715	0.025
MR-235	EA-34-GH	11108.11	14807.71	12957.91	3699.6	MR-235	EA-34-GH	0.283	0.282	0.2825	0.001
MR-31	BB-42-BV	12239.71	14723.71	13481.71	2484	MR-31	BB-42-BV	0.22	0.277	0.2485	0.057
MR-37	RW-88-TF	10972.51	9203.71	10088.11	1768.8	MR-37	RW-88-TF	0.203	0.378	0.2905	0.175
MR-5	ZY-55-MR	9572.11	9281.71	9426.91	290.4	MR-5	ZY-55-MR	0.334	0.608	0.471	0.274
MR-57	EE-48-ZS	11316.91	11532.91	11424.91	216	MR-57	EE-48-ZS	0.228	0.25	0.239	0.022
MR-64	DE-22-FG	14723.71	14879.71	14801.71	156	MR-64	DE-22-FG	0.347	0.162	0.2545	0.185
MR-66	SK-98-HB	10049.71	9440.11	9744.91	609.6	MR-66	SK-98-HB	0.26	0.349	0.3045	0.089
MR-71	DN-43-RT	9288.91	8615.71	8952.31	673.2	MR-71	DN-43-RT	0.253	0.307	0.28	0.054
MR-85	BN-89-MN	13403.71	13967.71	13685.71	564	MR-85	BN-89-MN	0.183	0.226	0.2045	0.043

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		om)			U(ppm)						
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین٭ ۱۰۰۰	اختلاف٭ ۱۰۰۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین * ۱۰۰	اختلاف » ۱۰۰
MR-104	SR-85-ED	0.633	0.647	0.64	0.014	MR-104	SR-85-ED	2.221	2.16	2.1905	0.061
MR-106	CT-83-PM	0.8	0.632	0.716	0.168	MR-106	CT-83-PM	1.25	1.087	1.1685	0.163
MR-109	VF-80-FD	0.237	0.344	0.2905	0.107	MR-109	VF-80-FD	0.422	0.289	0.3555	0.133
MR-110	RX-76-BM	0.354	0.369	0.3615	0.015	MR-110	RX-76-BM	0.794	0.851	0.8225	0.057
MR-113	KL-65-ER	0.374	0.334	0.354	0.04	MR-113	KL-65-ER	0.641	0.769	0.705	0.128
MR-12	BC-55-DF	0.956	0.832	0.894	0.124	MR-12	BC-55-DF	0.999	0.792	0.8955	0.207
MR-133	BA-83-FR	0.75	0.744	0.747	0.006	MR-133	BA-83-FR	1.157	1.083	1.12	0.074
MR-139	MT-93-DF	0.651	0.541	0.596	0.11	MR-139	MT-93-DF	0.669	0.851	0.76	0.182
MR-14	SS-38-HJ	0.666	0.609	0.6375	0.057	MR-14	SS-38-HJ	1.328	1.47	1.399	0.142
MR-146	HH-45-PJ	0.944	0.933	0.9385	0.011	MR-146	HH-45-PJ	1.456	2.211	1.8335	0.755
MR-148	DK-29-JG	0.831	0.751	0.791	0.08	MR-148	DK-29-JG	1.303	1.501	1.402	0.198
MR-159	ZB-56-AB	0.842	1.016	0.929	0.174	MR-159	ZB-56-AB	1.289	1.408	1.3485	0.119
MR-162	DB-45-JH	0.761	0.851	0.806	0.09	MR-162	DB-45-JH	1.292	1.299	1.2955	0.007
MR-169	FD-76-PM	0.679	0.587	0.633	0.092	MR-169	FD-76-PM	1.828	2	1.914	0.172
MR-17	TF-29-JK	0.836	0.696	0.766	0.14	MR-17	TF-29-JK	1.172	0.809	0.9905	0.363
MR-174	KN-12-LM	0.693	0.699	0.696	0.006	MR-174	KN-12-LM	1.594	1.674	1.634	0.08
MR-186	DV-32-AS	0.646	0.783	0.7145	0.137	MR-186	DV-32-AS	0.613	0.754	0.6835	0.141
MR-205	WE-54-TF	0.777	0.785	0.781	0.008	MR-205	WE-54-TF	1.066	1.121	1.0935	0.055
MR-213	HI-23-GG	0.411	0.363	0.387	0.048	MR-213	HI-23-GG	1.301	1.439	1.37	0.138
MR-218	FK-72-KJ	0.554	0.654	0.604	0.1	MR-218	FK-72-KJ	1.735	1.972	1.8535	0.237
MR-221	CF-44-BM	0.768	0.66	0.714	0.108	MR-221	CF-44-BM	0.923	0.957	0.94	0.034
MR-235	EA-34-GH	0.734	0.737	0.7355	0.003	MR-235	EA-34-GH	1.148	1.167	1.1575	0.019
MR-31	BB-42-BV	0.625	0.767	0.696	0.142	MR-31	BB-42-BV	0.685	0.778	0.7315	0.093
MR-37	RW-88-TF	0.741	0.627	0.684	0.114	MR-37	RW-88-TF	1.128	1.154	1.141	0.026
MR-5	ZY-55-MR	0.736	0.759	0.7475	0.023	MR-5	ZY-55-MR	0.999	1.414	1.2065	0.415
MR-57	EE-48-ZS	0.591	0.594	0.5925	0.003	MR-57	EE-48-ZS	0.674	0.763	0.7185	0.089
MR-64	DE-22-FG	0.877	1.04	0.9585	0.163	MR-64	DE-22-FG	0.77	0.724	0.747	0.046
MR-66	SK-98-HB	0.55	0.524	0.537	0.026	MR-66	SK-98-HB	0.946	1.045	0.9955	0.099
MR-71	DN-43-RT	0.511	0.702	0.6065	0.191	MR-71	DN-43-RT	0.875	0.982	0.9285	0.107
MR-85	BN-89-MN	0.958	0.737	0.8475	0.221	MR-85	BN-89-MN	0.979	0.723	0.851	0.256

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- مداول و نمودارهای غطا گیری

					W(ppm)						
شماره نمونه اوليه	شماره نمونه تكرارى	مقدار اوليه	مقدار تكراري	میانگین	اختلاف	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین* ۱۰۰	اختلاف* ۱۰۰
MR-104	SR-85-ED	142	165.4	153.7	23.4	MR-104	SR-85-ED	2.2	2	2.1	0.2
MR-106	CT-83-PM	182.1	167.7	174.9	14.4	MR-106	CT-83-PM	0.9	0.9	0.9	0
MR-109	VF-80-FD	166.1	162	164.05	4.1	MR-109	VF-80-FD	0.3	0.3	0.3	0
MR-110	RX-76-BM	132.4	144	138.2	11.6	MR-110	RX-76-BM	0.7	0.8	0.75	0.1
MR-113	KL-65-ER	154.8	175.9	165.35	21.1	MR-113	KL-65-ER	0.8	0.7	0.75	0.1
MR-12	BC-55-DF	301.5	310.4	305.95	8.9	MR-12	BC-55-DF	1	0.9	0.95	0.1
MR-133	BA-83-FR	165.5	152.7	159.1	12.8	MR-133	BA-83-FR	1.3	1.4	1.35	0.1
MR-139	MT-93-DF	232.9	235	233.95	2.1	MR-139	MT-93-DF	0.7	0.8	0.75	0.1
MR-14	SS-38-HJ	185.5	250.2	217.85	64.7	MR-14	SS-38-HJ	1	1.2	1.1	0.2
MR-146	НН-45-РЈ	262.3	226.5	244.4	35.8	MR-146	НН-45-РЈ	1.9	1.6	1.75	0.3
MR-148	DK-29-JG	216.8	217.1	216.95	0.3	MR-148	DK-29-JG	1.3	1.2	1.25	0.1
MR-159	ZB-56-AB	156.1	158.1	157.1	2	MR-159	ZB-56-AB	1.3	1.1	1.2	0.2
MR-162	DB-45-JH	195.4	187.7	191.55	7.7	MR-162	DB-45-JH	1.1	1.1	1.1	0
MR-169	FD-76-PM	120.4	128.1	124.25	7.7	MR-169	FD-76-PM	1.8	1.9	1.85	0.1
MR-17	TF-29-JK	230.8	261.6	246.2	30.8	MR-17	TF-29-JK	0.9	1	0.95	0.1
MR-174	KN-12-LM	203	217.9	210.45	14.9	MR-174	KN-12-LM	1.1	1	1.05	0.1
MR-186	DV-32-AS	190.9	199.4	195.15	8.5	MR-186	DV-32-AS	0.9	0.8	0.85	0.1
MR-205	WE-54-TF	195.7	190.8	193.25	4.9	MR-205	WE-54-TF	0.7	1	0.85	0.3
MR-213	HI-23-GG	127.1	136	131.55	8.9	MR-213	HI-23-GG	1.2	1.3	1.25	0.1
MR-218	FK-72-KJ	154.7	175	164.85	20.3	MR-218	FK-72-KJ	1.1	1.1	1.1	0
MR-221	CF-44-BM	231.8	202.6	217.2	29.2	MR-221	CF-44-BM	0.8	0.7	0.75	0.1
MR-235	EA-34-GH	183.4	233.4	208.4	50	MR-235	EA-34-GH	0.8	0.9	0.85	0.1
MR-31	BB-42-BV	214.5	235.5	225	21	MR-31	BB-42-BV	0.6	0.7	0.65	0.1
MR-37	RW-88-TF	208.9	156.7	182.8	52.2	MR-37	RW-88-TF	1	1	1	0
MR-5	ZY-55-MR	163.4	157.6	160.5	5.8	MR-5	ZY-55-MR	1.1	2	1.55	0.9
MR-57	EE-48-ZS	205.7	172.7	189.2	33	MR-57	EE-48-ZS	0.9	0.9	0.9	0
MR-64	DE-22-FG	177.1	199.8	188.45	22.7	MR-64	DE-22-FG	1.5	1.8	1.65	0.3
MR-66	SK-98-HB	169.4	160.5	164.95	8.9	MR-66	SK-98-HB	0.8	1	0.9	0.2
MR-71	DN-43-RT	147.6	171.6	159.6	24	MR-71	DN-43-RT	1	0.8	0.9	0.2
MR-85	BN-89-MN	190.1	191	190.55	0.9	MR-85	BN-89-MN	0.8	0.8	0.8	0

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

		Yb(ppn	ı)			Zn(ppm)					
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكرارى	میانگین* ۱۰۰	اختلاف* ۱۰۰	شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكراري	میانگین	اختلاف
MR-104	SR-85-ED	3.558	4.532	4.045	0.974	MR-104	SR-85-ED	126.65	149.21	137.93	22.56
MR-106	CT-83-PM	5.322	4.891	5.1065	0.431	MR-106	CT-83-PM	111.05	109.69	110.37	1.36
MR-109	VF-80-FD	1.979	2.082	2.0305	0.103	MR-109	VF-80-FD	75.36	66.17	70.765	9.19
MR-110	RX-76-BM	2.579	2.759	2.669	0.18	MR-110	RX-76-BM	81.86	104.64	93.25	22.78
MR-113	KL-65-ER	2.397	2.144	2.2705	0.253	MR-113	KL-65-ER	80.96	90.26	85.61	9.3
MR-12	BC-55-DF	5.689	5.169	5.429	0.52	MR-12	BC-55-DF	134.03	96.58	115.305	37.45
MR-133	BA-83-FR	4.82	4.896	4.858	0.076	MR-133	BA-83-FR	112.4	97.21	104.805	15.19
MR-139	MT-93-DF	3.401	3.887	3.644	0.486	MR-139	MT-93-DF	105.33	89.77	97.55	15.56
MR-14	SS-38-HJ	3.911	4.749	4.33	0.838	MR-14	SS-38-HJ	90.14	152.85	121.495	62.71
MR-146	HH-45-PJ	5.744	5.486	5.615	0.258	MR-146	HH-45-PJ	126.54	113.02	119.78	13.52
MR-148	DK-29-JG	5.901	5.17	5.5355	0.731	MR-148	DK-29-JG	115.62	127.06	121.34	11.44
MR-159	ZB-56-AB	5.365	6.62	5.9925	1.255	MR-159	ZB-56-AB	111.15	137.34	124.245	26.19
MR-162	DB-45-JH	4.941	4.928	4.9345	0.013	MR-162	DB-45-JH	145.99	120.72	133.355	25.27
MR-169	FD-76-PM	3.397	3.702	3.5495	0.305	MR-169	FD-76-PM	97.79	122.59	110.19	24.8
MR-17	TF-29-JK	5.263	4.718	4.9905	0.545	MR-17	TF-29-JK	108.76	147.13	127.945	38.37
MR-174	KN-12-LM	5.174	4.632	4.903	0.542	MR-174	KN-12-LM	119.37	148.9	134.135	29.53
MR-186	DV-32-AS	5.309	5.103	5.206	0.206	MR-186	DV-32-AS	109.9	115.83	112.865	5.93
MR-205	WE-54-TF	5.051	5.42	5.2355	0.369	MR-205	WE-54-TF	104.89	105.78	105.335	0.89
MR-213	HI-23-GG	2.232	2.158	2.195	0.074	MR-213	HI-23-GG	151.09	203.71	177.4	52.62
MR-218	FK-72-KJ	3.909	4.133	4.021	0.224	MR-218	FK-72-KJ	150.46	161.07	155.765	10.61
MR-221	CF-44-BM	5.155	4.716	4.9355	0.439	MR-221	CF-44-BM	111.05	110.94	110.995	0.11
MR-235	EA-34-GH	4.45	4.479	4.4645	0.029	MR-235	EA-34-GH	91.18	151.5	121.34	60.32
MR-31	BB-42-BV	3.911	5.279	4.595	1.368	MR-31	BB-42-BV	92.12	94.99	93.555	2.87
MR-37	RW-88-TF	4.602	4.157	4.3795	0.445	MR-37	RW-88-TF	130.18	121.97	126.075	8.21
MR-5	ZY-55-MR	4.878	4.261	4.5695	0.617	MR-5	ZY-55-MR	96.61	659.44	378.025	562.83
MR-57	EE-48-ZS	3.965	3.694	3.8295	0.271	MR-57	EE-48-ZS	81.44	87.59	84.515	6.15
MR-64	DE-22-FG	5.719	6.731	6.225	1.012	MR-64	DE-22-FG	135.59	118.64	127.115	16.95
MR-66	SK-98-HB	3.611	3.723	3.667	0.112	MR-66	SK-98-HB	97.61	99.99	98.8	2.38
MR-71	DN-43-RT	3.351	3.922	3.6365	0.571	MR-71	DN-43-RT	105.76	73.13	89.445	32.63
MR-85	BN-89-MN	5.156	5.091	5.1235	0.065	MR-85	BN-89-MN	136.11	94.08	115.095	42.03

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– جداول و نمودارهای فطا گیری

Zr(ppm)											
شماره نمونه اوليه	شماره نمونه تكراري	مقدار اوليه	مقدار تكرارى	میانگین* ۱۰	اختلاف* ۱۰						
MR-104	SR-85-ED	65.398	58.215	61.8065	7.183						
MR-106	CT-83-PM	56.169	60.624	58.3965	4.455						
MR-109	VF-80-FD	44.443	42.87	43.6565	1.573						
MR-110	RX-76-BM	50.207	61.757	55.982	11.55						
MR-113	KL-65-ER	44.487	47.391	45.939	2.904						
MR-12	BC-55-DF	78.862	75.936	77.399	2.926						
MR-133	BA-83-FR	74.66	48.513	61.5865	26.147						
MR-139	MT-93-DF	46.841	41.231	44.036	5.61						
MR-14	SS-38-HJ	60.283	85.638	72.9605	25.355						
MR-146	HH-45-PJ	68.236	57.753	62.9945	10.483						
MR-148	DK-29-JG	79.973	89.257	84.615	9.284						
MR-159	ZB-56-AB	53.1	43.717	48.4085	9.383						
MR-162	DB-45-JH	72.988	60.349	66.6685	12.639						
MR-169	FD-76-PM	47.006	60.888	53.947	13.882						
MR-17	TF-29-JK	70.612	77.179	73.8955	6.567						
MR-174	KN-12-LM	55.311	67.301	61.306	11.99						
MR-186	DV-32-AS	44.85	52.803	48.8265	7.953						
MR-205	WE-54-TF	62.12	57.17	59.645	4.95						
MR-213	HI-23-GG	44.971	42.287	43.629	2.684						
MR-218	FK-72-KJ	109.266	118.044	113.655	8.778						
MR-221	CF-44-BM	103.766	79.104	91.435	24.662						
MR-235	EA-34-GH	75.287	100.169	87.728	24.882						
MR-31	BB-42-BV	100.554	101.731	101.1425	1.177						
MR-37	RW-88-TF	82.514	74.264	78.389	8.25						
MR-5	ZY-55-MR	67.29	73.868	70.579	6.578						
MR-57	EE-48-ZS	64.804	65.849	65.3265	1.045						
MR-64	DE-22-FG	35.137	40.527	37.832	5.39						
MR-66	SK-98-HB	102.083	83.02	92.5515	19.063						
MR-71	DN-43-RT	94.559	72.251	83.405	22.308						
MR-85	BN-89-MN	54.112	48.117	51.1145	5.995						

Mean of Results

نمودار ۲-۳- نتایج خطاگیری عنصر (N100) مودار

.

1000

100

Mean of Results

10

10

نمودار ۲-۶- نتایج خطاگیری عنصر (N*100) Be

نمودار ۲-۹- نتایج خطاگیری عنصر (N*1000) دار

نمودار ۲-۱۲- نتایج خطاگیری عنصر (N)

نمودار ۲-۱۴- نتایج خطاگیری عنصر (N*10) Cu

100

1000

10

10

نمودار ۲-1۵- نتایج خطاگیری عنصر (N*100) Dy

نمودار ۲-۱۷- نتایج خطاگیری عنصر (N*100) Eu

Mean of Results

100

1000

10

10

نمودار ۲-۱۸- نتایج خطاگیری عنصر (N/100) اندودار ۲-۱۸

نمودار ۲-۲۰- نتایج خطاگیری عنصر (N*100) Ho

100

1000

10

نمودار ۲-۲۱- نتایج خطاگیری عنصر (N/100)

10

10

1

1

•

1000

نمودار ۲-۲۴- نتایج خطاگیری عنصر (N/100) المودار Mg

Difference Between Results

نمودار ۲-۲۶- نتایج خطاگیری عنصر (N*1000) نتایج خطاگیری عنصر

نمودار ۲-۲۷- نتایج خطاگیری عنصر (N/100)

Mean of Results

نمودار ۲-۳۰- نتایج خطاگیری عنصر (Ni (N)

نمودار ۲-۳۳- نتایج خطاگیری عنصر (N*100)

نمودار ۲-۳۶- نتایج خطاگیری عنصر (N*100) Sb (N*100)

نمودار ۲-۳۹- نتایج خطاگیری عنصر (N*100)

نمودار ۲-۴۲- نتایج خطاگیری عنصر (N*100)

نمودار ۲-۴۴- نتایج خطاگیری عنصر (N/100) نتایج خطاگیری عنصر

Mean of Results

Mean of Results نمودار ۲-۴۵- نتایج خطاگیری عنصر (N*100)

•

نمودار ۲-۴۸- نتایج خطاگیری عنصر (N) V

نمودار ۲-۵۱- نتایج خطاگیری عنصر (N*100) Yb

نمودار ۲-۵۳- نتایج خطاگیری عنصر (N*10) نتایج خطاگیری عنصر

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۳- هیستوگرامها، نمودارهای Q-Q، P-P و Box-Plot

پيوست ٣

هیستو گرامها، نمودارهای P-P، Q-Q و Box-Plot

گزارش نهایی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۳- هیستوگرامها، نمودارهای Q-Q، P-P و Box-Plot

とたく

75.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

معدني كشور

120-

Normal Q- Q Plot of Zr(ppm)

8

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۳- هیستوگرامها، نمودارهای P-P، Q-Q و Box-Plot

نمودار **۳-۱-** هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین سیلیکاتهای آلتره شده در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۳- هیستوگرامها، نمودارهای Q-Q، P-P و Box-Plot

نمودار **۲-۲**- هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین آمفیبول در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **3-3-** هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین آپاتیت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **3-5- هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین بیوتیت در منطقه مطالعاتی.**

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۳- هیستوگرامها، نمودارهای P-P، Q-Q و Box-Plot

نمودار **۳-6- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین کلریت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۷- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین اپیدوت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۳- هیستوگرامها، نمودارهای P-P، Q-Q و Box-Plot

نمودار **۳-۸- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین فلدسپار کوارتز در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۹- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین گارنت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۱۰- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین گوتیت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۱۱- هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین هماتیت در منطقه مطالعاتی.**

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۱۲- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین ایلمنیت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۱۳- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین لیمونیت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۳- هیستوگرامها، نمودارهای P-P، Q-Q و Box-Plot

نمودار ۳-۱۴- هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین مگنتیت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-15- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی های پیریت در منطقه مطالعاتی.

نمودار **۳-۱۶- هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین پیروکسن در منطقه مطالعاتی.**

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۱۷- هیستوگرام و نمودارهای Q-Q ترسیم شده برای متغیر کانی سنگین سریسیت در منطقه مطالعاتی.**

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۱۸- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین اسفن در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۳- هیستوگرامها، نمودارهای P-P، Q-Q و Box-Plot

نمودار **۳-۱۹- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین تیتانومگنتیت در منطقه مطالعاتی.

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

نمودار **۳-۲۰- هیستوگرام و نمودارهای Q-**Q ترسیم شده برای متغیر کانی سنگین زیرکن در منطقه مطالعاتی.

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴– نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پيوست 4

نتایج نمونه های مینرالیزه، کانی سنگین و XRD

فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- نتایچ نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

جدول 4-6- نتایج آنالیز نمونه های کانی سنگین برداشت شده در فاز کنترل صحرایی

Sample	MR2-1-H	MR2-2-H	MR2-3-H	MR2-4-H	MR2-5-H	MR2-6-H	MR2-7-H	MR2-8-H	MR2-9-H
Magnetite	0.01	0.05	5	8	2.5	1	1	1	8
Titano-magnetite	0	0	0	0	0	0	0	0	1
Apatite	0.01	0.01	0	0	0	0	0.01	0	0.1
Zircon	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	1.5
Rutile	0	0	0	0	0	0	0	0	0
Sphene	0	0	0	0	0	0	0	0	0.25
Leucoxene	0.01	0	0	0	0	0	0	0	0
Barite	0.01	0.01	0.01	0	0	0	0.01	0	0
Pyrite	0	0	0	0	0	0	0.05	0.01	0
Ca.carbonate	0.01	0.01	0	0.01	0.03	0.01	0.01	0.01	0.15
F.Q.	0.05	0.05	0.05	0.05	4.5	0.05	0.05	0.05	3
Galena	0	0	0	0	0	0	0	0	0
Cerussite	0	0	0	0	0	0	0	0	0
Scheelite	0	0	0	0	0	0	0	0	0
Fluorite	0	0	0	0	0	0	0	0	0
Silver	0	0	0	0	0	0	0	0	0
Hematite	70	3	5	2.7	2	2	2.4	10	13
Goethite	10	0	0	0	0	0	0	0.5	0
Limonite	5	0	0	0	0	0	0	0.01	0
Pyrite oxide	2	0.01	0.01	0.01	0.5	0.01	0	0.5	0
Pyrite limonite	0.01	0	0	0.01	0.01	0	0	0.01	0
Oligiste	0	0	0	0	0	0	0	0	0
Pyroxens	0.5	1	20	13	10	5	8	10	27
Amphibols	0	2	15	9	5	10	12	20	9
Epidots	0.01	3	2	2.7	1	1	1.6	2	0.9
Garnets	0	0	0	0	0	0	0	0	0
Chlorite	0	0.01	0.5	0.45	0.01	0.5	0.4	0.5	0.01
Biotite	0	0	0	0	0	0	0	0	0.01
Ilmenite	0	0	0	2.7	0	0.5	0.01	0.01	27
Martite	0	0	0	0	0	0	0	0	0.01
Sericite	0	0.02	0.01	0.45	0.01	0.5	0.01	0.5	0.45
Altread sillicate	5	90	50	60	82	84	75	64	10

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴ – نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

جدول 4-6- نتایج آنالیز نمونه های کانی سنگین برداشت شده در فاز کنترل صحرایی (ادامه)

Sample	MR2-10-H	MR2-11-H	MR2-12-H	MR2-13-H	MR2-14-H	MR2-15-H	MR2-16-H	MR2-17-H
Magnetite	9	1	1	21	8	4.5	18	4.5
Titano-magnetite	0.5	0	0	16	1.5	0	10	0
Apatite	0.25	0	0.03	0.1	0.03	0.01	0.1	0.03
Zircon	1.25	0.03	0.05	4	3.5	0.05	0.25	0.15
Rutile	0	0	0	0	0	0	0	0
Sphene	0.25	0.01	0	0.15	0.1	0.01	0.03	0
Leucoxene	0	0	0	0	0	0	0	0
Barite	0.1	0.01	0.03	0	0	0	0	0
Pyrite	0.01	0	0	0	0	0	0	0
Ca.carbonate	0.1	0.25	0.5	0.01	0.01	0.01	0.03	0.01
F.Q.	3	4.5	4	0.5	1.3	0.05	4.5	4.8
Galena	0	0	0	0	0	0	0	0
Cerussite	0	0	0	0	0	0	0	0
Scheelite	0	0	0	0	0	0	0	0
Fluorite	0	0	0	0	0	0	0	0
Silver	0	0	0	0	0	0	0	0
Hematite	22	0.01	0.5	10	9	5	8	5
Goethite	0	0	0	0	0	0	0	0.5
Limonite	0	0	0	0	0	0	0	0.5
Pyrite oxide	0.01	0	0	0	0	0	0	0.01
Pyrite limonite	0	0	0	0	0	0	0	0.01
Oligiste	0	0	0	0	0	0	0	0
Pyroxens	13.5	10	5	2.1	18	20	16	30
Amphibols	9	20	15	1.4	9	30	8	15
Epidots	0.45	0.5	0.5	0.01	0.9	0.5	0.8	3
Garnets	0	0	0	0	0	0	0	0
Chlorite	0	0.5	0.01	0	0.01	0.5	0.01	0.5
Biotite	0.01	0.01	0.01	0.01	0.01	1	0.01	0
Ilmenite	31	0	0	45	36	5	32	0
Martite	0.01	0	0	0.35	0.01	0	0	0
Sericite	0.45	0.5	0.01	0.01	0.01	0.01	0.01	0
Altread sillicate	10	64	75	4	10	31	4	41

پیوست ۴– نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

جدول 4-6- نتایج آنالیز نمونه های کانی سنگین برداشت شده در فاز کنترل صحرایی (ادامه)

Sample	MR2-18-H	MR2-19-H	MR2-20-H	MR2-21-H	MR2-22-H	MR2-23-H	MR2-24-H
Magnetite	4	3.5	0.01	1	10	5	5
Titano-magnetite	0	0	0	0	0	0	0
Apatite	0	0	0	0	0.01	0.01	0
Zircon	0.03	0.01	0.01	0.05	0.05	0.03	0.03
Rutile	0	0	0	0	0	0	0
Sphene	0	0	0	0.01	0	0.01	0
Leucoxene	0	0	0	0	0	0	0
Barite	0	0	0	0	0	0	0
Pyrite	0	0	0.01	0	0	0	0
Ca.carbonate	0	0	0	0.01	0	0.03	0.01
F.Q.	2.5	0.03	0.05	0.05	0.05	3.5	2.5
Galena	0	0	0	0	0	0	0
Cerussite	0	0	0	0	0	0	0
Scheelite	0	0	0	0	0	0	0
Fluorite	0	0	0	0	0	0	0
Silver	0	0	0	0	0	0	0
Hematite	3	5	0.5	2	0.45	3	0.5
Goethite	0	0.01	0	0.01	0	0	0
Limonite	0	0	0	0	0	0	0
Pyrite oxide	0	0	0	0.01	0	0	0
Pyrite limonite	0	0	0	0	0	0	0
Oligiste	0	0	0	0	0	0	0
Pyroxens	15	20	10	10	27	5	10
Amphibols	10	5	5	30	13	50	45
Epidots	10	5	0.5	5	4.5	0.5	3
Garnets	0	0.01	0	0	0	0	0
Chlorite	0.5	0.5	0	0.5	0.01	0.5	0.5
Biotite	0	0	0	0	0	0	0
Ilmenite	0.5	0	0	0	0.9	1	0.01
Martite	0	0	0	0	0	0	0
Sericite	0	0	0	0.01	0	0	0
Altread sillicate	63	62	80	54	45	42	43

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴ – نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

جدول 4-7- نتایج آنالیز نمونه های مینرالیزه برداشت شده

Element	Au(ppb)	Al(ppm)	Ca(ppm)	Fe(ppm)	K(ppm)	Mg(ppm)	Na(ppm)	As(ppm)	Ba(ppm)	Be(ppm)	Bi(ppm)
MR2-7-M1	1	83476	54449	63129	6226	18316	19322	5.7	222	1	0.79
MR2-17-M1	1	79113	48662	57225	4983	20845	18392	5.2	170	0.9	0.71
MR2-17-M2	1	84227	54858	62305	5065	21738	17862	4.2	171	1	0.62
MR2-17-M3	1	17732	11734	253832	639	6676	556	26.3	27	0.3	54.9
MR2-17-M4	1	81035	54137	66453	5060	21397	16623	4.5	183	0.9	1.12
MR2-34-M1	1	79820	54500	83474	5791	17624	19368	3.9	192	0.7	1.21
MR2-34-M2	1	76076	30863	68247	8447	10327	23030	4.4	153	2.6	0.74
MR2-34-M3	1	78362	39066	63548	9613	13471	24385	4.3	257	1.6	0.9
MR2-51-M1	1	118902	54004	70680	5847	19586	17821	7	414	0.8	1.18
MR2-51-M2	1	88171	61535	69447	3044	19427	18710	3.7	211	1.1	0.91
MR2-51-M3	<	73992	28301	54152	4493	6412	25668	4.7	237	2.8	0.7
MR2-51-M4	1	70949	35797	112810	17004	13182	14997	7.1	650	1	1.7
MR2-55-M1	<	82741	51317	69532	3377	16140	19462	3.5	146	1.6	0.8
MR2-55-M2	1	82884	48322	71629	2399	15640	19520	4	125	1.5	0.94
MR2-55-M3	1	88951	40241	64055	3744	14242	23819	4.9	159	2.9	0.85
MR2-62-M1	<	88350	61756	67407	1451	23586	18462	5.7	136	1.3	0.68
MR2-62-M2	2	32363	27804	74469	5225	16482	3864	5.2	125	0.4	0.8
MR2-62-M3	<	82617	52371	70563	2223	19495	17138	4.4	154	1.2	1.29
MR2-62-M4	<	79138	22406	86139	4424	19487	17481	6.1	170	1	1.27
MR2-62-M5	1	77287	43295	69439	6586	16698	20518	4.7	178	1.2	1
MR2-68-M1	<	80675	41260	60166	4658	15276	21195	4.7	172	1.2	0.85
MR2-96-M1	<	95648	76124	65382	3380	24307	16057	5.5	156	1	1.37
MR2-96-M2	1	88421	83045	66293	25557	13526	9199	12.9	422	1.7	1.06
MR2-104-M1	2	81069	81397	37188	29348	11326	13419	7.4	452	1.6	0.65
MR2-104-M2	1	81361	68235	35211	29799	11458	12244	7.4	445	1.7	0.46
MR2-104-M3	1	83868	79997	49629	23878	9652	7461	6.1	445	1.8	0.79
MR2-109-M1	<	76875	58344	44879	33936	9633	12072	7.9	585	1.6	0.79
MR2-109-M2	<	89331	72537	54264	11480	20667	14505	6.3	333	0.9	0.59
MR2-118-M1	1	82303	67476	32720	29900	11744	10914	12.3	515	1.7	0.48
MR2-118-M2	1	86011	68967	35090	27223	10257	13029	10.3	451	2	0.34
MR2-123-M1	<	86740	60259	60631	6731	22365	17984	4.1	358	0.6	0.73
MR2-131-M1	<	93218	39629	57260	19414	22402	17602	4.8	477	1	0.92
MR2-153-M1	1	84699	75655	33186	33630	11355	10146	6	502	1.5	0.66
MR2-153-M2	<	59952	80174	47098	11456	12372	11507	5.2	332	1.1	0.75
MR2-153-M3	2	69046	4487	40076	1595	2407	22800	20.3	41	2.8	1.18
MR2-181-M1	2	90692	61756	63418	8707	19223	20335	5.4	230	0.8	0.67
MR2-197-M1	1	83955	49827	66419	10822	16686	20229	4.8	239	1.4	0.81
MR2-207-M1	<	44255	2572	30086	27258	744	28698	4.1	288	3.1	0.42
MR2-207-M2	1	66997	2910	39753	17118	2139	29966	7.9	323	3.2	0.48
MR2-207-M3	<	81641	60627	69852	13108	19283	17320	5.8	224	0.9	0.98
MR2-211-M1	1	58637	82924	41088	16191	6412	4663	9.5	240	1.1	0.58
MR2-211-M2	<	74238	61420	69540	19110	12491	14872	7.3	323	1.3	0.75
MR2-211-M3	<	84761	61470	63398	8871	22630	16595	4.8	226	0.7	0.68
MR2-229-M1	<	92522	56805	68507	11841	17722	18028	6.6	251	1.2	0.77
MR2-229-M2	<	84186	57078	72101	7136	20016	20149	5.3	179	1.1	0.94
MR2-229-M3	<	87391	54694	72711	1718	19741	23111	5.9	136	0.9	1.28
MD2 224-M1	<	80850	28015	1047/91	6111	15174	18157	1.1	212	1.2	1.57
MD2 224 M2	<	82154	40/55	63110	18139	18/35	18820	5.3	237	0.8	0.78
WIK2-234-M3	l	75/73	5//21	67/24	4247	15377	20536	6	186	1.2	0.81
WIK2-234-M4	<	/9161	4//44	632/2	11885	10166	19/8/	4.5	223	1.2	0.73
MK2-234-M5	<	84456	43035	56912	6040	19166	20/83	4.9	202	0.8	0.64

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

جدول 4-7- نتایج آنالیز نمونه های مینرالیزه برداشت شده (ادامه)

Element	Cd(ppm)	Ce(ppm)	Co(ppm)	Cr(ppm)	Cs(ppm)	Cu(ppm)	La(ppm)	Li(ppm)	Mn(ppm)	Mo(ppm)	Nb(ppm)
MR2-7-M1	0.25	37	25	64	7.8	62	14	11	1265	1.59	22
MR2-17-M1	0.24	32	25	72	8.4	39	13	7	1193	1.52	21
MR2-17-M2	0.21	33	28	79	8.1	8	13	10	1275	1.55	27
MR2-17-M3	20.4	2	<1	40	7.4	453	< 1	2	636	2.87	< 1
MR2-17-M4	0.2	31	26	83	8.8	20	13	9	1314	1.25	24
MR2-34-M1	0.25	56	31	15	10.1	63	23	17	1700	1.49	18
MR2-34-M2	0.22	54	19	15	7.3	34	23	9	1295	1.23	18
MR2-34-M3	0.21	40	21	10	7.5	31	17	15	1293	1.6	35
MR2-51-M1	1.4	31	19	38	7.4	84	11	6	1440	2.36	25
MR2-51-M2	0.3	41	12	32	11	41	16	5	2093	1.7	22
MR2-51-M3	0.18	47	14	28	9.6	86	19	3	524	2.95	22
MR2-51-M4	0.7	29	36	36	5.3	170	8	7	907	2.93	27
MR2-55-M1	0.27	47	23	22	8.9	68	20	3	1197	1.36	22
MR2-55-M2	0.24	50	26	11	9.1	52	21	2	1764	1.56	19
MR2-55-M3	0.23	57	17	13	7.8	49	25	4	1220	1.9	22
MR2-62-M1	0.26	34	22	27	9.9	82	14	3	1841	1.69	29
MR2-62-M2	0.21	17	33	12	8.3	7618	6	6	1371	2.04	10
MR2-62-M3	0.22	38	25	37	9.4	82	16	3	1801	1.34	28
MR2-62-M4	0.23	42	22	37	9	21	15	38	1344	1.85	23
MR2-62-M5	0.26	45	20	13	9.8	28	19	5	1246	1.32	25
MR2-68-M1	0.25	46	8	15	9.8	88	21	3	1636	2.11	24
MR2-96-M1	0.23	27	29	96	7	47	9	7	1351	1.51	28
MR2-96-M2	0.8	59	16	81	8.9	35	30	46	1172	1.66	22
MR2-104-M1	0.25	56	13	71	7.1	31	29	42	657	2	19
MR2-104-M2	0.26	56	12	48	7.1	24	30	35	549	1.84	19
MR2-104-M3	0.26	80	15	59	8.2	39	43	56	1374	1.51	21
MR2-109-M1	0.26	60	14	49	9.4	32	33	26	1838	2.35	19
MR2-109-M2	0.29	31	26	115	9.8	50	12	27	1001	1.35	23
MR2-118-M1	0.25	52	12	55	7.8	22	30	54	450	1.59	22
MR2-118-M2	0.27	47	11	48	8.7	18	27	90	389	1.59	18
MR2-123-M1	0.27	26	28	106	9.8	44	9	10	1272	1.5	28
MR2-131-M1	0.6	24	23	98	6.4	18	8	28	1537	1.29	20
MR2-153-M1	0.28	58	11	64	8.6	20	31	22	443	1.8	22
MR2-153-M2	0.26	41	12	29	7.9	10	22	7	3044	1.87	16
MR2-153-M3	0.22	1	5	13	6.2	138	< 1	5	57	2.09	< 1
MR2-181-M1	0.27	31	29	20	9.3	42	13	17	1287	1.21	23
MR2-197-M1	0.25	41	26	47	9.7	50	18	11	1314	1.44	24
MR2-207-M1	0.2	21	4	11	4.5	63	13	11	226	2.75	10
MR2-207-M2	0.21	33	5	12	4.9	39	20	15	526	2.17	17
MR2-207-M3	0.26	36	34	22	/.1	4/	16	29	1407	0.99	23
MR2-211-M1	0.25	85	9	39	9.7	20	45	50	1111	3.56	10
MR2-211-M2 MD2 211 M2	0.28	28	21	15	9.4	<u> </u>	26	1/	1465	2.01	19
MD2 220 M1	0.25	28	32	<u>81</u>	9.9	38	10		1091	1.54	20
MD2 220 M2	0.20	20	20	<u>80</u>	0	42	14	10	1215	1.74	14
MD2 220 M2	0.25	39	29	57	9	43	14	10	1454	1.42	28
MD2 224 M1	0.26	40	30	5/	<u> 8.8</u>	44	15	18	1194	1.55	
MR2-234-WII	0.23	20	22	43	0.8	27	11	1/	070	0.3	18
MR2-234-WIZ	0.24	29	29	43	9	22	12	9 14	9/9	1.40	23
MR2-234-1415	0.19	/2	23	10	0.0	25 26	10	14	1301	5.12 1.70	20
MD2 224 ME	0.22	43	27	19	9.0 Q /		10	10	070	1.79	23
IVI KZ-234-IVI 5	0.3	28	<i>∠1</i>	90	0.4	41	12	10	9/0	1.19	23

پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

جدول 4-7- نتایج آنالیز نمونه های مینرالیزه برداشت شده (ادامه)

Element	Ni(ppm)	P(ppm)	Pb(ppm)	Rb(ppm)	S(ppm)	Sb(ppm)	Sc(ppm)	Sn(ppm)	Sr(ppm)	Te(ppm)
MR2-7-M1	31	1541	16	36	188	1.18	24.7	2	235	0.22
MR2-17-M1	35	1207	19	39	174	< 0,5	24.1	2.4	240	0.22
MR2-17-M2	41	1285	20	39	167	1.06	24.8	2.9	224	0.22
MR2-17-M3	32	2964	129	67	368	0.67	7.6	2.1	39	0.67
MR2-17-M4	40	1240	19	30	168	1.15	24	2.2	283	0.22
MR2-34-M1	11	2897	21	39	439	0.88	23.4	2.7	239	0.3
MR2-34-M2	9	2543	20	46	163	1.04	15.5	2.7	139	0.24
MR2-34-M3	8	1527	18	43	427	0.89	15.3	2.1	154	0.25
MR2-51-M1	21	1438	54	31	323	1.19	24.7	3.1	205	0.25
MR2-51-M2	11	1972	19	28	1057	0.64	25.1	2.7	241	0.26
MR2-51-M3	9	1269	20	28	297	0.99	5.8	3.7	164	0.18
MR2-51-M4	28	1561	108	59	257	< 0,5	22.1	1.9	150	0.46
MR2-55-M1	17	1916	17	32	169	0.89	20.6	3.4	198	0.23
MR2-55-M2	18	2029	17	27	173	1.39	19.5	3.1	184	0.25
MR2-55-M3	14	1601	14	36	179	< 0,5	16.7	3.2	165	0.21
MR2-62-M1	21	1435	15	34	1590	< 0,5	26	2.8	177	0.24
MR2-62-M2	12	957	19	38	298	0.89	9.4	2.5	64	0.26
MR2-62-M3	18	1682	19	27	388	1.31	24	2.3	148	0.25
MR2-62-M4	28	1823	19	39	343	< 0,5	21	2.4	110	0.27
MR2-62-M5	13	1973	18	40	207	0.75	21.3	3.6	174	0.27
MR2-68-M1	5	1830	16	39	2538	1.01	21.2	3	168	0.25
MR2-96-M1	49	1138	19	24	220	0.68	26.8	2.8	217	0.23
MR2-96-M2	57	979	33	126	1476	1.3	16.6	3.1	261	0.24
MR2-104-M1	41	639	21	136	776	0.6	13.4	2.4	351	0.14
MR2-104-M2	34	625	23	131	404	0.97	14	2.2	348	0.12
MR2-104-M3	53	969	21	128	297	1.39	13.9	2.5	281	0.14
MR2-109-M1	52	731	21	142	176	< 0,5	13.5	3.2	350	0.16
MR2-109-M2	63	840	15	52	264	< 0,5	25.5	2.5	266	0.19
MR2-118-M1	55	668	21	131	898	1.2	13.9	2.8	466	0.15
MR2-118-M2	46	681	20	123	1119	0.64	15	2.5	440	0.13
MR2-123-M1	56	1201	13	41	166	< 0,5	27.5	2.5	250	0.21
MR2-131-M1	52	857	12	57	167	1.62	24.1	1.9	326	0.19
MR2-153-M1	43	626	16	145	266	0.83	13.9	2.9	302	0.14
MR2-153-M2	29	1145	15	49	185	0.64	14.6	2.4	281	0.15
MR2-153-M3	18	133	11	36	248	0.78	2	2.3	114	0.11
MR2-181-M1	25	1331	27	42	205	< 0,5	26.9	2.3	312	0.24
MR2-197-M1	32	1690	14	44	170	0.57	20.7	2.6	193	0.24
MR2-207-M1	6	325	10	66	189	0.62	1.2	1.9	23	0.13
MR2-207-M2	11	694	10	54	242	< 0,5	3	2.2	36	0.14
MR2-207-M3	25	1299	18	53	270	1.21	22.5	2.7	245	0.23
MR2-211-M1	32	689	19	93	187	0.65	9.8	2.3	113	0.14
MR2-211-M2	13	2109	23	83	412	0.66	14.6	2.3	222	0.25
MR2-211-M3	55	1200	14	42	196	< 0,5	28.3	2.3	224	0.23
MR2-229-M1	44	1526	19	39	387	1.09	25.1	2.8	181	0.25
MR2-229-M2	36	1545	16	38	296	0.69	25.6	2.7	182	0.26
MR2-229-M3	36	1600	15	32	229	0.73	26.2	2.2	166	0.26
MR2-234-M1	30	1463	28	50	280	0.81	25.1	3.7	183	0.33
MR2-234-M2	34	1304	13	70	165	0.63	29.9	2.6	170	0.22
MD2 224 N54	69	1803	17	32	243	1.11	21.3	3	139	0.27
MD2 224-M4	18	1826	17	49	169	1.13	21.8	2.8	193	0.24
MR2-234-M5	37	1189	15	36	167	0.71	25.5	2.9	184	0.2

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

جدول 4-7- نتایج آنالیز نمونه های مینرالیزه برداشت شده (ادامه)

Element	Th(ppm)	Ti(ppm)	Tl(ppm)	U(ppm)	V(ppm)	W(ppm)	Y(ppm)	Yb(ppm)	Zn(ppm)	Zr(ppm)
MR2-7-M1	4.7	10857	0.6	3.7	178	5.2	65	5.6	105	204
MR2-17-M1	4.2	10603	0.68	3.5	171	4.3	54	4.9	89	120
MR2-17-M2	4.2	11450	0.44	3.6	183	5.1	56	5.1	106	114
MR2-17-M3	4.2	2567	<0,2	11	489	57.9	21	3.5	6215	81
MR2-17-M4	4.6	10723	0.46	3.9	179	4.5	52	4.8	108	118
MR2-34-M1	4.3	17025	<0,2	4.3	214	3.3	89	7.7	158	258
MR2-34-M2	10.7	13023	0.32	4	180	4	87	8.1	129	244
MR2-34-M3	6.9	15438	0.29	4.2	185	4.2	67	6.8	114	196
MR2-51-M1	5.6	12543	0.42	3.8	233	6.8	50	4.7	269	91
MR2-51-M2	5.2	13877	0.32	4	240	5.9	69	6.2	226	92
MR2-51-M3	6.8	6593	0.72	4.2	30	5.8	76	6.5	68	80
MR2-51-M4	7.9	10677	<0,2	3.5	481	7.4	56	5.5	487	94
MR2-55-M1	5.1	11849	0.54	3.7	164	4	84	6.8	93	94
MR2-55-M2	6.9	13495	0.44	3.5	183	4	87	7.3	102	79
MR2-55-M3	8.5	10925	0.51	3.9	139	5.1	91	7.2	99	88
MR2-62-M1	4.7	12586	0.47	3.8	214	5.8	59	5.3	95	77
MR2-62-M2	3	6899	0.66	2.6	121	<0,5	33	2.9	354	60
MR2-62-M3	5	14213	0.3	3.5	239	5.6	69	5.9	144	70
MR2-62-M4	4.9	11664	0.54	3.4	175	5.3	65	5.3	131	83
MR2-62-M5	5.8	14862	0.33	3.7	216	4.2	76	6.3	111	107
MR2-68-M1	6.1	15139	0.35	3.5	211	4.2	67	5.6	102	74
MR2-96-M1	3.2	10427	0.38	3.2	214	4.5	52	5	106	109
MR2-96-M2	13.9	5651	0.7	3	153	6.6	36	3.7	345	104
MR2-104-M1	14	4506	0.77	2.7	120	5.7	31	3.2	123	118
MR2-104-M2	12.9	4581	1.05	2.9	129	5.8	31	3.1	94	125
MR2-104-M3	15.9	4681	0.84	2.5	142	6.3	33	3.4	108	100
MR2-109-M1	14.2	4355	0.98	3	124	5.7	33	3.4	100	108
MR2-109-M2	6.3	8773	0.63	3	180	4.7	42	4.1	86	175
MR2-118-M1	13.4	4703	1.04	2.9	153	5.8	29	3.1	103	133
MR2-118-M2	12.9	4747	0.97	2.8	145	5.1	27	3	108	130
MR2-123-M1	3.7	10959	0.64	3.7	197	4.6	48	4.5	109	176
MR2-131-M1	6.9	7639	0.57	3.5	152	6.7	35	3.3	367	217
MR2-153-M1	13.4	4854	0.97	2.5	118	5.9	34	3.5	78	81
MR2-153-M2	7.7	3616	0.68	3.2	154	4.8	30	3.2	198	119
MR2-153-M3	34.5	520	1.22	4	64	4	4	0.8	32	73
MR2-181-M1	4.7	11540	0.59	4	209	4.5	54	5.2	106	88
MR2-197-M1	6.2	12388	0.33	3.9	189	4.8	71	6.3	105	89
MR2-207-M1	4.9	2940	1.08	3.7	7	3.4	25	2.5	34	75
MR2-207-M2	6	2888	1.25	4	10	4.7	32	2.8	32	83
MR2-207-M3	4.5	11966	0.4	3.8	215	4.2	56	5.4	103	78
MR2-211-M1	11.2	3170	1.03	2.6	94	5.2	17	2.1	83	102
MR2-211-M2	9.2	13928	0.45	3.7	169	4.6	63	6.1	130	357
MR2-211-M3	4.1	10425	0.52	3.6	201	5	56	5.6	100	283
MR2-229-M1	4.9	11951	0.44	4	210	3.3	70	6.6	125	317
MR2-229-M2	4.6	13635	0.32	4	241	4.1	70	6.7	121	348
MR2-229-M3	3.7	14021	0.34	4.5	250	5	72	6.8	127	328
MR2-234-M1	4.6	12940	0.21	4.3	244	4.3	56	4.8	114	126
MR2-234-M2	4	12319	0.47	3.6	234	4.9	56	4.7	99	126
MR2-234-M3	3.9	14683	0.49	3.9	219	5.4	56	4.5	111	102
MR2-234-M4	5.1	14756	0.37	3.8	222	5.2	69	5.7	122	196
MR2-234-M5	4.2	10595	0.49	3.6	194	4.6	42	3.6	91	107

گزارش نهایی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– نتایچ نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴– نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲– نتایچ نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴– نتایع نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴– نتایچ نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۲- نتایچ نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴– نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴– نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پیوست ۴ – نتایج نمونه های مینرالیزه، کانی سنگین و XRD فاز کنترلی

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۱:۲۵٫۰۰۰در محدوده اکتشافی میانراهان ۲

پيوست ۵- نقشه ها

گزارش نهایی پروژه اکتشاف ژئوشیمیایی ۲۵٬۰۰۰در محدوده اکتشافی میانراهان ۲

ضمايم

ضمايم