

سازمان زمینشناسی و اکتشافات معدنی کشور معاونت اکتشاف مدیریت امور اکتشاف

طرح تلفیق لایههای اطلاعاتی پایه و معرفی مناطق امید بخش معدنی کشور

گزارش پیجوئی به روش اکتشافات ژئوشیمیایی در محدوده تازتاب نهاوند در مقیاس ۱:۲۵۰۰۰

> مجری طرح: ناصر عابدیان مجری فنی طرح: بهروز برنا مسئول فنی پروژه: سرمد روزبه کارگر

> > توسط: مهرداد موحدی با همکاری: الهام چیتگری

الشر الرحمن

الرحم

فهرست مطالب

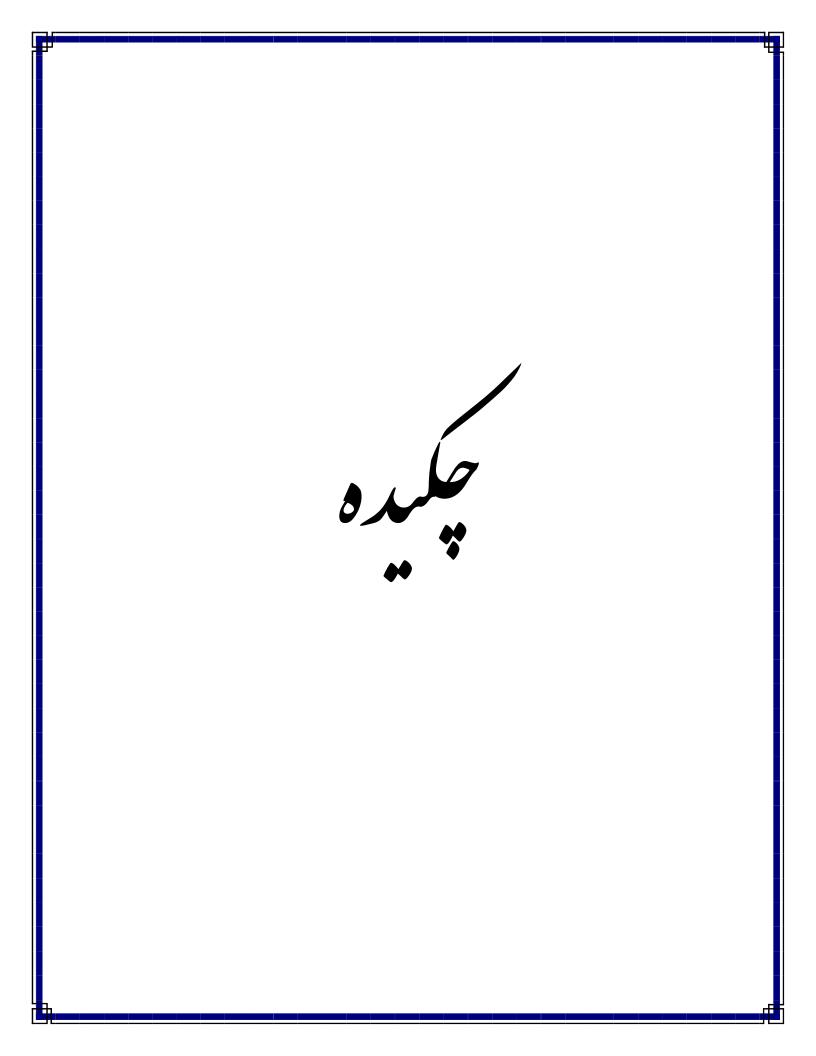
چکیدهال	
فصل اوّل، كلّيات	١
موقعیت جغرافیایی و جایگاه زمین شناسی محدوده اکتشافی	١
روند انجام پژوهش و تهیه گزارش	۲
فصل دوّم، زمینشناسی محدوده مورد مطالعه	۴
زمين شناسى محدوده مورد مطالعه	
پرمو تریاس	۴
واحد TRJ ^{Vm}	
كرتاسه	۴
واحد K ₁ le واحد	۴
واحد K ₁ ^{lw} واحد	۴
فصل سوّم، نمونهبرداری، آنالیز و محاسبه خطای آنالیز	٧
طراحی شبکه نمونهبرداری	٧
آماده سازی نمونههای ژئوشیمیایی	٧
	٧
آماده سازی و مطالعه کانیهای سنگین	
اماده سازی و مطالعه کانیهای سنگین	
	۱۱
روش آنالیز نمونههای ژئوشیمیایی و حد حساسیت دستگاهها	11
روش آنالیز نمونههای ژئوشیمیایی و حد حساسیت دستگاهها)))

سازمان زمینشناسی و اکتشافات معدنی کشور

18	پردازش دادهها
18	محاسبات پارامترهای آماری دادههای خام
١٧	بررسی مقادیر خارج از رده (Outliers Samples).
١٨	بررسیهای آماری چند متغیره
١٨	آنالیز خوشهای و تفسیر آن
71	آنومالی عناصر مختلف
YY	فصل پنجم، فاز کنترل آنومالیهای ژئوشیمیایی.
۲۸	ردیابی کانیسنگین
۲۹	بزرگی هالههای کانیسنگین
۲۹	برداشت نمونههای کانیسنگین
79	آمادهسازی و مطالعه نمونههای کانیسنگین
٣٠	پردازش دادههای کانیسنگین
٣٠	رسم هیستوگرام متغیرهای کانیسنگین
٣۴	فصل ششم، نتایج و پیشنهادات
٣۶	منابع

فهرست جداول

١٨	نمونههای دارای مقادیر خارج از رده
لی و قطعی۲۲	مقادیر نرمال و همچنین حدود زمینه و آنومالیهای ممکن و احتماا
و قطعی گروههای	آنومالیهای مربوط به حدود زمینه و آنومالیهای ممکن و احتمالی
٣٣	مختلف کانی سنگین برگه ۱/۲۵۰۰۰ تازتاب
ضمائم	مقادیر میانگین و قدر مطلق تفاوت نمونههای تکراری
ضمائم	جدول همبستگی پیرسون بر روی دادههای نرمال
ضمائم	جدول همبستگی اسپیرمن بر روی دادههای خام
ضمائم	نمونههای آنومال محدوده حسینآباد


فهرست اشكال

راههای دسترسی به منطقه مورد مطالعه
نتایج حاصل از آنالیز خوشهای عناصر منطقه مورد مطالعه
آنالیز خوشهای نمونههای کانی سنگین محدوده ۱/۲۵۰۰۰ تازتاب۳۲
دیاگرام تامپسون نمونههای طلا و وانادیومضمائم
دیاگرام تامپسون نمونههای کروم و کبالتضمائم
دیاگرام تامپسون نمونههای نیکل و مسضمائم
دیاگرام تامپسون نمونههای روی و گالیومضمائم
دیاگرام تامپسون نمونههای استرانسیوم و ایتریوم
دیاگرام تامپسون نمونههای زیرکونیوم و نیوبیوم
دیاگرام تامپسون نمونههای سزیم و باریمضمائم
دیاگرام تامپسون نمونههای لانتانیوم و اندیومضمائم
دیاگرام تامپسون نمونههای اسمیوم و هافنیومضمائم
دیاگرام تامپسون نمونههای سرب و اورانیومضمائم
دیاگرام تامپسون نمونههای فسفر و تیتانیومضمائم
دیاگرام تامپسون نمونههای گوگرد و آرسنیکضمائم
دیاگرام تامپسون نمونههای سریوم و منگنزضمائم
دياگرام تامپسون نمونههای روبيديوم و اسكانديوم

فهرست نقشهها

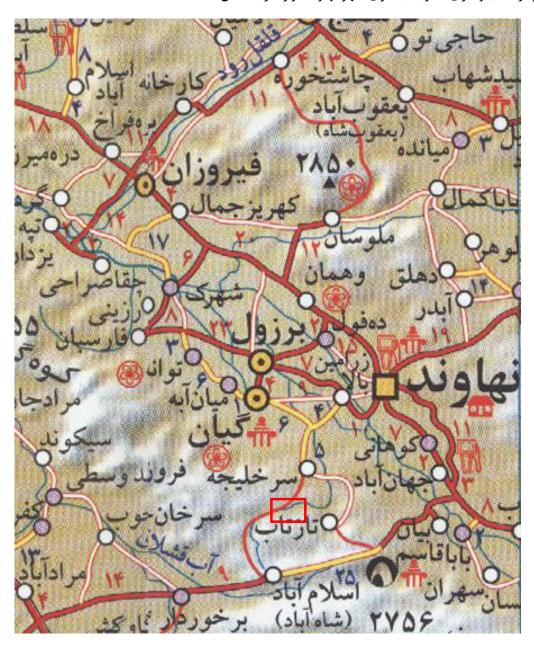
موقعیت نمونههای برداشت شده محدوده تازتاب
آنومالی ژئوشیمیایی عنصر آرسنیک ۳۸
آنومالی ژئوشیمیایی عنصر طلا ۳۹
آنومالی ژئوشیمیایی عنصر باریم
آنومالی ژئوشیمیایی عنصر سریم۴۱
آنومالی ژئوشیمیایی عنصر کبالت۳۲
آنومالی ژئوشیمیایی عنصر کروم۴۳
آنومالی ژئوشیمیایی عنصر سزیم
آنومالی ژئوشیمیایی عنصر مس
آنومالی ژئوشیمیایی عنصر گالیوم
آنومالی ژئوشیمیایی عنصر هافنیوم
آنومالی ژئوشیمیایی عنصر لانتانیوم
آنومالی ژئوشیمیایی عنصر منگنز۴۹
آنومالی ژئوشیمیایی عنصر نیوبیوم
آنومالی ژئوشیمیایی عنصر نئودمیوم
آنومالی ژئوشیمیایی عنصر نیکل
آنومالی ژئوشیمیایی عنصر فسفر
آنومالی ژئوشیمیایی عنصر سرب
- آنومالی ژئوشیمیایی عنصر روبیدیوم
آنومالی ژئوشیمیایی عنصر گوگرد
آنومالی ژئوشیمیایی عنصر اسکاندیوم

نومالی ژئوشیمیایی عنصر قلع
نومالی ژئوشیمیایی عنصر ساماریوم
نومالی ژئوشیمیایی عنصر استرانسیوم
نومالی ژئوشیمیایی عنصر تیتانیوم
نومالی ژئوشیمیایی عنصر تالیوم
نومالی ژئوشیمیایی عنصر اورانیوم
نومالی ژئوشیمیایی عنصر وانادیوم
نومالی ژئوشیمیایی عنصر ایتریوم
نومالی ژئوشیمیایی عنصر زیرکونیوم
نومالی ژئوشیمیایی عنصر روی
نومالیهای مربوط به گروه یک کانی سنگین
نومالیهای مربوط به گروه دو کانی سنگین
نومالیهای مربوط به گروه سه کانی سنگین
نومالیهای مربوط به گروه چهار کانی سنگین
نومالیهای مربوط به گروه پنج کانی سنگین
قشه موقعیت و ناطق او در بخش

چکیده

منطقه مورد مطالعه جزء یکی از ۶ منطقه معرفی شده توسط مطالعات ناحیهای ژئوشیمی در محدوده برگه ۱:۱۰۰۰۰۰۰ نهاوند میباشد. این ناحیه با توجه به تلفیق نتایج مطالعات ژئوشیمی، کانیسنگین، مطالعات صحرایی و نمونهبرداریهای بعدی انتخاب شده است. محدوده مذکور بین طولهای جغرافیایی مطالعات صحرایی و نمونهبرداریهای بعدی انتخاب شده است. محدوده مذکور بین طولهای جغرافیایی ۲۴۵۸۴۹ و عرضهای جغرافیایی ۳۷۷۳۹۵۹ در استان همدان و پانزده کیلومتری جنوب باختری شهر نهاوند قرار دارد. واحدهای سنگی موجود در محدوده مورد مطالعه شامل واحد K_1^{TW} که قسمت زیادی از سطح زمین در منطقه شمالی را پوشانده و شامل لاوا (که بطور ضعیف دگرگون شده) توف و میان لایههایی از مرمر در بخشهای بالایی میباشد و سنی معادل تریاس – ژوراسیک دارد، واحد K_1^{th} شامل سنگهای آهکی ضخیم لایه تا تودهای با فسیلهای اوولیت کرتاسه میباشد که بخش عظیمی از ضحیوه جنوبی و مرکزی منطقه را میپوشاند. همچنین واحد K_1^{IM} به سن کرتاسه، شامل سنگهای آهکی ضخیم لایه سفید تا تیره تبلور مجدد یافته است که شرق محدوده مورد مطالعه را پوشش میدهد. برای برداشتهای ژئوشیمیایی، طراحی شبکه نمونهبرداری با توجه به میزان گسترش شبکه آبراههای، لیتولوژی، آلتراسیون، زونهای مینرالیزه و تکتونیک صورت گرفت که پراکندگی آنها از ۲ الی ۳ نمونه ژئوشیمی و ۱ تا ۲ نمونه کانیسنگین در هر کیلومترمربع متغیر بوده است و وسعتی بالغ بر ۱۵کیلومترمربع تحت پوشش قرار ۲ نمونه کانیسنگین در هر کیلومترمربع متغیر بوده است و وسعتی بالغ بر ۱۵کیلومترمربع تحت پوشش قرار گرفت.

درمجموع تعداد ۳۹ نمونه ژئوشیمی و ۱۴ نمونه کانی سنگین از منطقه برداشت شد. نمونههای برداشت شده برای آنالیز ۴۴ عنصری با روش ICP ، روش Fire Assay جهت آنالیز عنصر طلا در آزمایشگاه سازمان رمین شناسی و اکتشافات معدنی کشور آنالیز شدند. دقت آنالیزها محاسبه و پس از حصول از اطمینان، دادهها مورد تجزیه و تحلیل قرار گرفتند. بالاترین مقدار نتیجه ژئوشیمیایی رسوبات آبراههای برای عنصر طلا کدادهها کرم در تن، برای عنصر مس ۹۱/۸ گرم در تن و برای عنصر سرب ۱۲۲/۹ گرم در تن و برای عنصر سرب ۱۲۵/۹ گرم در تن می باشد. در هیچ یک از نمونههای کانی سنگین ذره طلا گزارش نشده است. در


نهایت با توجه به تلفیق نتایج مطالعات ژئوشیمی، کانیسنگین و مطالعات صحرایی، محدوده چهار ضلعی ABCD به وسعت تقریبی ۵/۵ کیلومتر مربع واقع در قسمت جنوبی و مرکزی محدوده مورد مطالعه، با اولویت اکتشافی درجه دو جهت مطالعات بعدی پیشنهاد گردید (نقشه شماره ۳۵).

فصل اول

کی ت

۱-۱- موقعیت جغرافیایی و جایگاه زمینشناسی محدوده اکتشافی:

محدوده مورد مطالعه با وسعت تقریبی ۱۵ کیلومترمربع بین طولهای جغرافیایی ۲۴۵۸۴۹ - ۳۷۷۱۳۰۲ در استان همدان و پانزده کیلومتری جنوب باختری شهر نهاوند قرار دارد (شکل ۱-۱).

شکل (۱-۱) : راههای دسترسی به محدوده مورد مطالعه

محدوده مورد مطالعه بخشی از برگه زمینشناسی ۱:۱۰۰.۰۰۰ نهاوند میباشد. جادههای نهاوند - ملایر و راه گلزرد تازتاب دسترسی به محدوده را آسان میسازد. از لحاظ آب و هوایی دارای آب و هوای معتدل میباشد. سیستم آبراههای با توجه به کوهستانی بودن محدوده مسیرهای مختلفی داشته، ولی در نهایت تمام آبراههها به سمت رودخانه گاماسیاب زهکشی میشوند.

در تقسیم بندی نبوی (۱۳۵۵) این محدوده در زون زاگرس مرتفع قرار می گیرد.

۱-۲- مطالعات قبلی صورت گرفته در محدوده مورد مطالعه :

۱ - م.سـبزهای ، ب. مجیـدی ، ن.علـوی تهرانـی، م. قریشـی، م. عمیـدی، ۱۹۷۷ ، نقشـه زمینشناسی ۲۵۰۰۰: ۱ همدان ، سازمان زمینشناسی و اکتشافات معدنی کشور

۲- ج. حســــینی دوســـت ، م.الـــف مهـــدوی ، مهـــدی علـــوی ۱۹۹۲ ، نقشـــه زمین شناسی ۱۹۹۲:۱۰۰۰۰ انهاوند ، سازمان زمین شناسی و اکتشافات معدنی کشور

٣- گزارش اکتشافات ژئوشیمیائی ۱:۱۰۰۰۰۰ منطقه نهاوند، ۱۳۸۳ ، کانی کاوان شرق

۱-۳- روند انجام پژوهش و تهیه گزارش

در طی اکتشافات ناحیهای ژئوشیمیایی و کانی سنگین در محدوده برگه ۱:۱۰۰۰۰۰ نهاوند تعداد شش محدوده امید بخش معرفی گردیده است که در طی یک تعامل مناسب بین سازمان زمین شناسی و اکتشافات معدنی کشور و سازمان صنایع و معادن استان همدان تصمیم بر ادامه اکتشاف در مقیاس نیمه تفصیلی در این محدودهها گرفته شد که در طی آن با برنامه ریزی کامل و دید مشخص نسبت به این نقاط، تصمیم بر اکتشافات ژئوشیمیایی و همچنین مطالعات کانی سنگین در مقیاس بزرگتر همراه با اکتشافات چکشی در مناطق امید بخش گرفته شد. در ادامه کار در این محدوده ابتدا با جمع آوری کامل اطلاعات و با استفاده از نقشه ژئوفیزیک هوایی محدوده و مشخص نمودن گسلهای پنهان و موقعیت تودههای نیمه عمیق و استفاده از نقشه زمین شناسی، اطلاعات زمین شناسی و سنگ شناسی موجود اقدام به طراحی شبکه

نمونهبرداری نمودیم. همچنین در مرحله نمونهبرداری نیز با توجه به تغییرات سر زمین اقدام به اضافه نمودن نمونهها یا جابجایی نمونهها کردیم تا بهترین نتیجه ممکنه حاصل گردد.

هر نمونه ژئوشیمیایی از عمق ۳۰ تا ۴۰ سانتی متری آبراهه و از چند نقطه برداشت گردید و در نهایت از مخلوط نمودن این چند نمونه یک نمونه بدست آمد که در کیسههای دو جداره و با سه شماره نمونه یکی در داخل کیسه و دیگری نوشته شده بر کیسه داخلی و یکی بر کیسه خارجی علامت گذاری گردید. جهت نمونه گیری کانی سنگین نیز با همان شرایط نمونه گیری فوق مقدار ۱۰ تا ۱۵ لیتر نمونه گرفته و پس از لاوک شویی جهت آماده سازی و مطالعه به بخش مطالعه کانی سنگین سازمان زمین شناسی و اکتشافات معدنی کشور تحویل داده شد. جهت کنترل عملکرد آزمایشگاه نیز بطور کاملاً محرمانه از ۱۰ درصد نمونههای ژئوشیمیایی، نمونه تکراری انتخاب گردید. (از آنجا که نمونه برداری این محدوده با محدوده حسین آباد در طی یک مأموریت انجام گرفت و نمونههای هر دو محدوده در یک آزمایشگاه آنالیز گردید، بنابر این ۱۰ درصد نمونه تکراری اتفاقی از بین نمونههای محدوده حسین آباد انتخاب شده است که این آنالیزها در فصل سوّم این گزارش آمده است).

وصل وس

زمین شناسی

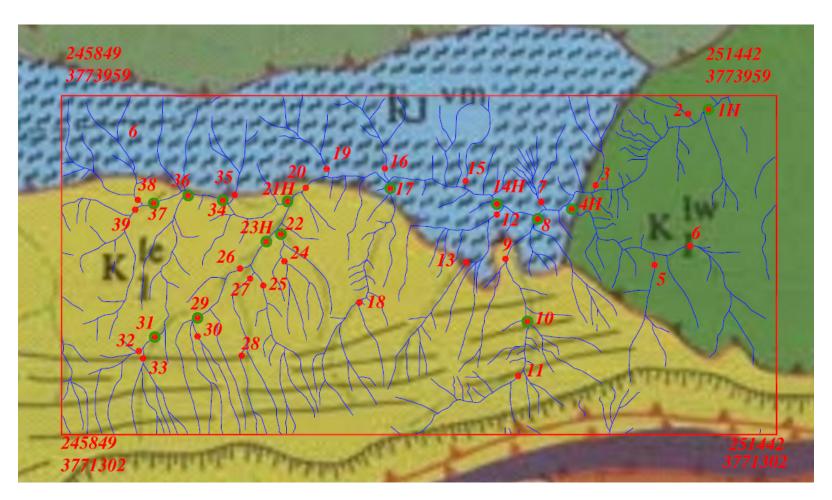
زمين شناسي محدوده مورد مطالعه

از لحاظ تقسیمات زمین شناسی ایران محدوده مورد مطالعه در زون زاگرس مرتفع قرار گرفته است. توصیف واحدهای زمین شناسی محدوده به شرح زیر است:

۱- پرمو تریاس:

ا -۱ واحد TRJ^{Vm} ا

واحد $\mathrm{TRJ}^{\mathrm{Vm}}$ قسمت زیادی از سطح زمین را در قسمت شیمالی پوشیانده و شیامل لاوا (که بطور ضعیف دگرگون شده) توف و میان لایههایی از مرمر و بخشهای بالایی میباشید و سینی معادل تریاس– ژوراسیک دارد. این واحد در جنوب شرقی و شمال نهاوند به نام کمپلکس نهاوند خوانده می شود.


۲- کرتاسه:

-۱-۲ واحد K₁^{le} ا

این واحد شامل سنگهای آهکی ضخیم لایه تا تودهای با فسیلهای اوولیت میباشد که بخش عظیمی از محدوده جنوبی و مرکزی منطقه را میپوشاند.

$\mathbf{K_1}^{\mathrm{lw}}$ واحد $-\mathsf{Y}-\mathsf{Y}$

این واحد شامل سنگهای آهکی ضخیم لایه سفید تا تیره تبلور مجدد یافته است که شرق محدوده مورد مطالعه را پوشش میدهد.

شکل (۲-۱): موقعیت محدوده مورد مطالعه بر روی نقشه زمینشناسی ۱:۱۰۰۰۰۰ نهاوند

معاونت اكتشاف - مديريت امور اكتشاف

شکل (۲-۲): راهنمای نقشه زمینشناسی ۱/۱۰۰۰۰۰ نهاوند

هِ اللهِ الكِتْشَافُ – مديريت امور اكتشاف

فصل سوم

تمونه برداری، آنالنرو

محاسة خطاي آنالنر

۳-۱ طراحی شبکه نمونهبرداری:

معمولاً عواملی که در طراحی شبکه نمونهبرداری نقش اساسی دارند شامل واحدهای سنگی موجود در منطقه، سیستم توپوگرافی، شبکه آبراههای و سیستم گسله حاکم بر منطقه می باشد. در تراکم نمونهبرداری در محدوده اکتشافی مورد بحث با توجه به توپوگرافی مرتفع سعی گردیده است ضمن رعایت دانسیته نمونهها که ۲ تا ۳ نمونه در هر کیلومترمربع بوده است، فاکتور انتشار واحدهای سنگی و شبکه گسله و زونهای مینرالیزه نیز در طراحی شبکه اعمال گردید. در طول عملیات صحرائی ضمن برداشت نمونههای ژئوشیمیایی، کلیه اطلاعات زمینشناسی، کانیشناسی، سنگشناسی مورد توجه و ثبت قرار گرفت. نمونههای کانیسنگین با شبکه تقریبی یک عدد در هر کیلومترمربع نیز طراحی گردیدکه معمولاً از مدخل آبراهههای اصلی جائی که بیشترین مساحت کیلومترمربع نیز طراحی گردیدکه معمولاً از مدخل آبراهههای اصلی جائی که بیشترین مساحت حوضه آبگیر را در بر می گیرد برداشت شده است. در مجموع تعداد نمونههای ژئوشیمیایی ۳۹ عدد

۲-۲- آماده سازی نمونه های ژئوشیمیایی:

نمونههای برداشت شده از رسوبات آبراههای در محل هر ایستگاه پس از بررسی موقعیت زمین شناسی و جغرافیایی و ثبت کلیه پدیدههای زمین شناسی به مقدار ۲۰۰ الی ۳۰۰ گرم از الک ۶۰ مش عبور داده شده است. کلیه نمونهها پس از کنترل و بستهبندی، به بخش نمونه کوبی سازمان زمین شناسی و اکتشافات معدنی کشور ارسال گردید. در بخش نمونه کوبی کلیه حجم نمونه برداشت شده تا حد ۲۰۰ مش پودر شده و سپس نمونهها جهت آنالیز به آزمایشگاههای تجزیه عنصری سازمان زمین شناسی و اکتشافات معدنی کشور ارسال شد.

۳-۳- آماده سازی و مطالعه کانی های سنگین:

کانیهای سنگین به آن دسته از کانیهائی گفته می شود که وزن حجمی آنها بیشتر از ۲/ ۲۸ گرم بر سانتی متر مکعب باشد و در مایع بروموفرم غوطه ور شوند. زمانی که پدیده های کانی سازی نظیر تزریق محلول های هیدروترمالی و یا پدیده های دگرگونی در اثر نفوذ سنگهای آذرین به وجود هیا و کنشاف مدیریت امور اکتشاف

می آیند، عیار کانی های سنگین در سنگ دربرگیرنده و یا محلول های تزریق شده افزایش یافته و اکثراً کانی های کانسار ساز اقتصادی به وجود می آید. (Economic minerals)

در صورتیکه عیار کانیهای اقتصادی که اغلب جزء کانیهایسنگین به شمار میآیند در سنگهای دربرگیرنده افزایش یابند بهصورت رگه، رگچه و عدسیهای معدنی تظاهر پیدا میکنند و یا بهصورت کانیهای پراکنده در متن سنگ (Disseminated minerals) شکل میگیرند.

در محیطهای ثانویه کانیهایسنگین از دو منشأ کاملاً مستقل تحت تأثیر عوامل تخریبی و تجزیه فیزیکی (Weathering) به وجود می آیند.

۱- کانیهای سنگین مشتق شده از کانیهای سنگ ساز نظیر پیروکسن، آمفیبول، تورمالین، چنانچه منشأ کانیهای سنگین از کانیهای کانسارساز باشند، کانیهایی مثل کالکوپیریت، پیریت، زیرکن، هماتیت، روتیل، ایلمنیت، طلا، سینابر، شئلیت، کاسیتریت را به وجود می آورند.

۲- کانیهای سنگین مشابه عناصر کانسارساز اکثراً بهصورت گروهی و یا کانیهای پاراژنز (Para genetic Minerals) با یکدیگر از سنگ مادر جدا شده و تحت شرایط فیزیکی و جغرافیایی حاکم بر محیط نظیر شدت جریان آب و شرایط مورفولوژیکی حوضه آبگیر نظیر شیب توپوگرافی، درجه حرارت محیط در محیط ثانویه تمرکز و تجمع مییابند.

نقش عوامل فیزیکی در تمرکز کانیهایسنگین در محیطهای ثانویه از اهمیت ویژهای برخوردار هستند بهمین دلیل کانیهای هم وزن با منشأ متفاوت در یک محدوده جغرافیایی متمرکز می گردند که می توانند در رابطه مستقیم با زون کانیساز و یا واحدهای سنگی موجود در حوضهٔ آبگیر باشند. لذا تشخیص منشأ و منبع تمرکز کانیهای سنگین در محیطهای ثانویه نقشی مهم در اکتشاف کانسارهای اولیه و کانسارهای ثانویه رسوبی (Placer Deposits) دارند. مطالعه کانیهایسنگین در امر اکتشاف دو کاربرد مهم دارند. یکی نقش ردیابی یا (Pathfinder Minerals) دارند و دیگری کشف کانسارهای برجای مانده یا (Placer Deposits) می باشد. در مرحله اول چنانچه و دیگری کشف کانسارهای برجای مانده یا (Placer Deposits) می باشد. در مرحله اول چنانچه کانیهای پاراژنز نظیر سینابر (HgS)، اورپیمانت (Ass)، رآلگار(Ass)، استیبنیت (Sb₂S₃)،

کاسیتریت(SnO_2)، ولفرامیت $(Fe,Mn)WO_4$) در یک حوضهٔ آبریز تمرکز یافته باشند، سنگهای حوضهٔ آبریز می توانند خاستگاه تشکیل طلا باشند و یا اینکه حضور کانی های پیریت (FeS)، مالاكيت {Cu2Co3(OH)2}، كووليت (CuS) و كالكوپيريت (CuFeS₂) مىتواند نشانهاى از حضور کانی سازی مس در سنگهای دربرگیرنده باشد. انطباق زونهای تمرکز یافته کانیهای سنگین با آنومالیهای عنصری خود نیز تائیدی بر حضور کانیسازی در سنگهای دربرگیرندهٔ حوضه آبگیر میباشند. در بسیاری از محیطهای رسوبی (محیط ثانویه) عهد حاضر نظیر رسوبات رودخانهای، مخروط افکنهها (Alluvial Fans)، تراسهای رودخانهای، رسوبات دامنهای و بالاخره رسوبات ساحلی (Beach Deposits) بسیاری از کانیهای سنگین درحد اقتصادی تمرکز میابند. این کانیها عبارتنداز: ایلمنیت، روتیل، مگنتیت، کاسیتریت، مونازیت، طلا که اگر عیار آنها درحد اقتصادی افزایش یابد خود رسوبات بهعنوان کانسار شناختهشده (Placer Deposits) و قابل استخراج می باشند. با توجه به مقدمهای که گفته شد در منطقه اکتشافی مورد بحث تعداد ۱۶ نمونه کانی سنگین با هدف کنترل کانی های پاراژنز طلا برداشت و مورد مطالعه قرار گرفتهاند. ناگفته نماند چنانچه طلا بهعنوان عنصر آزاد در سنگهای حوضه آبگیر وجود داشته باشد قابل شناسایی در رسوبات رودخانهای است و چنانچه بهصورت عنصر درگیر در شبکه کریستالی کانیهایی، دیگر نظیر پیریت و کالکوپیریت باشد شناسایی آن بهصورت آزاد غیرممکن است.

در راستای نمونهبرداری ژئوشیمیایی و جهت تکمیل مطالعه و جمعآوری دادهها، اقدام به نمونهبرداری کانیسنگین شد. جهت نیل به نتایج مطلوبتر از بخشهای پائین دست و در مسیر آبراهه اصلی، از عمق ۳۰ سانتیمتری گودالی حفرشده و در عرض آبراهه (درصورت عریض بوده آبراهه) یا در طول آن (درصورت کمبودن عرض آن) با توجه به میزان رسوب و به تعداد مقتضی نمونه برداشت شد که ماحصل این نمونهبرداری، مقدار ۵ لیتر نمونه خشک الکشده در زیر الک ۲۰ مش میباشد. در مرحلهٔ آمادهسازی ابتدا نمونه کانیسنگین انتخابشده از آبراهه، توسط آب شسته میشود (مرحله لاوکشویی) سپس طی مرحله بروموفره گیری که یکی از مراحل چندگانه آمادهسازی

کانیسنگین است، کانیهای با وزن مخصوص بیش از ۲/۸۹ گرم بر سانتیمترمکعب (Mineral کانیسنگین است، کانیهای سبک (Light mineral) جدا میشود. مرحله بعدی با عنوان مرحله مگنتگیری از مجموع کل (Total Valume) که در مرحله لاوکشویی حاصل شده بود، یک حجم بعنوان حجم بایگانی در نظر گرفته میشود، بطوریکه حجم مطالعاتی، خود توسط آهنربای مغناطیسی به سه بخش مجزا با عناوین بخش ۱۸۸، بخش ۸۸، بخش ۸۷ تقسیم میشود.

بخش NM فاقد هرگونه خاصیت مغناطیسی بوده و عمدتاً شامل کانیهای زیرکن، آپاتیت، روتیل، آناتاز، اسفن، باریت و کانیهای باارزشی از جمله سینابر، طلا، پیریت و کالکوپیریت میباشد.

بخش AA دارای حداکثر خاصیت مغناطیسی بوده و از جمله کانیهای آن مگنتیت و ایلمنومگنتیت میباشد.

و بالاخره بخش AV که از نظر خاصیت مغناطیسی حد بین دو بخش قبلی است شامل کانیهای پیروکسن، آمفیبول، اولیوین، گارنت، کرومیت، هماتیت، ایلمنیت است.

جهت مطالعه و درصد دهی و در نهایت ارائه عیار کانیها بهصورت گرم در تن از فرمول:

$$G = \frac{X.y.b.d.10000}{A.C.2.5}$$

استفاده شده است (ف.آزرم ۱۳۶۴). جهت تعیین عیار کانیها بر حسب گرم در تن، کلیه مراحل آماده سازی بر حسب حجم سنجی صورت می گیرد. بطوریکه نمونه برداشت شده قبل از لاوکشویی، حجم سنجی می گردند و کلیه مراحل بعدی نیز حجم سنجی گردیده و در نهایت با استفاده از فرمول بالا حجم به وزن (گرم در تن) تبدیل می گردد.

در فرمول بالا پارامترها عبارتنداز:

G = عیار هر کانی بر حسب گرم در تن

X= مقدار کانی مورد مطالعه زیر بینوکولر بر حسب درصد

Y= حجم کانیسنگین پس از عبور از بروموفرم

b= مقدار رسوب باقیمانده پس از لاوکشوئی

d= وزن مخصوص کانی مورد مطالعه

c حجم انتخابی رسوب جهت عبور از محلول برموفرم

2.5= وزن مخصوص متوسط رسوب رودخانهای

٣-٣-روش آناليز نمونههاى ژئوشيميايى وحد حساسيت دستگاهها:

در جدول(۱ - ۳)حد حساسیت دستگاهها برای عناصر مختلف و روش آنالیز آنها آورده شده است. مهمترین پارامتر در انتخاب روش آنالیز حد حساسیت آن میباشد. اصولاً وجود مقادیر سنسورد برای یک عنصر در تجزیه و تحلیلهای آماری اختلال ایجاد می کند و علاوه بر این از آنجا که در اکتشافات ژئوشیمیایی اهمیت و کاربرد مقادیر عددی مربوط به هر یک از عناصر صرفاً به منظور مقایسه نسبی آنها با یکدیگر برای تعیین مقادیر آنومالی میباشد، لذا حصول مقادیر عددی (غیر سنسورد) برای یک عنصر از درجهٔ اهمیت بالائی برخوردار است. حد حساسیت یک روش آزمایشگاهی برای یک عنصر در ارتباط با مقدار زمینهٔ آن انتخاب میشود و باید کوچکتر از آن باشد. لذا با توجه به توضیحات فوق مقادیر حد حساسیت برای عناصر مورد نظر با توجه به تکنیکهای آزمایشگاهی موجود و مقدار زمینهٔ عناصر تعیین شد تا با توجه به فراوانی کم عناصر در برخی از سنسورد حاصل شود. نمونههای آنالیز شده محدوده ۱/۲۵۰۰۰

تازتاب برای عناصر مختلف (به غیر از Au,Cd,Eu,Ge,Mo,Ta,Tb,Tl,U,Hg,B) فاقد دادههای سنسورد بودند. کلیه نمونهها برای عناصر B,Cd,Eu,Ge,Mo,Ta,Tb,Tl,Hg دارای داده سنسورد میباشند که این عناصر از داده پردازی حذف شدند.

۳-۵-تخمین دادههای سنسورد:

مقادیر سنسورد اعدادی هستند که بهصورت کوچکتر و یا بزرگتر از یک مقدار معین گزارش می شوند. دادههای ژئوشیمیایی به علت پائین بودن برخی از عناصر دارای مقادیر سنسورد می باشند. برای دادههای ژئوشیمیایی مقدار سنسورد بطور تیپیک درحد حساسیت دستگاههای اندازه گیری قرار دارند که ممکن است بهصورت مقادیر کمتر و یا بیشتر از یک مقدار خاص (حد حساسیت دستگاه) بیان شود که به ترتیب مربوط به زمانی هستند که مقدار یک عنصر کوچکتر از حد حساسیت و یا بزرگتر از حد حساسیت باشد. دادههای سنسورد در پردازش دادههای ژئوشیمیایی اختلال ایجاد می کنند چرا که اغلب تکنیکهای آماری مهم نیازمند یک مجموعه کاملی از دادههای عددی و غیرسنسورد می باشند. جهت تخمین مقادیر سنسورد از دو روش عمده استفاده می شود:

الف-روش جايگزيني ساده:

در این روش مقادیر بزرگتر از حد حساسیت در مرز بالایی را ۴/۳ حد بالایی حساسیت و مقادیر کمتر از حد حساسیت در مرز پائینی را با ۳/۴ آن جایگزین می کنیم. اگر تعداد دادههای سنسورد در مقابل کل دادهها ناچیز باشد کمتر از ده درصد معمولاً می توان از این روش استفاده کرد.

ب-روش بیشترین درست نمایی کوهن:

در این روش بر اساس دادههای غیرسنسورد، میانگین جامعه کل (سنسورد و غیرسنسورد) تخمین زده میشود و سپس از روی آن میانگین جامعه سنسورد محاسبه میشود و در نهایت مقادیر سنسورد با میانگین مذکور جایگزین میشوند. نکته مهم اینست که دادهها حتماً باید توزیع نرمال داشته باشند.

ابتدا میانگین و پراش جامعه کل دادهها را با فرمولهای زیر بدست می آوریم:

 $X t=Xu-\lambda (Xu-Xo)$ $S2t=Su2 + \lambda (Xu-Xo)2$

Xu= میانگین جامعه دادههای غیرسنسورد

Xt = میانگین جامعه کل دادهها

S2t = پراش جامعه کل دادهها

Su2= پراش جامعه دادههای غیرسنسورد

عد حساسیت دستگاه = Xo

است که از جدول مربوطه بدست می آید. (γ,h) است که از جدول مربوطه بدست می آید.

$$h=rac{n_t-n_u}{n_t}$$
 تعداد کل دادهها =nt

$$\lambda = \frac{S_u^2}{(X_u - X_0)}$$

nu= تعداد دادههای غیرسنسورد

با توجه به رابطه میانگین کل دادهها با میانگین جوامع سنسورد و غیرسنسورد، می توان مقدار $n_t.X_t=n_c.X_c+n_u.X_u$ میانگین جامعه دادههای سنسورد را بدست آورد.

$$X_c = \frac{n_t.X_t - n_u.X_u}{n_c}$$

همان مقدار جایگزین است که باید جانشین مقادیر سنسورد شود. Xc

در دادههای ژئوشیمیایی محدوده مورد مطالعه فقط عناصر جیوه، مولیبدن،آنتیموان و بیسموت دارای داده های عنصر جیوه دارای داده سنسورد دارای داده سنسورد می باشند. با توجه به این که اکثر دادههای عنصر جیوه دارای داده سنسورد

معاونت اكتشاف - مديريت امور اكتشاف

میباشند لذا از داده پردازی حذف شد. در مورد عناصر مولیبدن،آنتیموان و بیسموت با توجه به این که تعداد نمونه های دارای داده سنسوردکم بود با روش جایگزینی ساده جایگزین شدند.

٣-۶-محاسبه خطای آنالیز:

در مباحث ژئوشیمی یکی از سه مؤلفهٔ اصلی خطای کلی در عملیات اکتشافی، خطای آزمایشگاهی است و بدست آوردن این خطا برای اطلاع از میزان دقت آنالیز حائز اهمیت است. در پروژههای ژئوشیمیایی در مقیاس ناحیهای هدف سنجش نسبی مقادیر هر عنصر نسبت به یکدیگر به منظور معرفی نواحی امیدبخش و مناطق پر پتانسیل برای اهداف نیمه تفصیلی میباشد، لذا دقت اندازه گیریها در مقایسه با صحت آنها از درجهٔ اهمیت بیشتری برخوردار است. ولی در مقیاس نیمه تفضیلی و تفصیلی صحت از دقت اهمیت بیشتری دارد.برای تعیین صحت متاسفانه در ایران کاری صورت نمی گیرد ولی با آنالیز تکراری نمونههای ژئوشیمیایی دقت عملیات مورد بررسی قرار گرفت. در مرحلهٔ نخست جهت بررسی وضعیت دقت عملیات از دیاگرام کنترلی طراحی شده برای ۱۰٪ خطا که در سال ۱۹۷۶ توسط تامسون ارائه شد، استفاده گردید. بدین منظور ابتدا جداول (۲-۳) تا (۷–۳) ترسیم شدند. در این جداول در ستون اول نام متغیر، در ستون دوم شماره سریال نمونهها، در ستون های سوم وچهارم مقادیر اندازهگیری شده برای هر جفت نمونه، در ستون پنجم مقدار میانگین و در ستون ششم قدر مطلق تفاضل هر زوج نمونه آوردهشده است. در دیاگرام کنترلی تامسون، محورهای افقی و قائم به ترتیب مقادیر لگاریتمی میانگین و قدر مطلق تفاضل دو اندازهگیری را نشان میدهد. پس از پیاده کردن نقاط مربوط به جفت نمونههای آنالیز شده در صورتیکه ۹۰٪ دادهها زیر خط معادل ۱۰٪ و ۹۹٪ دادهها زیر خط معادل ۱٪ قرار گیرند خطا در حد ۱۰٪ خواهد بود.

جدول(۱-۳) و اشکال (۱-۳) تا (۲۱-۳) دیاگرام کنترلی عناصر مورد نظر را نشان می دهد (بخش Au, Ag, Al, Fe, Bi, K,Ca, Ce, ضمائم). با بررسی این دیاگرامها دیده می شود که برای عناصر Li, Mg, Sn, Sb, Sc, Th, Na, U,

نکرده و خطای بالایی را این عناصر دارا هستند. اشکال و جداول ذکر شده در بخش ضمائم آورده شدهاند. فصل جهارم

بردازش داده ی

۴-۱-یردازش دادهها:

پردازش دادهها مرحلهای است که طی آن به حجم زیاد اطلاعات گردآوری شده سامان داده می شود و با اعمال محاسبات آماری و زمین آماری گوناگون به شکل قابل تفسیر در می آیند. از جمله عملیاتی که در این مرحله صورت می گیرد، می توان به طبقه بندی داده ها، ورود داده ها در بانکهای اطلاعاتی، رسم نمودارها و تنظیم جداول اشاره کرد و در طی این مراحل کنترلهای مختلفی صورت می گیرد تا از بروز خطاهای احتمالی جلوگیری شود. به علت اینکه نقشه زمین شناسی ۱/۲۵۰۰۰ منطقه تهیه نشد و همچنین به دلیل کوچکی مناطق آنومال معرفی شده از مرحله اکتشافات ژئوشیمیایی ۱:۱۰۰۰۰ و در نتیجه محدودیت جامعه نمونه بردازش جوامع سنگی و محاسبه شاخص غنی شدگی انجام نگرفت. داده ها بعد از محاسبات پارامترهای آماری داده های خام، مناطق آنومالی نهائی محاسبه و معرفی گردیدند.

۴-۲-محاسبات یارامترهای آماری دادههای خام:

در پردازش آماری دادههای اولیه (دادههای خام) که از آزمایشگاه دریافت می شود برای اینکه این دادهها با استفاده از روشهای آماری مورد آنالیز قرار گیرند باید ماهیت توزیع آنها مشخص گردد. بنابراین گام اول قبل از پردازش دادهها، محاسبه پارامترهای آماری داده خام و شناخت ماهیت تابع توزیع مربوط به عناصر Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Al, Mn, Mo, Na, Nh, Ni, P, Pb, Rb, S, Sb, Sc, Sn, Sr, Th, Ti, Tl, U, V, W, Y, Zn, Zr, پارامترهای آماری مهم نظیر میانگین، میانه، انحراف معیار، واریانس، چولگی، کشیدگی، مینیمم مقدار و پارامترهای آماری مهم نظیر میانگین، میانه، انحراف معیار، واریانس، چولگی، کشیدگی، مینیمم آورده ماکزیمم مقدار مربوط به هر عنصر به همراه هیستوگرام مربوط به آن در شکل (۱-۴) در بخش ضمائم آورده شده است.

۴-۳- بررسی مقادیر خارج از رده (Outliers Samples):

هنگام بررسی مقادیردادههای خام به نمونههایی برمیخوریم که در کرانههای بالا و پائین جامعه دادهها قرارگرفتهاند و از جامعهٔ اصلی جدا افتادهاند. اگر نمودار جعبهای (Box plot) آنها ترسیم شود این نمونهها به نحو بارزی خودشان را از بقیه جدا میکنند (شکل۴-۲).

مقادیر خارج از رده به سه حالت مختلف ممکن است بوجود آیند:

حالت اول: ممکن است از یک خطای سیستماتیک به هنگام نمونهبرداری، آمادهسازی یا تجزیهٔ شیمیایی نمونهها ناشی شده باشند که باید از مرحلهٔ پردازش دادهها حذف یا اصلاح شوند.

حالت دوم: مشاهداتی که بصورت یک پدیدهٔ فوق العاده، نمود پیدا میکنند که باید پس از بررسی اعتبار آنها در مورد حفظ یا حذف آنها تصمیم گرفت.

حالت سوم: مشاهدات فوق العادهای که هیچ گونه توضیح مناسبی برای آنها وجود ندارد و کارشناس اگر احساس کند که آنها به عنوان گوشهای از جامعهٔ مورد بررسی هستند می تواند آنها را حفظ کند. وجود مقادیر خارج از رده در جامعهٔ نمونهها موجب افزایش واریانس جامعه و نیز همبستگی بین متغیرها و همچنین افزایش چولگی در نمودار توزیع عناصر می شود. برای کاهش این تأثیر سه راه وجود دارد:

۱ - محاسبهٔ ضریب همبستگی با استفاده از روشهای ناپارامتری مانند روش اسپیرمن (Spearman)

۲- حذف نمودن این مقادیر از جامعهٔ شاخص غنی شدگی هر عنصر میباشد

تعدیل دادههای خارج از رده است.

در روش تعدیل با توجه به نمودار های ترسیم شده در (Box plot) مرز عددی بین مقادیر خارج از رده و سایر داده ها تعیین گردیده و داده های خارج از رده به عدد فوق با یک روند کاهشی نزدیک می شود؛ در این جا برای تمام عناصر از روش تعدیل استفاده شده است. نمونه های دارای مقادیر خارج از رده در جدول (۴-۱) آورده شده است.

عنصر	شماره نمونه مقادیر خارج از رده	عنصر	شماره نمونه مقادیر خارج از رده
As	7	Nd	25
Ba	7,25,23,24,31	Ni	26
Ce	7,23,24	Rb	9,10
Co	8	S	25
Cs	7	Sr	26
Ga	16,17	V	21,7,8,9
La	25	Y	8
Mn	5,6	Zn	1,24,33,34
Nb	9,26	Zr	8

جدول (۴-۱) نمونههای دارای مقادیر خارج از رده در محدوده تازتاب

۴-۴ همبستگی عناصر و تجزیه تحلیل خوشهای:

۴-۴- ۱: تعیین ضریب همبستگی:

برای تعیین اینکه آیا ارتباط معنی دارای میان تغییرات متغیرهای آماری وجود دارد، ضرایب همبستگی میان آنها را محاسبه می کنیم این کار به دو منظور کشف همبستگی بین متغیرها و تخمین مقدار یک یا چند متغیر دیگر صورت می گیرد.

برای بررسی این موضوع ضریب همبستگی اسپیرمن به صورت ماتریس ضرایب همبستگی محاسبه شدهاند که در جدول (۴-۲) آمده است. در این ضریب (Sig (2-tailed) میزان معنی دار بودن ضرایب همبستگی طبق آزمون فرض مساوی صفر بودن ضریب همبستگی میباشد. برای محاسبه ضریب همبستگی اسپیرمن از داده های خام استفاده شده است.

۴-۴- ۲: بررسیهای آماری چند متغیره

هر تجزیه وتحلیل چند متغیره که بر روی بیش از دو متغیر انجام می گیرد می تواند در قالب آنالیزهای چند متغیره بیان شود. غالب تکنیکهای چند متغیره در اصل بسط و توسعه آنالیزهای تکمتغیره میباشند و البته بعضی از روشهای چند متغیره تنها برای پاسخ گوئی به مقاصد چند متغیره طراحی شدهاند که از جمله این

معاونت اكتشاف - مديريت امور اكتشاف

روشها می توان به تجزیه عاملی اشاره کرد. تجربه نشان داده است که چنانچه ترکیبی از متغیرها به جای یک متغیر بکار گرفته شوند و از نتایج ترکیبی آنها استفاده شود امکان تشخیص هالههای مرکب ژئوشیمیائی در اطراف تودههای کانساری به مراتب افزایش می یابد و از طرفی اثرات خطاهای تصادفی در بکارگیری ترکیبی متغیرها نسبتاً کاهش می یابد. از دیگر مزایای استفاده از روشهای چند متغیره کاهش تعداد متغیرها در مباحث داده پردازی و در نتیجه کاستن از تعداد نقشهها است. با استفاده از این روشها امکان مقایسه متغیرها و کسب نتایج راحت تر خواهد بود. البته استفاده بهینه از روشهای چند متغیره در حالتی صادق خواهد بود که در پردازش دادهها با تعداد زیادی متغیر روبرو باشیم و تا حدودی امکان اخذ نتیجه از متغیرها به گونهٔ منفرد غیرممکن و یا توام با خطای زیاد باشد. در این پروژه از روشهای چند متغیره فقط از روش آنالیز خوشهای استفاده شده است.

الف- آناليز خوشهاي و تفسير آن:

چون هر گروه معین از عناصر نسبت به یکسری از شرایط محیطی کم و بیش به طور مشابه حساسیت نشان می دهند، شناخت ارتباط و همبستگی ژنتیکی متقابل بین عناصر مختلف می تواند در شناخت دقیق تر تغییرات موجود در محیطهای ژئوشیمیایی بکارگرفته شود. ضمناً تجمع ژنتیکی بعضی از عناصر ممکن است بعنوان راهنمای مستقیم در تفسیر نوع نهشتهای که احتمالاً در ناحیه وجود دارد بکار رود. رویهم رفته شناخت همبستگیهای ژنتیکی که در بین عناصر وجود دارد اطلاعات لازم را برای تفسیر هر چه صحیح تر دادههای ژئوشیمیائی در اختیار می گذارد.

آنالیز خوشهای یک روش آماری چند متغیره است که عناصر را بر اساس شباهت تغییرپذیری بـین آنها در قالب دستهها یا گروههایی طبقهبندی میکند. دلایل زیادی برای ارزشمند بودن آنالیز خوشهای وجـود دارد از جمله اینکه آنالیز خوشهای میتواند در پیدا کردن گروههای واقعی کمک کند و همچنین از تراکم دادهها بکاهد. البته باید توجه داشت که آنالیز خوشهای میتواند گروههای غیرقابل انتظاری را ایجاد نمایدکه بیانگر روابط جدیدی خواهند بود و باید مورد بررسی قرارگیرند. نتایج حاصل از آنالیز خوشهای عناصر مورد مطالعه

در شکل(۴-۲) آورده شده است، با توجه به شکل میتوان سه گروه اصلی را جدا نمود که بیانگر ارتباط پاراژنزی بین متغیرها باشد .

گروه اول: شامل عناصر Nd ,S ,La ,Pb, Zr, Ce, V, Cr, Hf, Au, Rb, Sm مى باشد.

گروه دوم: شامل عناصر Cu, U, Ga, Ni, Nb, P, S, Sr مي باشد.

گروه سوم: شامل عناصر Cs, Co, Mn, Sc, Ti, Ba, As, Zn,Y میباشد.

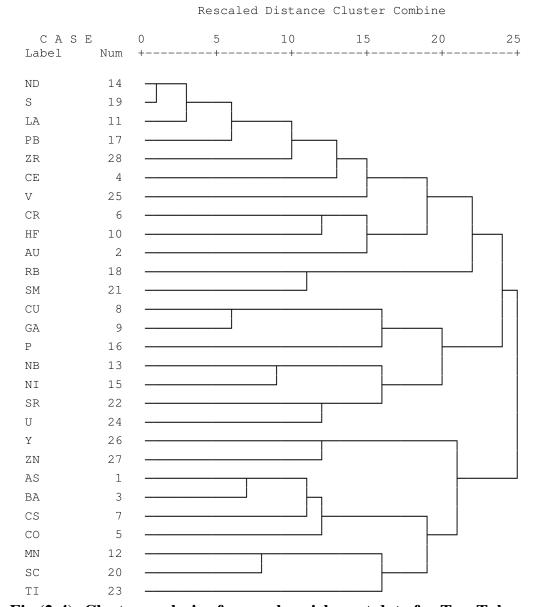


Fig (2-4): Cluster analysis of normal enrichment data for TazeTab area

هِعَاوِنْتُ اكْنُشَّافْ - مديريت امور اكتشاف

۴-۵ - آنومالی عناصر مختلف:

در این بخش به شرح آنومالیهای بدست آمده از عناصر مختلف می پردازیم. قبل از توصیف آنومالی عناصر مختلف ذکر چند نکته الزامی است. در مورد جدایش آنومالیها از فرمول x + 4S و x + 4S استفاده مختلف ذکر چند نکته الزامی است. در مورد دادههای خام و هم نرمال شده مورد استفاده قرار گرفته است. مقادیر بیشتر از x + 4S به عنوان آنومالی درجه یک و مقادیر بین x + 4S و x + 4S به عنوان آنومالی درجه دو لحاظ شده اند (میانگین دادهها x + 4S انحراف معیار x + 4S و ضریب x + 4S در اساس دادههای نرمال صورت گرفته است. نقشه نمونهبرداری منطقه نیز به صورت نقشهای جداگانه آورده شده است (نقشههای شماره x + 3S استفاده از x + 3S و نصریب از نقشههای شماره x + 3S استفاده از x + 3S و نصریب از نقشههای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاده از منافعه نیز به صورت نقشهای شماره x + 3S استفاد از منافعه نیز به صورت نقشه نمونه برد از منافعه نیز به صورت نقشهای شماره x + 3S استفاد از منافعه نیز به صورت نقشهای شماره x + 3S استفاد از منافعه نیز به صورت نقشه نمونه برد از منافعه نیز به صورت نقشه نمونه برد از منافعه نیز به صورت نقشه نمونه برد از منافعه برد از منافعه نیز به صورت نقشه نمونه برد از منافعه برد از منافعه نمونه برد از منافعه برد از منافع برد از منافعه برد از منافع برد از

As	X+S	حد زمینه	TZ-31,TZ-08,TZ-11,TZ-23
	X+2S	آنومالی ممکن	TZ-02,TZ-25,TZ-24
	X+3S	آنومالي احتمالي	-
	X+4S	آنومالي قطعي	TZ-07
	X+S	حد زمینه	TZ-31,TZ-27,TZ-32,TZ-39,TZ-38,TZ-26,TZ-33,TZ-29,TZ-34
Au	X+2S	آنومالی ممکن	TZ-11,TZ-28,TZ-10
Au	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	TZ-18
	X+S	حد زمینه	TZ-27,TZ-28,TZ-29
Ba	X+2S	آنومالی ممکن	TZ-02
Ба	X+3S	آنومالي احتمالي	-
	X+4S	آنومالي قطعي	TZ-07,TZ-25,TZ-23,TZ-24,TZ-31,TZ-11
	X+S	حد زمینه	TZ-31,TZ-11,TZ-29,TZ-35
Ce	X+2S	آنومالی ممکن	-
Ce	X+3S	آنومالی احتمالی	TZ-25
	X+4S	آنومالي قطعي	TZ-07,TZ-23,TZ-24
	X+S	حد زمینه	TZ-02,TZ-26
Co	<i>X</i> +2 <i>S</i>	آنومالی ممکن	TZ-08
	X+3S	آنومالی احتمالی	-
	X+4S	آنومالى قطعى	-
Cr	X+S	حد زمینه	TZ-17,TZ-15
	X+2S	آنومالی ممکن	-
	X+3S	آنومالی احتمالی	TZ-08
	X+4S	آنومالى قطعى	-

Cs	X+S	حد زمینه	TZ-02,TZ-31,TZ-11
	X+2S	آنومالی ممکن	TZ-24,TZ-23,TZ-25
	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	TZ-07
	X+S	حد زمینه	TZ-14,TZ-30,TZ-10
Си	X+2S	آنومالی ممکن	TZ-13
Cu	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	-
	X+S	حد زمینه	TZ-03,TZ-30,TZ-37,TZ-34
Ca	X+2S	آنومالی ممکن	TZ-14
Ga	X+3S	آنومالي احتمالي	TZ-13
	X+4S	آنومالي قطعي	TZ-17
	X+S	حد زمینه	TZ-03,TZ-14,TZ-16
Hf	X+2S	آنومالی ممکن	TZ-05,TZ-18
nj	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	-
	X+S	حد زمینه	TZ-37,TZ-35,TZ-36,TZ-01,TZ-06
La	X+2S	آنومالی ممکن	-
La	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	TZ-25
Mn	X+S	حد زمینه	TZ-04,TZ-31,TZ-32
	X+2S	آنومالی ممکن	-
	X+3S	آنومالی احتمالی	TZ-05,TZ-20
	X+4S	آنومالي قطعي	TZ-06

Nb	X+S	حد زمینه	TZ-38,TZ-08,TZ-10
	X+2S	آنومالی ممکن	TZ-07
	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	TZ-26,TZ-09
	X+S	حد زمینه	TZ-01,TZ-13,TZ-29,TZ-12,TZ-11,TZ-14
Nd	X+2S	آنومالی ممکن	TZ-37,TZ-35,TZ-36
Iva	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	TZ-25
	X+S	حد زمینه	TZ-08,TZ-07,TZ-36
Ni	X+2S	آنومالی ممکن	TZ-09
181	X+3S	آنومالي احتمالي	-
	X+4S	آنومالي قطعي	TZ-26
	X+S	حد زمینه	TZ-19,TZ-05
P	X+2S	آنومالی ممکن	TZ-30
	X+3S	آنومالی احتمالی	TZ-23
	X+4S	آنومالي قطعي	-
	X+S	حد زمینه	TZ-20,TZ-37,TZ-36
Pb	X+2S	آنومالی ممکن	-
Po	X+3S	آنومالی احتمالی	TZ-25
	X+4S	آنومالي قطعي	-
Rb	X+S	حد زمینه	TZ-08,TZ-22
	X+2S	آنومالی ممکن	TZ-10
	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	TZ-09

S	X+S	حد زمینه	TZ-01,TZ-13,TZ-29,TZ-11,TZ-12,TZ-14
	X+2S	آنومالی ممکن	TZ-36,TZ-35,TZ-37
	X+3S	آنومالي احتمالي	-
	X+4S	آنومالي قطعي	TZ-25
	X+S	حد زمینه	TZ-21,TZ-23,TZ-27,TZ-20,TZ-31
Sc	X+2S	آنومالی ممکن	TZ-05
SC	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	-
	X+S	حد زمینه	TZ-06,TZ-28
Sm	X+2S	آنومالی ممکن	-
Sin	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	-
	X+S	حد زمینه	TZ-12,TZ-39,TZ-14,TZ-13,TZ-30
Sr	X+2S	آنومالی ممکن	TZ-01,TZ-03,TZ-02
SI	X+3S	آنومالی احتمالی	-
	X+4S	آنومالى قطعى	TZ-26
	X+S	حد زمینه	TZ-08,TZ-21,TZ-02,TZ-24
Ti	X+2S	آنومالی ممکن	-
11	X+3S	آنومالي احتمالي	TZ-27
	X+4S	آنومالي قطعي	-
U	X+S	حد زمینه	TZ-28,TZ-03,TZ-35,TZ-16,TZ-04,TZ-39,TZ-30,TZ-37,TZ-19,TZ-14,TZ-17,TZ-18,TZ-15,TZ-36
	X+2S	آنومالی ممکن	-
	X+3S	آنومالي احتمالي	-
	X+4S	آنومالي قطعي	-

جدول (۴-۴): مقادیر نرمال و همچنین حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

V	X+S	حد زمینه	TZ-29,TZ-10
	X+2S	آنومالی ممکن	TZ-32,TZ-24
	X+3S	آنومالي احتمالي	TZ-21
	X+4S	آنومالي قطعي	-
	X+S	حد زمینه	TZ-07,TZ-10,TZ-11,TZ-33
Y	X+2S	آنومالی ممکن	TZ-21,TZ-24,TZ-05,TZ-09
I	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	TZ-08
	X+S	حد زمینه	TZ-06,TZ-07,TZ-02,TZ-26,TZ-03
Zr	X+2S	آنومالی ممکن	TZ-27,TZ-09
Zr	X+3S	آنومالي احتمالي	-
	X+4S	آنومالي قطعي	TZ-08
Zn	X+S	حد زمینه	TZ-21,TZ-32
	X+2S	آنومالی ممکن	TZ-08,TZ-13
	X+3S	آنومالی احتمالی	TZ-12
	X+4S	آنومالى قطعى	TZ-24,TZ-33,TZ-34,TZ-01

. فصل سحم

فاركتسرل آنومالي لامي ژنوشميايي

مقدمه

مناطق انومالی مشخص شده حاصل از پردازش دادههای نمونههای ژئوشیمیایی ابراههای می توانند ناشی از پدیده های کانی سازی احتمالی و همچنین نتیجهٔ مؤلفه های سن ژنتیک باشند لـذا ضرورت استفاده از سایر روشهای نمونهبرداری و نیز بررسیهای صحرایی جهت تفکیک انومالیهای مربوط به هریک از آنها کاملاً روشن میباشد. در ایـن ارتبـاط بررسـی منـاطق دگرسـانی، زونهـای مینرالیزه و مطالعات کانی سنگین صورت می گیرد. مطالعات کانی سنگین مشخص می کند که تمرکز عناصر مورد بررسی در چه فازی صورت گرفته است. بدیهی است پیدایش یک عنصر در فازهای مختلف ارزش اكتشافي متفاوتي دارد و بر اساس أن ميتوان هالههاي ثانويه را به دو نوع مـرتبط بــا کانی سازی و هالههای حاصل از پدیدههای سنگزایی تقسیم نمود. به عبارت دیگر بعضی از عناصر، کانیهای مستقلی را بهوجود میآورند برای مثالPb میتواندگالن و Zn می تواند اسفالریت را بوجود آورد و تمرکز آنها در یک محدوده میتواند تمرکزات اقتصادی آنها را سبب شود. اما همـین عناصـر می توانند در شبکه کانیهای دیگر نیز جای بگیرند. برای مشال Pb می تواند در شبکه فلدسیات، Ni می تواند در شبکه الیوین و Zn می تواند در شبکه بیوتیت و آمفیب ول جای بگیرد. بـ دین تر تیـب در حالت عادی سنگزایی بیشتر با ورود این عناصر در ترکیب (یا محلول جامد) کانیهای سازنده سنگ روبرو هستیم. البته ممکن است حالتهای استثناء نیز وجود داشته باشد. با توجه بـه تحـرک انـدک ذرات کانی سنگین نسبت به یونها، هالههای ثانویه کانی سنگین گسترش کمتری پیدا می کننـد. در محدوده ۱:۲۵۰۰۰ تازتاب تعداد ۱۴ نمونهٔ کانی سنگین برداشت گردید که طراحی آنها بـر اسـاس موقعیت زونهای کانیسازی و شبکه نمونهبرداری صورت گرفته است.

۱- ردیابی کانی سنگین

ارزش مشاهدات کانی سنگین که دربیشتر موارد جزء کانیهای فرعی سازنده سنگ هستند و ممکن است در مناطق فاقد کانی سازی نیز پیدا شوند به اندازه عناصر ردیاب نیست ولی می تواند معرف محیط و بستر مناسب وقوع کانی سازی باشد برای مثال به چند مورد اشاره می شود.

الف – طلا: مشاهده ذرات طلا در کنسانتره کانیسنگین می تواند حاکی از مناطق امیدبخش باشد. ارتباط طلا با آرسنوپیریت و تعدادی از کانیهای سولفوسالت دیگر می تواند در تعیین مناطق امیدبخش مؤثر واقع شود. در نهشتههای اپی ترمال دانه ریز بندرت ممکن است طلا در نمونه تغلیظ شدهٔ کانی سنگین معمولی یافت شود. در صورت پیدایش و همراهی آن با سینابر و استیبنیت، اهمیت محدوده اکتشافی دو چندان می شود.

 \mathbf{v} — \mathbf{m} شیات: همراهی قابل توجه شئلیت و طلا به عنوان مثال در کمربندهای گریناستون دنیا گزارش شده است و شئلیت به عنوان یک کانی ردیاب شناخته می شود. بنابراین یکی از روشهای اکتشافی در این گونه مناطق تمر کز عملیات اکتشافی روی کانی شئلیت می باشد.

ج – **باریت**: باریت در بسیاری از کانسارهای فلزات پایه وجود دارد. وجود آن در بخش تغلیظ یافته کانی سنگین دلالت بر وجود احتمالی چنین نهشتههایی است و با توجه به وسعت هالههای آنها می تواند بسیار مفید واقع شود.

د- تورمالین: وجود تورمالین در بسیاری از کانسارهای هیپوژن عناصر که، استوکورکها گزارش شده است. از آنجا که ابعاد هاله پراکندگی آن در سنگهای متاسوماتوز شده، استوکورکها و هالههای ثانوی مانند رسوبات رودخانهای غالبا بیشتر از ابعاد تودههای معدنی وابسته به آنها است کاربرد آن به عنوان ردیاب اکتشافی سودمند میباشد. تورمالین در سنگهای بسیاری از قبیل نفوذی و خروجی، دگرگونی و دگرسان شده از نوع پروپیلیتی، کوارتز سریسیتی و کوارتز-تورمالین یافت میشود. زونهای برشی، استوکورکی و رگههای معدنی نیز ممکن است تورمالین داشته باشند.

۲- بزرگی هالههای کانیسنگین

ترکیب سنگشناسی، بزرگی رخنمون در ناحیه منشاً، هوازدگی شیمیایی و مکانیکی از عوامل مؤثر در توسعهٔ هالههای کانیسنگین به شمار میروند که در مورد اخیر به شرایط آب و هوایی و نیز ژئومورفولوژی محدوده بستگی دارند. به این ترتیب بر حسب شیب توپوگرافی ممکن است ذرات طلا و ولفرامیت تا دهها کیلومتر از ناحیه منشاً فاصله بگیرند و برخی کانیها در همان یک کیلومتر اول مسیر تا ۹۰٪ مقدار اولیه کاهش پیدا کنند.

در محدوده تازتاب سعی شد نمونههای کانیسنگین به گونهای برداشت شوند که بیشترین پوشش سطحی را فراهم کنند و در مناطقی که احتمال کانیسازی طلا می رفت نمونه برداری با تراکم بیشتری صورت گرفت.

۳- برداشت نمونههای کانیسنگین

نمونههای کانیسنگین از محل نمونههای ژئوشیمیایی آنومال با حفر بخشی از رسوب سطحی در محل تمرکز رسوبات دانه درشت قلوه سنگی برداشت گردیدند. سعی گردید تا هر نمونه از چند نقطه مناسب بویژه اطراف تخته سنگهای بزرگ (جبهه مقابل جریان) گرفته شوند تا احتمال برداشت ذرات کانی سنگین افزایش یابد. از هر موقعیت حدود ۷-۵ لیتر رسوب آبراههای با استفاده از الک ۲۰ مش برداشت گردید و هرنمونه، شمارهٔ نمونهٔ ژئوشیمیایی مربوط به خود را گرفت.

از محل حوضههای آنومالی بزرگتر و نیز حوضههایی که شدت آنومالی ژئوشیمیایی و یا تعداد عناصر پاراژنز در آنها بیشتر بوده، تعداد بیشتری نمونهٔ کانیسنگین برداشت گردید.

۴- آمادهسازی و مطالعه نمونههای کانیسنگین

نمونههای کانی سنگین که به این ترتیب برداشت گردیدند در کارگاه نمونه شویی ابتدا حجم سنجی و سپس گلشویی شدند. پس از آن روی پنهای بزرگ و کوچک طی دو مرحله با حرکات دورانی در سطح آب به تدریج ذرات با چگالی کمتر از آنها جدا گردیدند. مقدار باقیمانده روی پن

کوچک تقریباً به طور کامل از ذرات کانی سنگین تشکیل شده است. این بخش خشک و مجدداً حجم سنجی گردید.

پس از این مرحله نمونهها به طور جداگانه درون مایع سنگین بروموفرم ریخته شدند تا براساس وزن مخصوص خود به دو بخش سبک و سنگین تقسیم گردند. بخش سنگین پس از حجم سنجی مجدد، توسط دو مغناطیس با شدتهای استاندارد به سه بخش غیر مغناطیس (NM)، مغناطیسی ضعیف (AV) و مغناطیسی قوی (AA) تقسیم شدند.

با مطالعه نمونههای کانی سنگین توسط میکروسکوپ بینوکولار، تعداد هر یک از ذرات کانی سنگین شمارش گردید که با داشتن وزن مخصوص نمونهٔ رسوب و کانی سنگین و حجم سنجی، مقدار آنها بر حسب ppm محاسبه شد.

۵- پردازش دادههای کانیسنگین

۵-۱-رسم هیستوگرام متغیرهای کانیسنگین:

تجزیه و تحلیل دادههای کانیسنگین را می توان بوسیلهٔ هیستوگرامها، نمودارهای تجمعی، آنالیز خوشهای، ضرایب همبستگی و نمودارهای پراکنش انجام داد. با توجه به اینکه اکثر کانیهایسنگین نشان دهنده لیتولوژی و نوع کانیسازی بالادست خود هستند بنابراین وجود اکثر آنها در نمونه ها می تواند مشخصات ناحیه منشأ را نشان دهد و برای ترسیم ایالتهای پترولوژی رسوبی و مکانیابی نهشتههای دارای پتانسیل اقتصادی به کار رود. به همین منظور هیستوگرام اکثر کانیهایسنگین مشاهده شده ترسیم شدند. شکل (۱-۵) تا (۵-۴) دندوگرام، هیستوگرام و پارامترهای آماری هر

از آنجا که تحرک یک ذره کانیسنگین نسبت به یونها کمتر است در نتیجه وسعت هالههای کانیسنگین کوچک میباشد. تجربه نشان داده است که اگر ترکیبی از مقادیر یک گروه از کانیهای معرف بجای مقدار یک کانی خاص به کار گرفته شود هالههای کانیسنگین در اطراف تودههای کانیسنگین بهتر مشخص میشود. در مقایسه با هالههای تک کانیایی هالههای مرکب جمعی به

مراتب بزرگتر و چشم گیرترند. بعلاوه اثرات خطاهای تصادفی در آنها کاهش می یابد و بدین ترتیب هالههای مرکب جمعی نسبت به سیماهای ساختمانی - زمین شناسی مرتبط با نهشته های کانی سازی رابطهٔ نزدیک تری را نشان می دهند. این امر به نوبهٔ خود در تعیین دقیق این هاله ها سهم مهمی دارد.

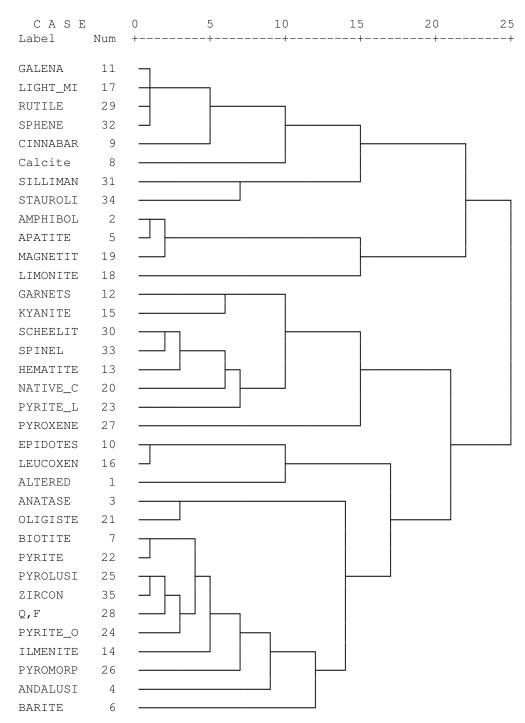
هر کانی سنگین معرف عنصری خاص است. برای مثال شئلیت نشان دهنده وجود W و روتیل نشان دهندهٔ وجود Ti می باشد. بنابراین همان روابط پاراژنزی که در مورد عناصر صادق است در مورد کانی ها نیز صادق می باشد به همین دلیل کانی هایی که معرف کانی سازی مشابهی هستند در یک گروه قرار داده شده اند و در نهایت نقشه مربوط به هر متغیر ترسیم گردید که در بخش مربوط به نقشه ها آورده شده است. همچنین کلیه محاسبات آماری نیز در بخش ضمائم آورده شده است:

V1 شامل کانیهای سبک، گالن، روتیل، اسفن، سینابار، کلسیت، سیلیمانیت و استئارولیت می باشد.

V2 شامل كانى هاى آمفيبول، مگنتيت و ليمونيت مىباشد.

V3 شامل کانیهای گارنت، کیانیت، شئلیت، اسپینل، هماتیت، پیریت لیمونیت، پیروکسن و مس آزاد است.

V4 شامل كانيهاي اپيدوت، لوكوكسن و كانيهاي آلتره مي باشد.


V5 شامل کانیهای آناتاز، اولیژیست، بیوتیت، پیریت، پیرولوسیت، زیرکن، کوارتز فلدسپات، پیریت اکسید، ایلمنیت، پیرومورفیت، آندالوزیت و باریت است.

در نهایت نقشه مربوط به آنومالیهای ممکن، احتمالی و قطعی و همچنین حد زمینه هر یک از گروههای کانیسنگین ترسیم گردید که در بخش مربوط به نقشهها آورده شده است. طلا در هیچ یک از نمونههای کانیسنگین مشاهده نشده است.

* * * * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S

Dendrogram using Average Linkage (Within Group)

Rescaled Distance Cluster Combine

شکل (۵-۱): دندوگرام نمونههای کانی سنگین محدوده تازتاب

جدول (۵–۲): نمونههای متغییرهای کانیسنگین دارای مقادیر حد زمینه، آنومالیهای ممکن، احتمالی و قطعی در محدوده ۱:۲۵۰۰۰ تازتاب

		•	
	X+S	حد زمینه	TZ-37,TZ-31
V1	X+2S	آنومالی ممکن	TZ-29
	X+3S	آنومالی احتمالی	-
	X+4S	آنومالي قطعي	-
	<i>X</i> + <i>S</i>	حد زمینه	TZ-17
V2	X+2S	آنومالی ممکن	-
	X+3S	آنومالی احتمالی	TZ-10
	X+4S	آنومالي قطعي	-
	<i>X</i> + <i>S</i>	حد زمینه	TZ-14
V3	X+2S	آنومالی ممکن	-
V 3	X+3S	آنومالی احتمالی	TZ-36
	X+4S	آنومالى قطعى	-
	<i>X</i> + <i>S</i>	حد زمینه	-
V4	X+2S	آنومالی ممکن	-
'4	X+3S	آنومالی احتمالی	TZ-31
	X+4S	آنومالى قطعى	-
	<i>X</i> + <i>S</i>	حد زمینه	TZ-22
V5	X+2S	آنومالی ممکن	-
, ,	X+3S	آنومالی احتمالی	TZ-34
	X+4S	آنومالي قطعي	-

فصل شمتم

مناسى وسمادات

نتايج:

محدوده تازتاب به مساحت ۱۵ کیلومترمربع می باشد که تعداد ۳۹ نمونه ژئوشیمی و ۱۴ نمونه کانیسنگین از آن برداشت گردیده است.

۱- محدوده مذکور بین طول های جغرافیایی ۲۴۵۸۴۹- ۲۴۵۸۴۹ و عرضهای جغرافیایی ۳۷۷۳۹۵۹- ۳۷۷۲۳۰۰ و عرضهای جغرافیایی ۳۷۷۳۹۵۹ و ۳۷۷۲۳۰۲ در استان همدان و یانزده کیلومتری جنوب باختری شهر نهاوند قرار دارد.

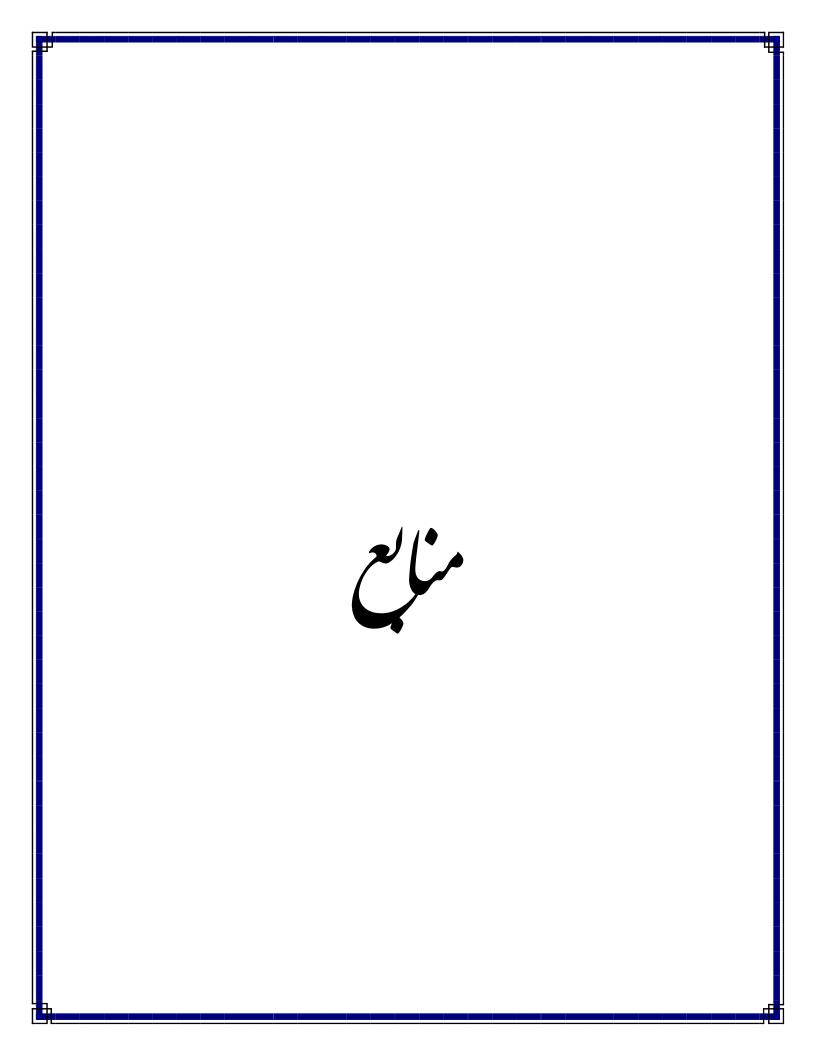
 TRJ^{Vm} که قسمت زیادی از سطح زمین TRJ^{Vm} در منطقه شمالی را پوشانده و شامل لاوا (که بطور ضعیف دگرگون شده) توف و میان لایههایی از مرمر در بخشهای بالایی میباشد و سنی معادل تریاس- ژوراسیک دارد، واحد K_1^{le} شامل سنگهای آهکی ضخیم لایه تا تودهای با فسیلهای اوولیت کرتاسه میباشد که بخش عظیمی از محدوده جنوبی و مرکزی منطقه را میپوشاند. همچنین واحد K_1^{lw} به سن کرتاسه، شامل سنگهای آهکی ضخیم لایه سفید تا تیره تبلور مجدد یافته است که شرق محدوده مورد مطالعه را پوشش میدهد.

۳- ساختار تکتونیکی منطقه بیشتر به تبعیت از گسلهای با روند شمال غرب-جنوب شرقی شکل گرفته است.

۴-بالاترین مقدار نتیجه ژئوشیمیایی رسوبات آبراههای برای عنصر طلا ۵ میلی گرم در تن، برای عنصر مس ۹۱/۸ گرم در تن میباشد.

۵- در هیچ یک از نمونههای کانیسنگین ذره طلا گزارش نشده است.

۶- همبستگی عناصر بصورت زیر میباشد:


گروه اول: شامل عناصر Nd ,S ,La ,Pb, Zr, Ce, V, Cr, Hf, Au, Rb, Sm مي باشد.

گروه دوم: شامل عناصر Cu, U, Ga, Ni, Nb, P, S, Sr مىباشد.

گروه سوم: شامل عناصر Cs, Co, Mn, Sc, Ti, Ba, As, Zn,Y مىباشد.

پیشنهادات:

با توجه به تلفیق نتایج مطالعات ژئوشیمی، کانیسنگین و مطالعات صحرایی، محدوده چهار ضلعی ABCD به وسعت تقریبی ۵/۵ کیلومتر مربع واقع در قسمت جنوبی و مرکزی محدوده مورد مطالعه، با اولویت اکتشافی درجه دو جهت مطالعات بعدی پیشنهاد می گردد (نقشه شماره ۳۵).

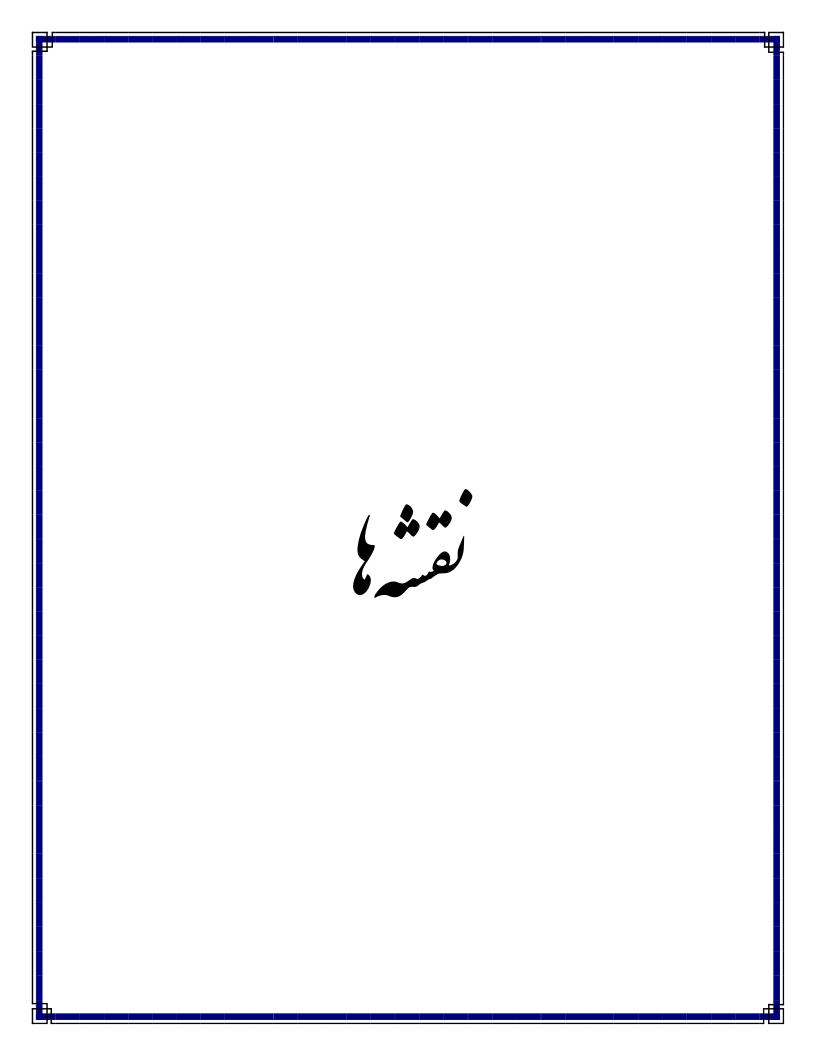
منابع:

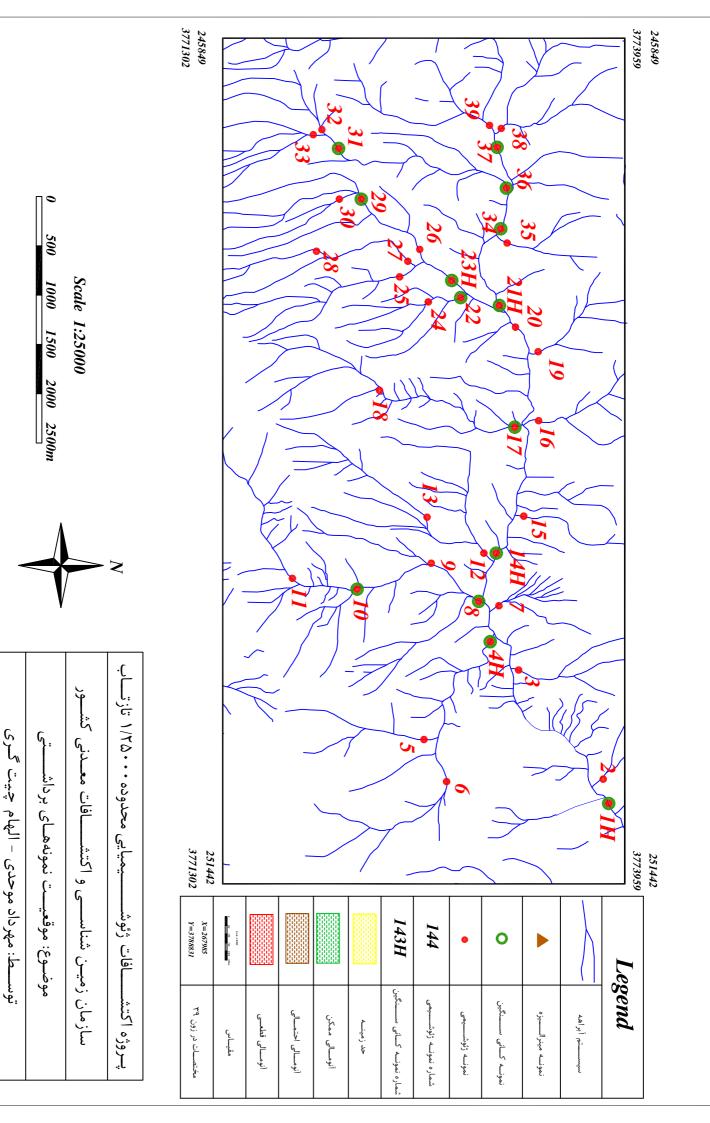
۱ – م.سبزهای ، ب. مجیدی ، ن.علوی تهرانی، م. قریشی، م. عمیدی، ۱۹۷۷ ، نقشـه زمـین شناسی ۱ – ۱ م.سبزهای ، سازمان زمین شناسی کشور

۲- ج.حسینی دوست ، م.الف مهدوی ، مهدی علوی ۱۹۹۲ ، نقشه زمـین شناسـی ۱۰۰۰۰:۱نهاونـد ،
سازمان زمین شناسی و اکتشافات معدنی کشور

٣- گزارش اکتشافات ژئوشیمیائی ۱:۱۰۰۰۰۰ منطقه نهاوند، ۱۳۸۳ ، کانی کاوان شرق

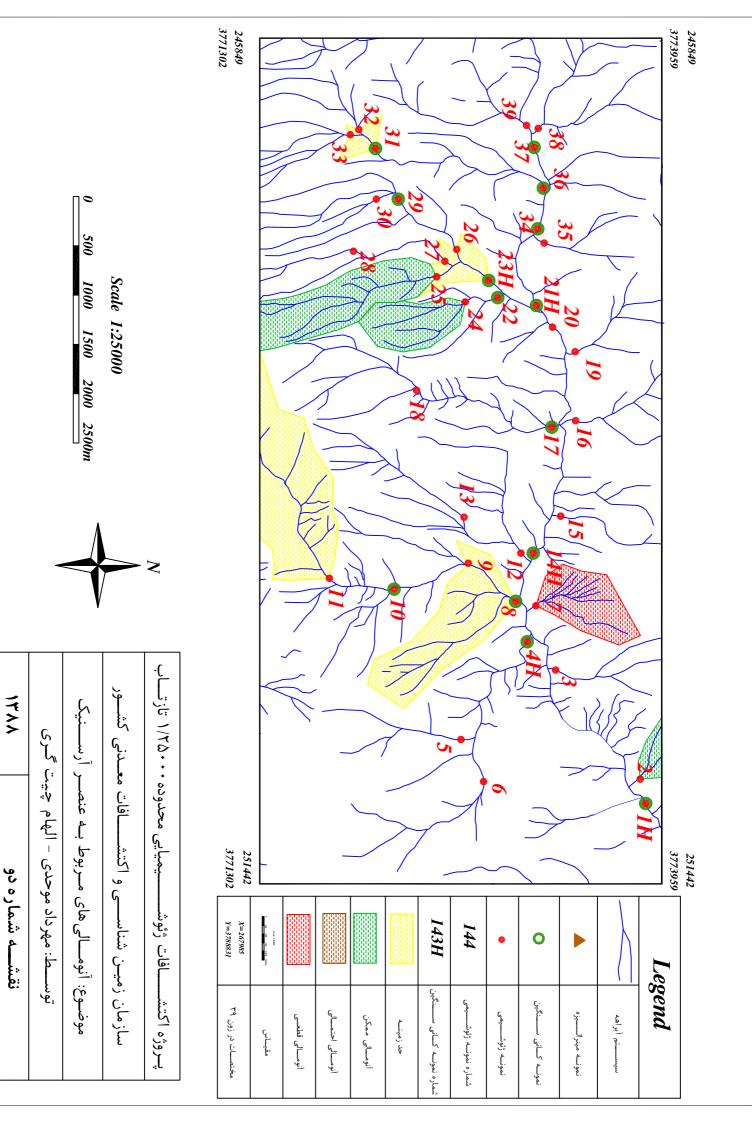
۴- موحدی. مهرداد، چیت گری.الهام، گزارش اکتشافات به روش ژئوشیمی- معدنی در محدوده عشوند نهاوند، مقیاس ۱:۲۵۰۰۰ ، ۱۳۸۷، سازمان زمینشناسی و اکتشافات معدنی کشور

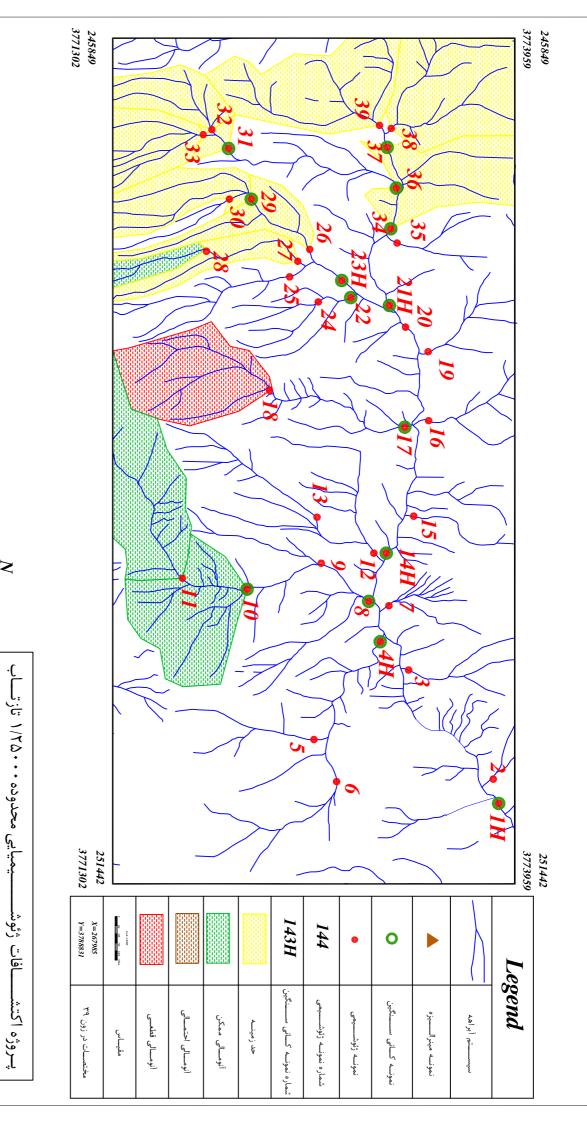

۵- موحدی. مهرداد، چیت گری.الهام، گزارش پیجوئی به روش اکتشافات ژئوشیمیایی در محدوده برجک نهاوند، در مقیاس ۱:۲۵۰۰۰، ۱۳۸۸، سازمان زمین شناسی و اکتشافات معدنی کشور


۹- موحدی. مهرداد، چیت گری.الهام، گزارش پیجوئی به روش اکتشافات ژئوشیمیایی در محدوده
فیروزان نهاوند، در مقیاس ۱:۲۵۰۰۰، ۱۳۸۸، سازمان زمینشناسی و اکتشافات معدنی کشور

۷- موحدی. مهرداد، چیت گری.الهام، گزارش پیجوئی به روش اکتشافات ژئوشیمیایی در محدوده کهریز جمال نهاوند، در مقیاس ۱۳۸۸: ۱۳۸۸، سازمان زمینشناسی و اکتشافات معدنی کشور ۸- موحدی. مهرداد، چیت گری.الهام، گزارش پیجوئی به روش اکتشافات ژئوشیمیایی در محدوده حسین آباد نهاوند، در مقیاس ۱۳۸۸: ۱۳۸۸، سازمان زمینشناسی و اکتشافات معدنی کشور ۹- حسنی پاک، علی اصغر، (۱۳۸۰)، تحلیل دادههای اکتشافی (جدایش زمینه از آنومالی-آمار و

١٠-حسني ياك، على اصغر، (١٣٨٠) اصول اكتشافات ژئوشيميايي، انتشارات دانشگاه تهران


احتمال مهندسي -تخمين ذخيره)

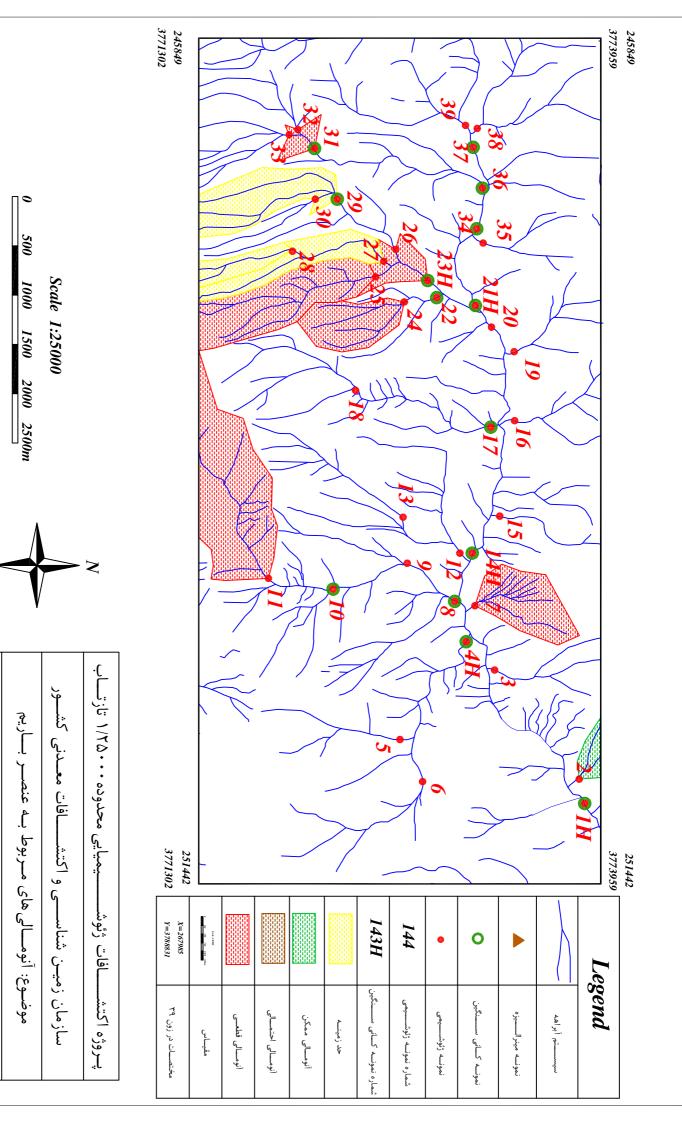


14 / /

نقشه شماره یک

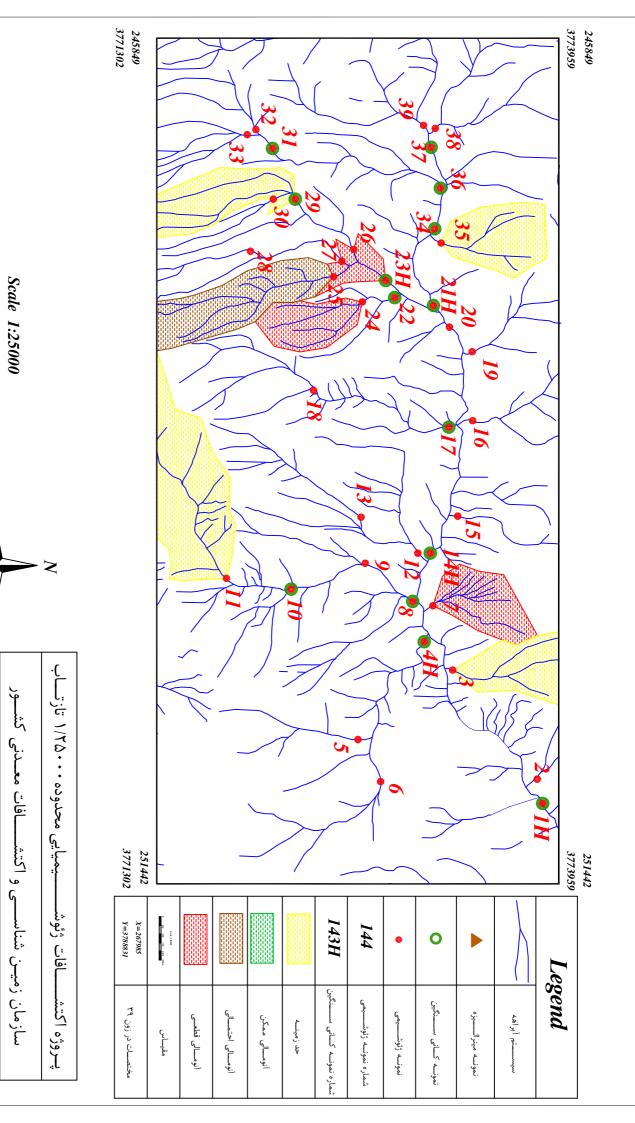
Scale 1:25000

افات معدنی کشور


سازمان زمیـن شناســـی و اکتشـ

موضوع: انومالي هاي مربوط به عنصر طلا

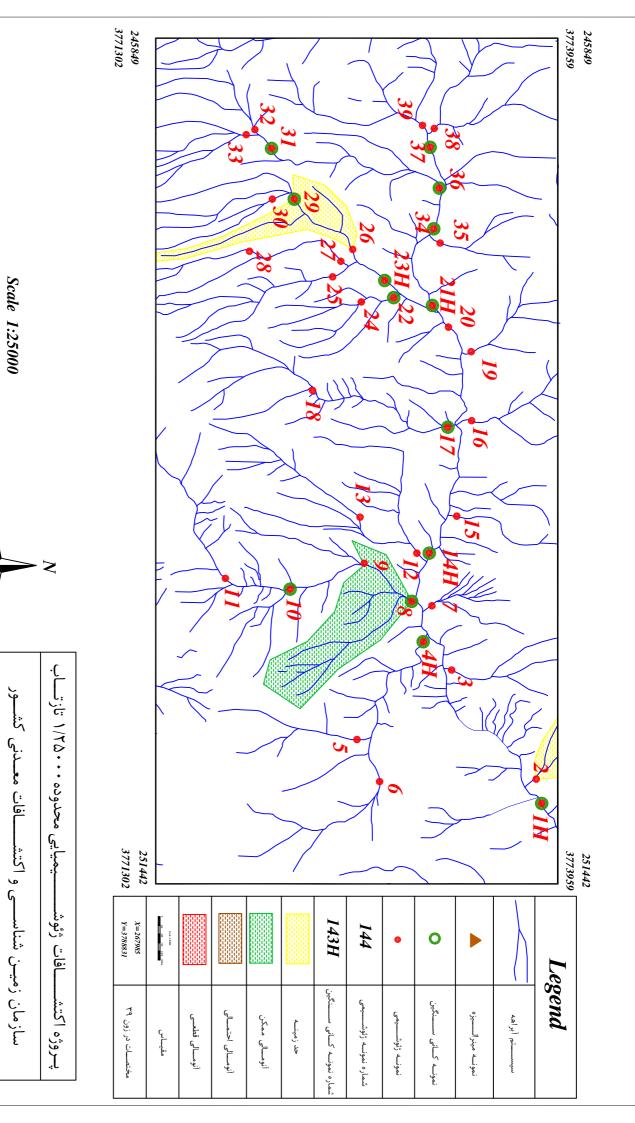
توسط: مهرداد موحدی - الهام چیت گـری


14 / /

نقشــه شماره سه

نقشــه شماره چهار

توسط: مهرداد موحدی - الهام چیت گـری

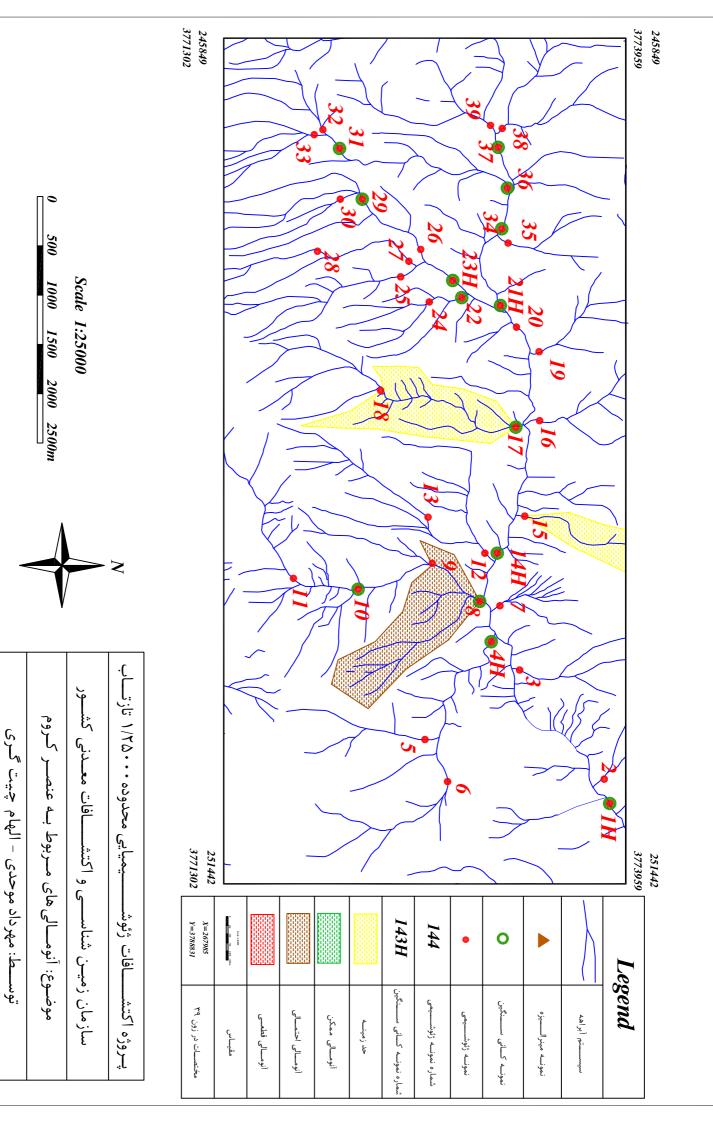


موضوع: أنومسالي هاي مسربوط به عنصر سسريم

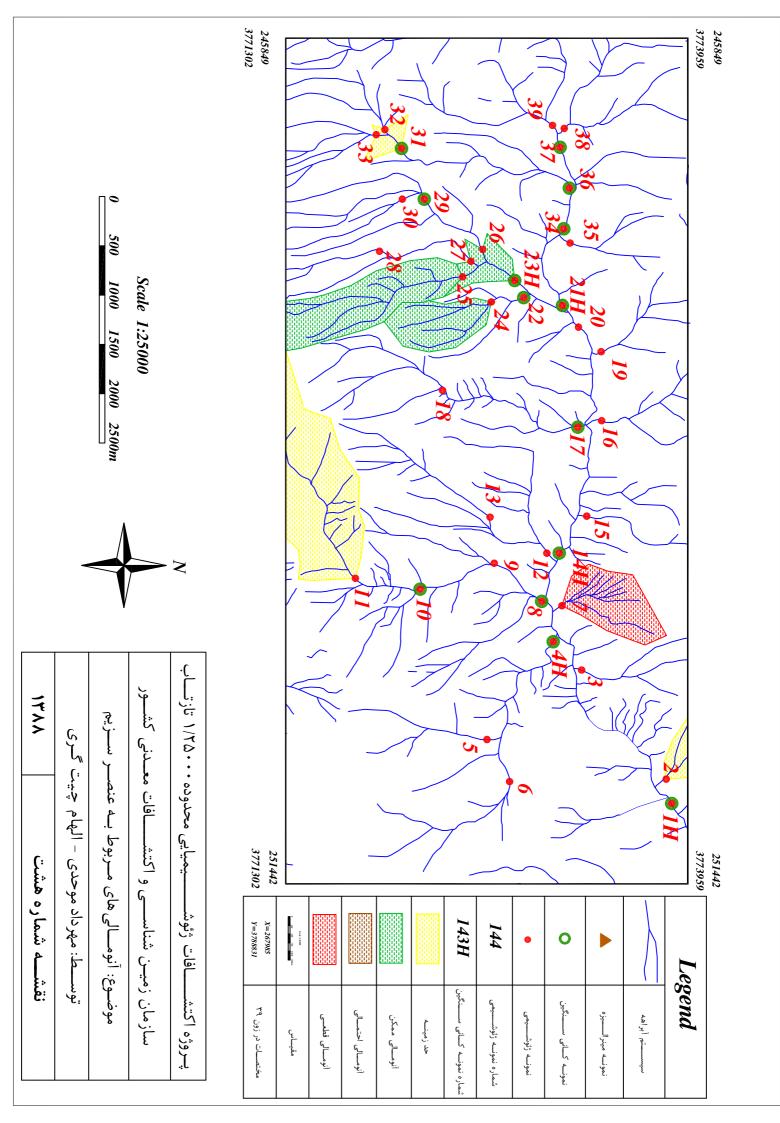
توسط: مهرداد موحدی - الهام چیت گـری

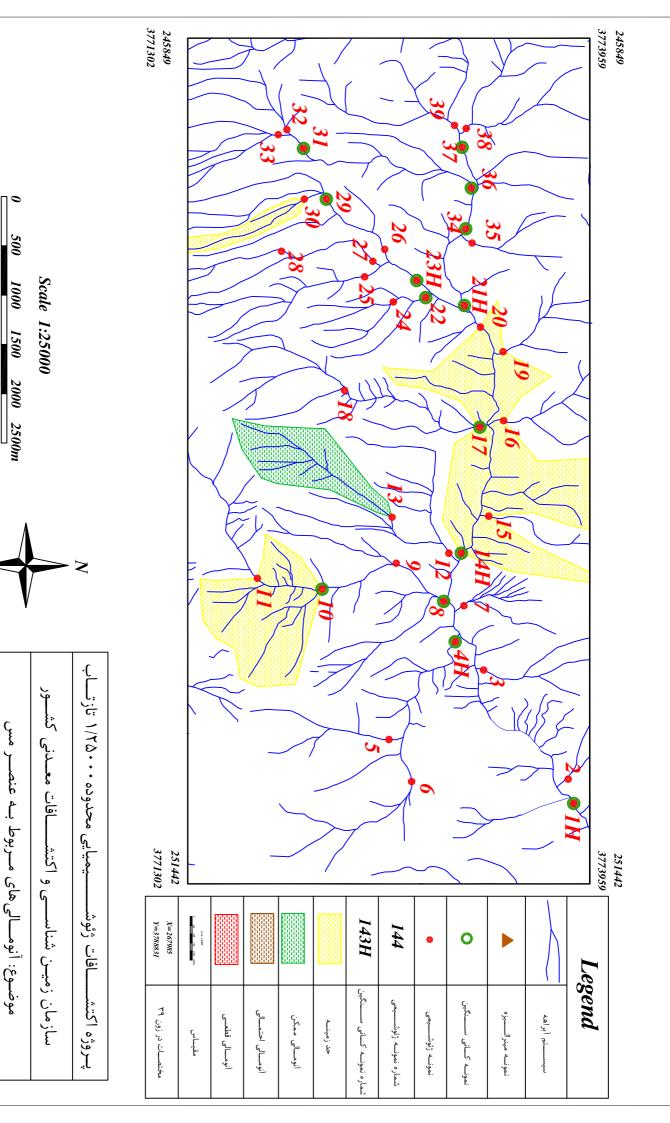
1477

نقشسه شماره پنسج



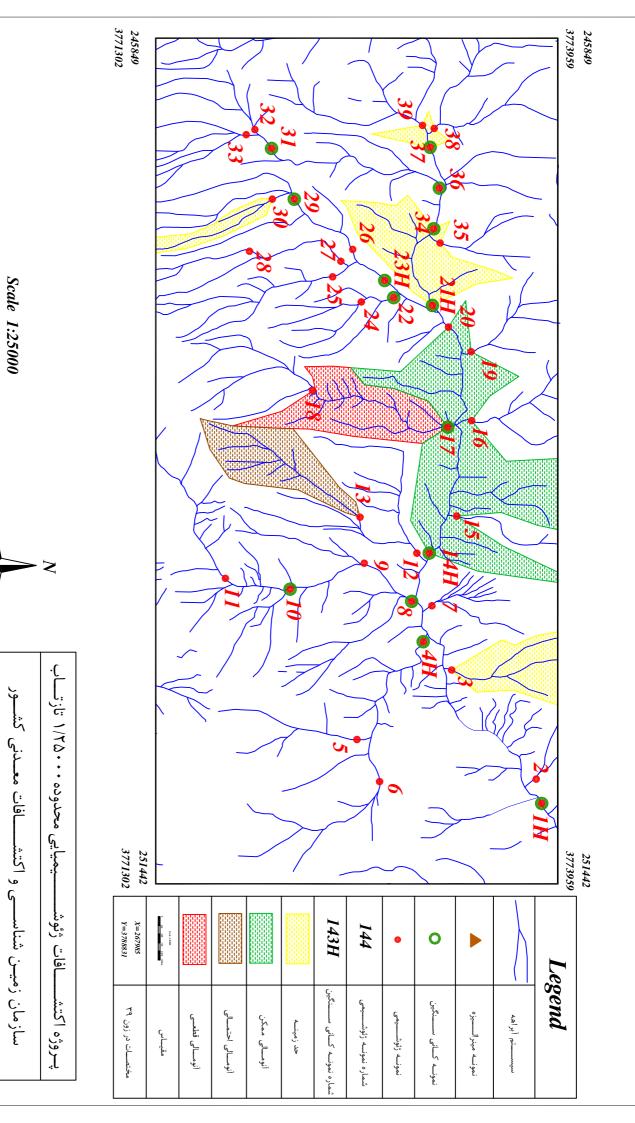
موضوع: أنومسالي هاي مسربوط بــه عنصــر كبالـــت


توسط: مهرداد موحدی - الهام چیت گـری


14 / /

نقشــه شماره شش

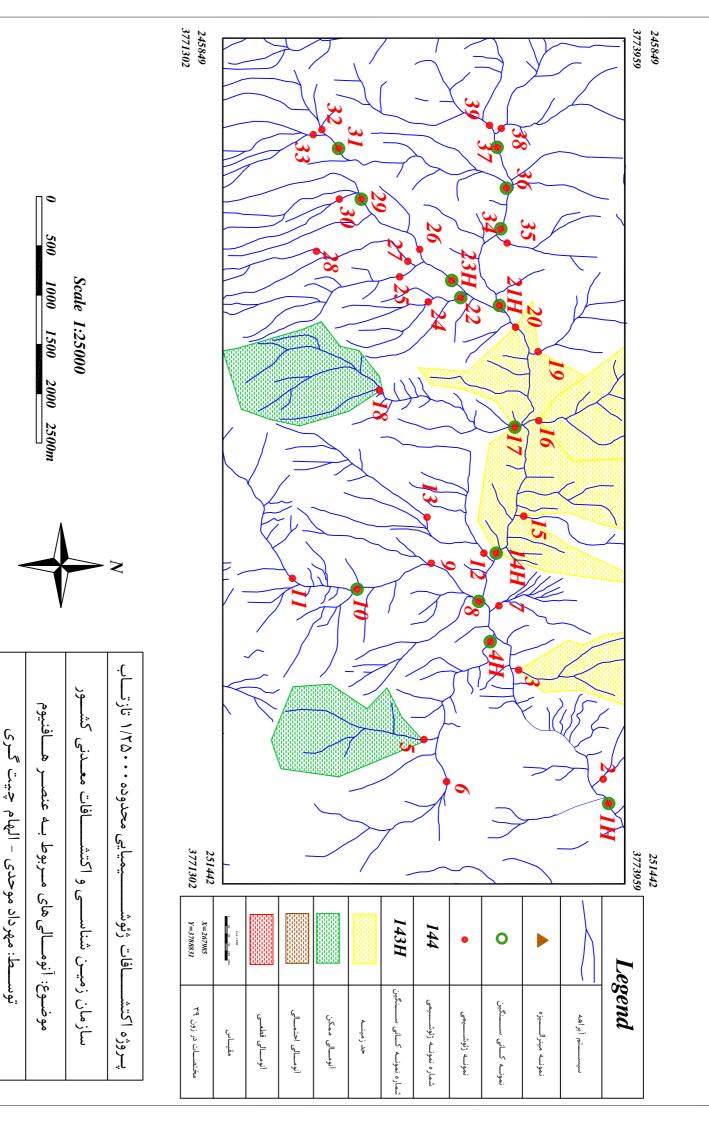
نقشــه شماره هفت



14 / /

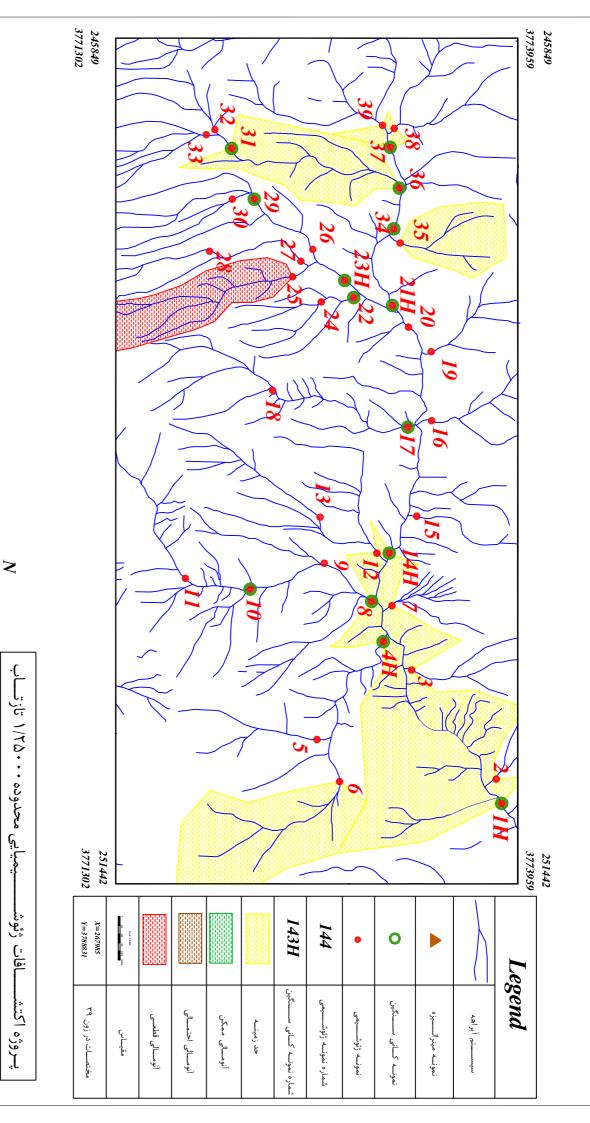
نقشــه شماره نه

توسط: مهرداد موحدی - الهام چیت گـری



موضوع: أنومسالي هاي مسربوط بـه عنصــر گـــاليوم

توسط: مهرداد موحدی - الهام چیت گـری


14 / /

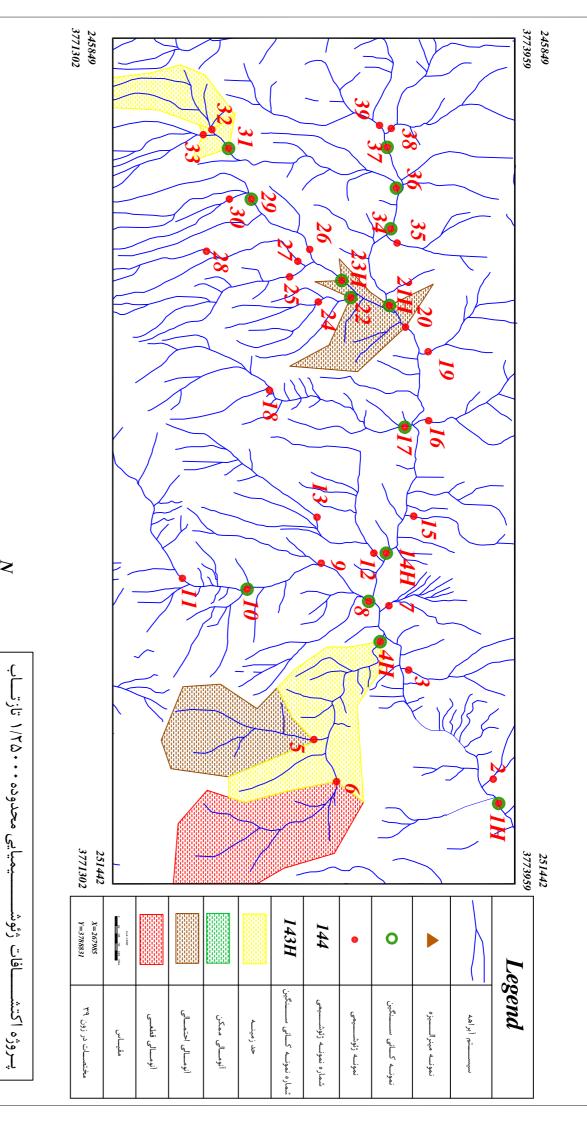
نقشــه شماره ده

14 / /

نقشه شماره یازده

Scale 1:25000

افات معدنی کشور


سازمان زمین شناسسی و اکتش

موضـوع: أنومــالي هاي مــربوط بــه عنصــر لانتــــانيوم

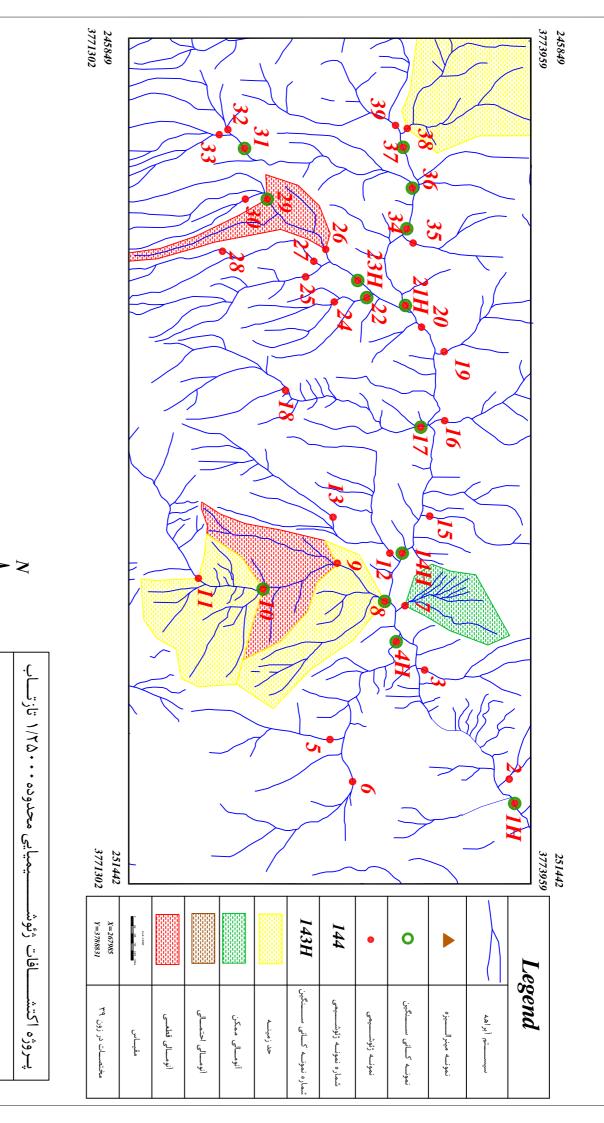
توسط: مهرداد موحدی - الهام چیت گـری

14 / /

نقشــه شماره دوازده

Scale 1:25000

افات معدنی کشور


سازمان زمیـن شناســـی و اکتشـ

موضوع: انومسالی های مسربوط بـه عنصــر منگـــنز

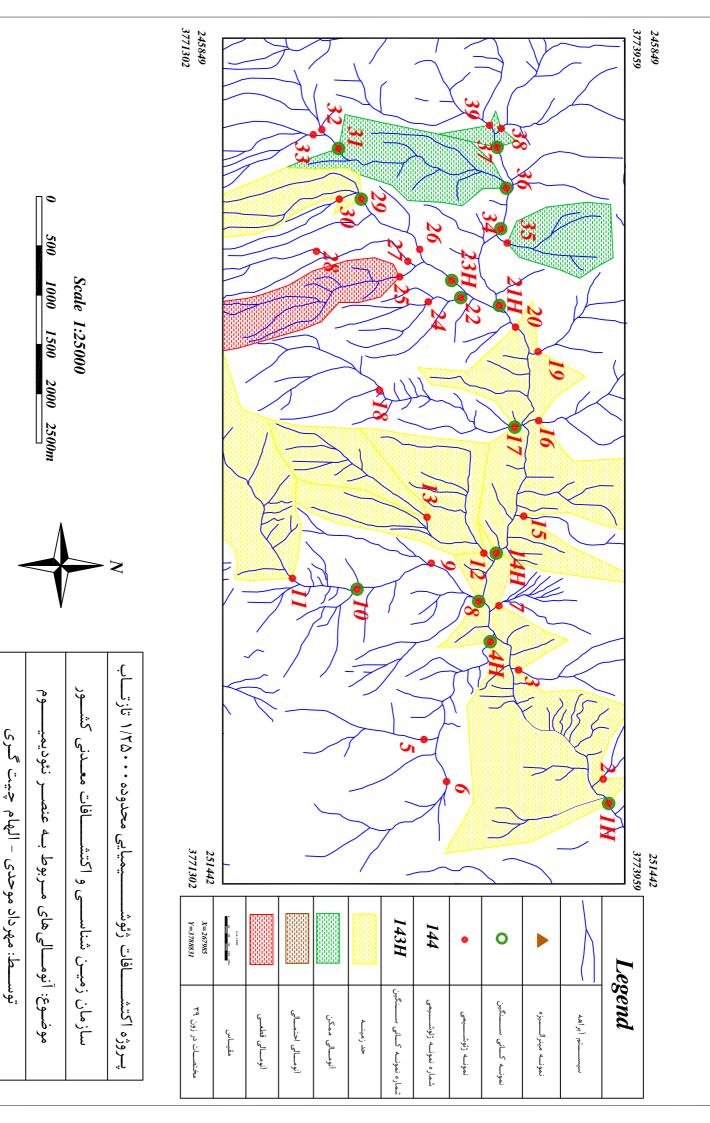
توسط: مهرداد موحدی - الهام چیت گـری

14 / /

نقشــه شماره ســيزده

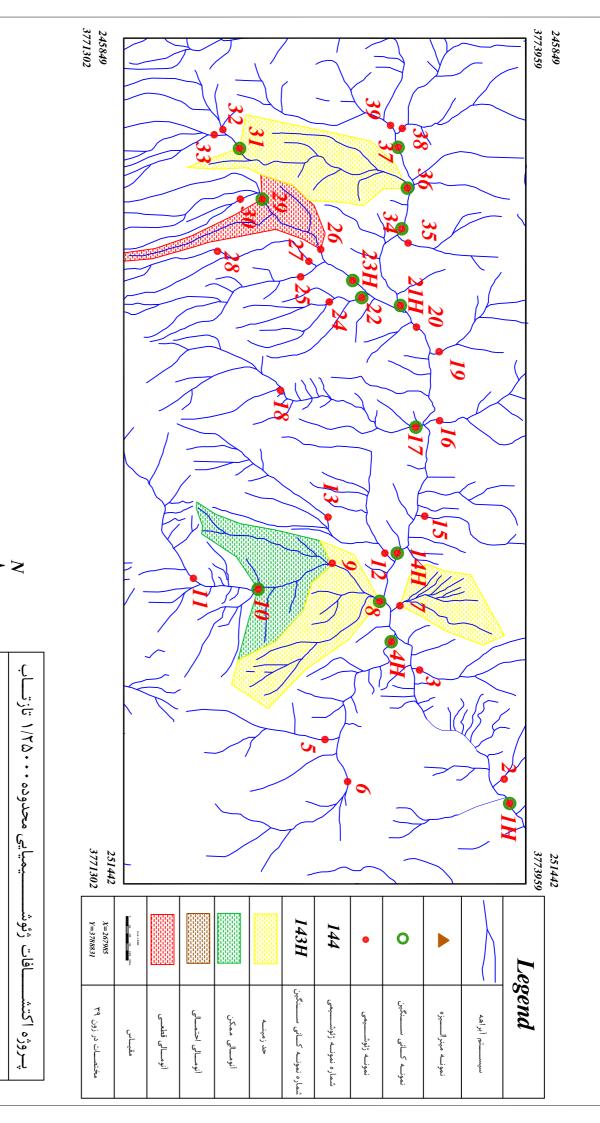
Scale 1:25000

افات معدنی کشور


سازمان زمیـن شناســـی و اکتشـ

14 / /

نقشــه شماره چهارده


توسط: مهرداد موحدی - الهام چیت گـری

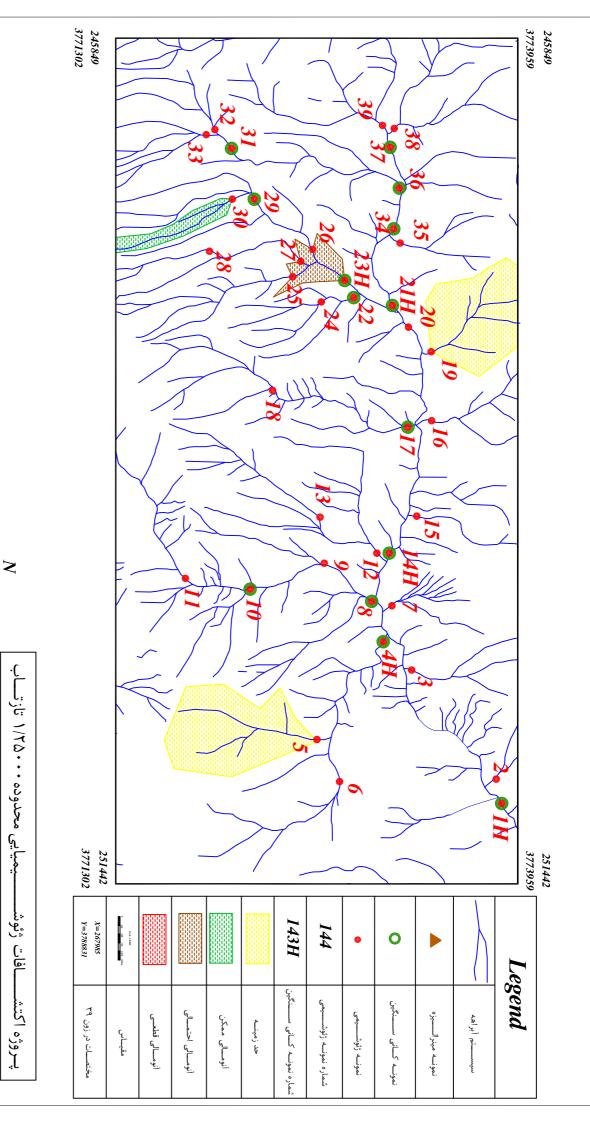
موضـوع: أنومـــالي هاى مــربوط بــه عنصــر نيوبيــ

14 / /

نقشــه شماره پانزده

Scale 1:25000

افات معدنی کشور


سازمان زمیـن شناســـی و اکتشـ

موضـوع: أنومـــالي هاي مــربوط بــه عنصــر نيكــــل

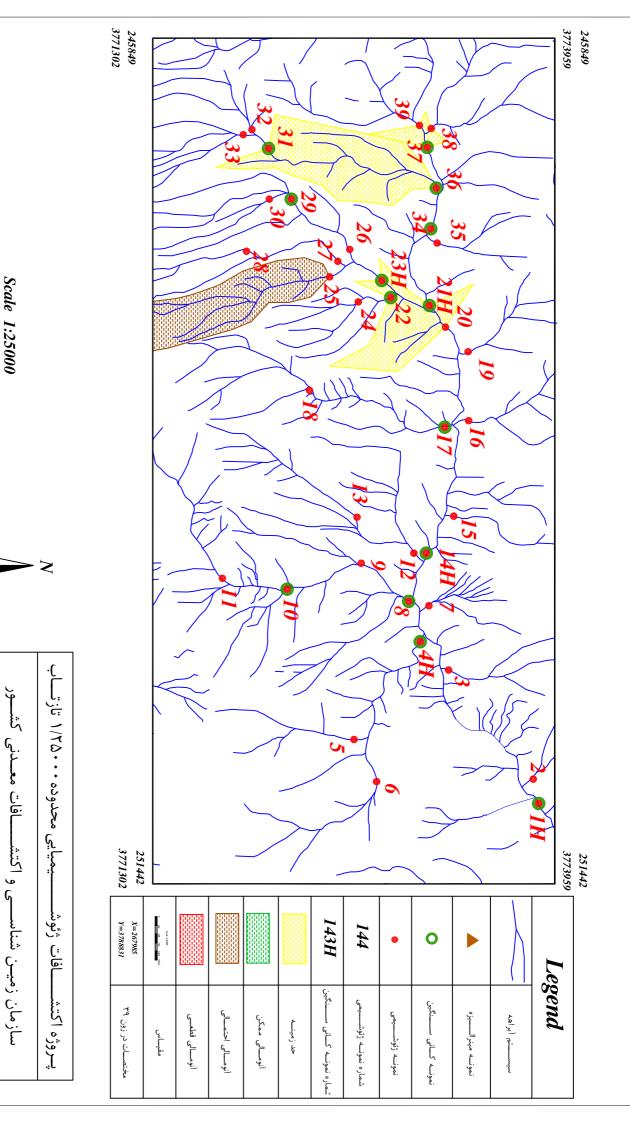
توسط: مهرداد موحدی - الهام چیت گـری

14 / /

نقشه شماره شانزده

Scale 1:25000

ــافات معــدنی کشـــور

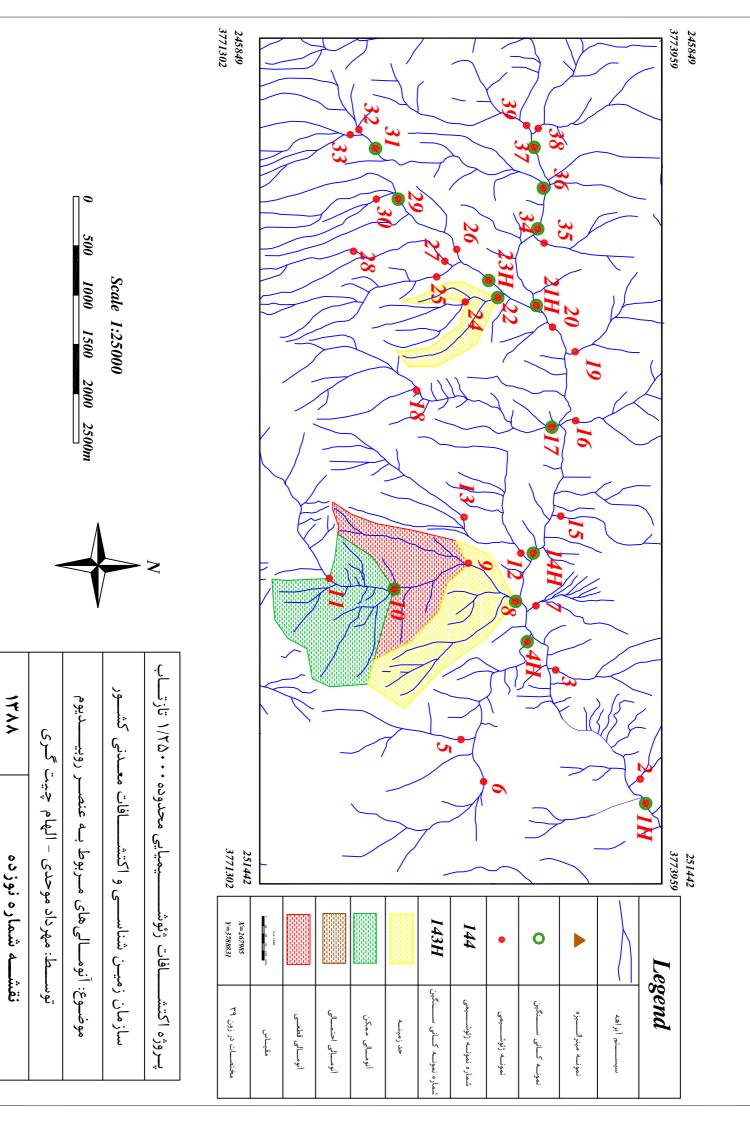

سازمان زمیـن شناســـی و اکتشـ

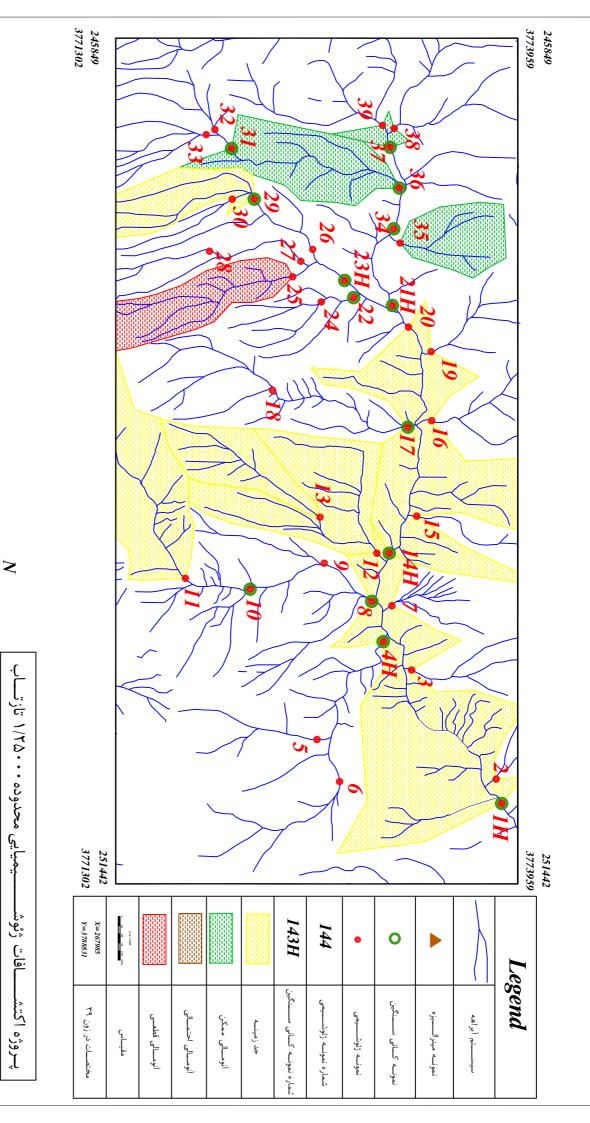
14 / /

نقشــه شماره هفده

توسط: مهرداد موحدی - الهام چیت گـری

موضوع: أنومالي هاي مربوط به عنصر


موضوع: انومسالي هاي مسربوط به عنصسر سرب


توسط: مهرداد موحدی - الهام چیت گـری

1477

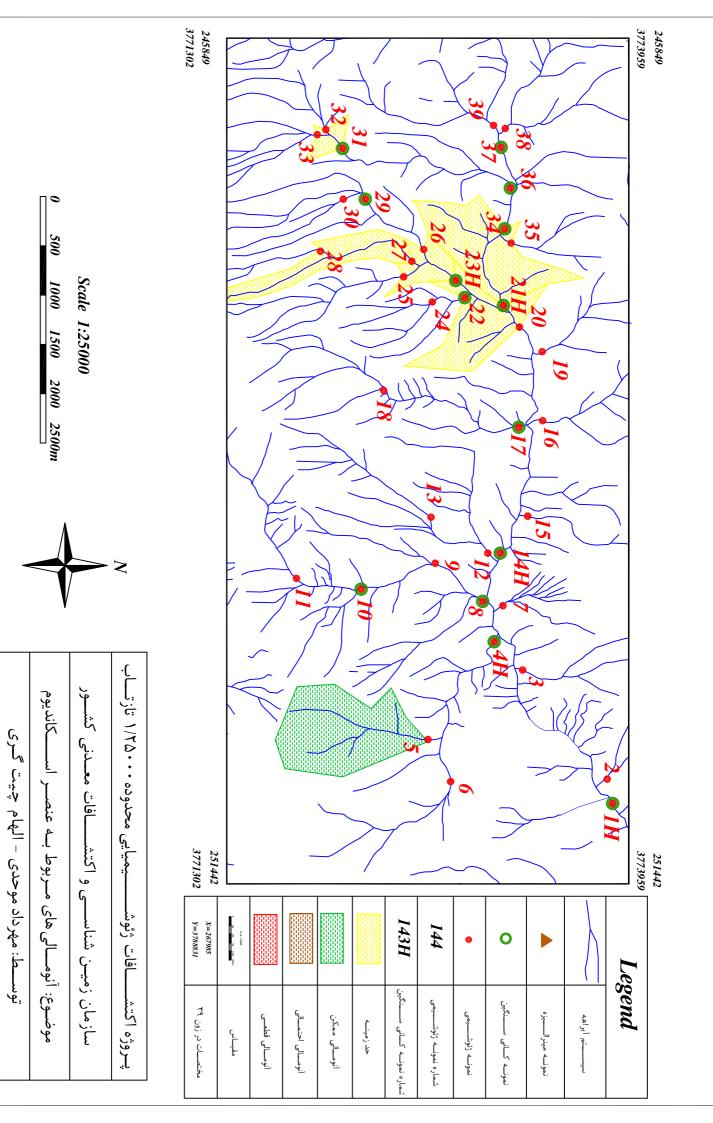
نقشه شماره هجده

Scale 1:25000

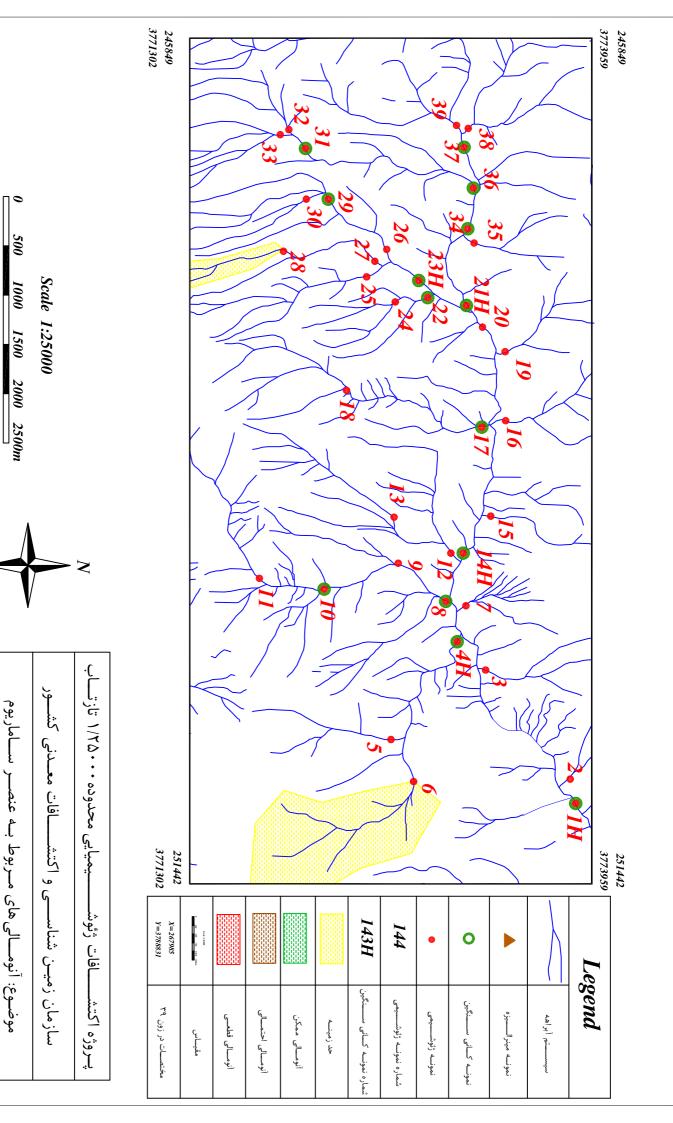
Scale 1:25000

افات معدنی کشور

سازمان زمین شناسسی و اکتش


1477

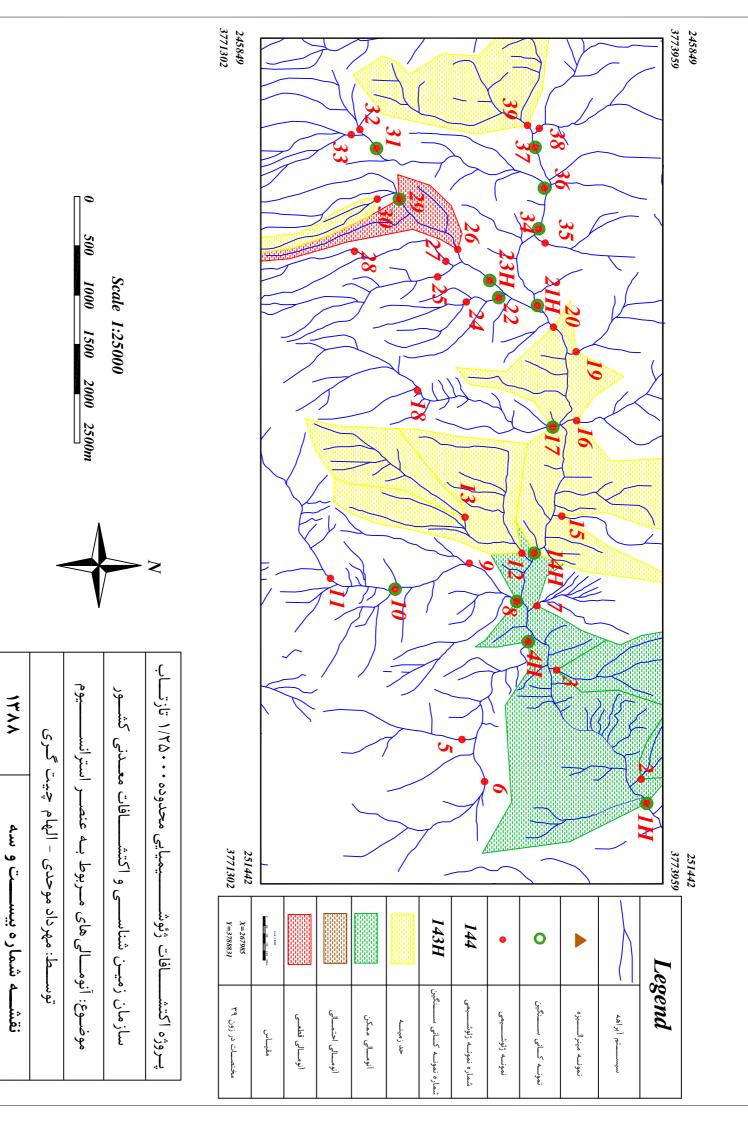
{:

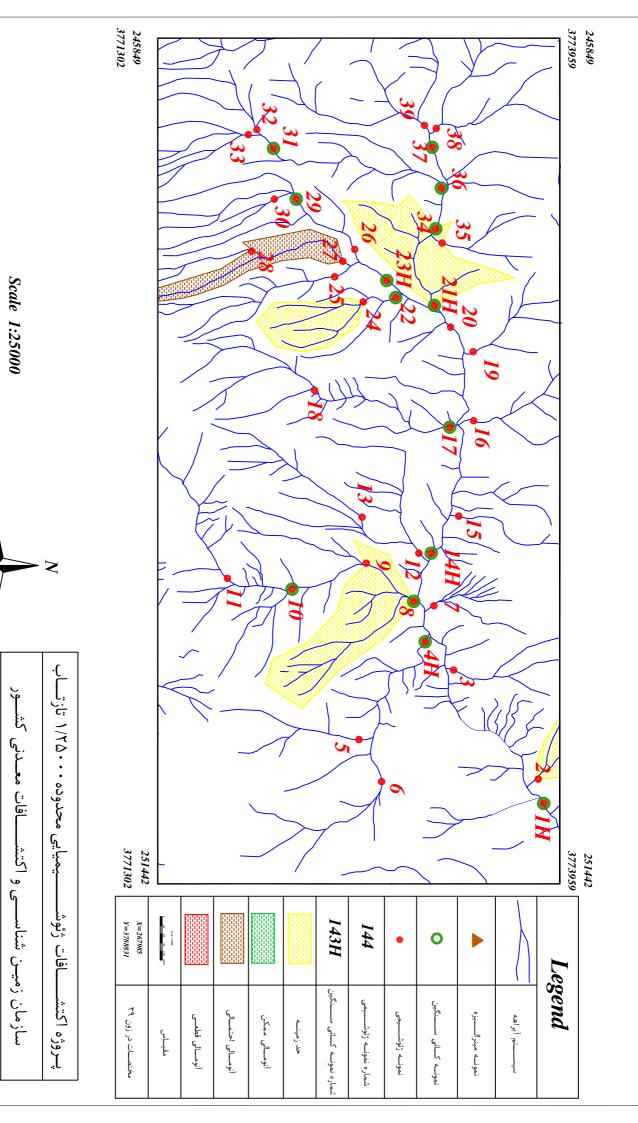

نقشــه شماره بیسـ

توسط: مهرداد موحدی - الهام چیت گـری

موضوع: أنومالي هاي مربوط به عنصر

نقشــه شماره بیســت و یک



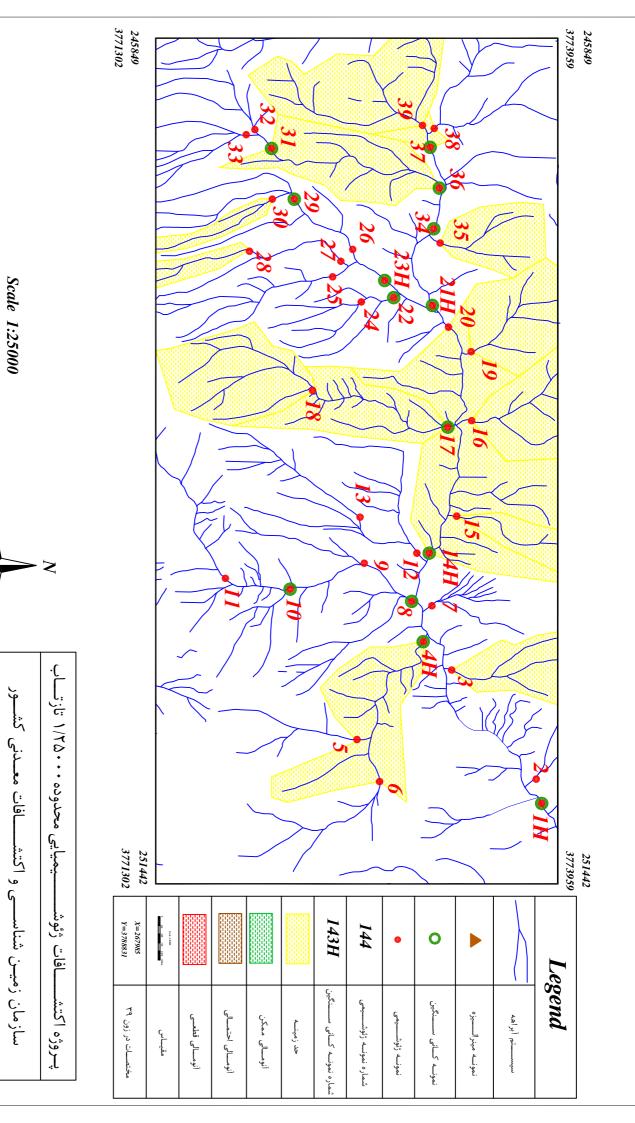

14 / /

ټ و دو

نقشــه شماره بیسـ

توسط: مهرداد موحدی - الهام چیت گـری

مينا

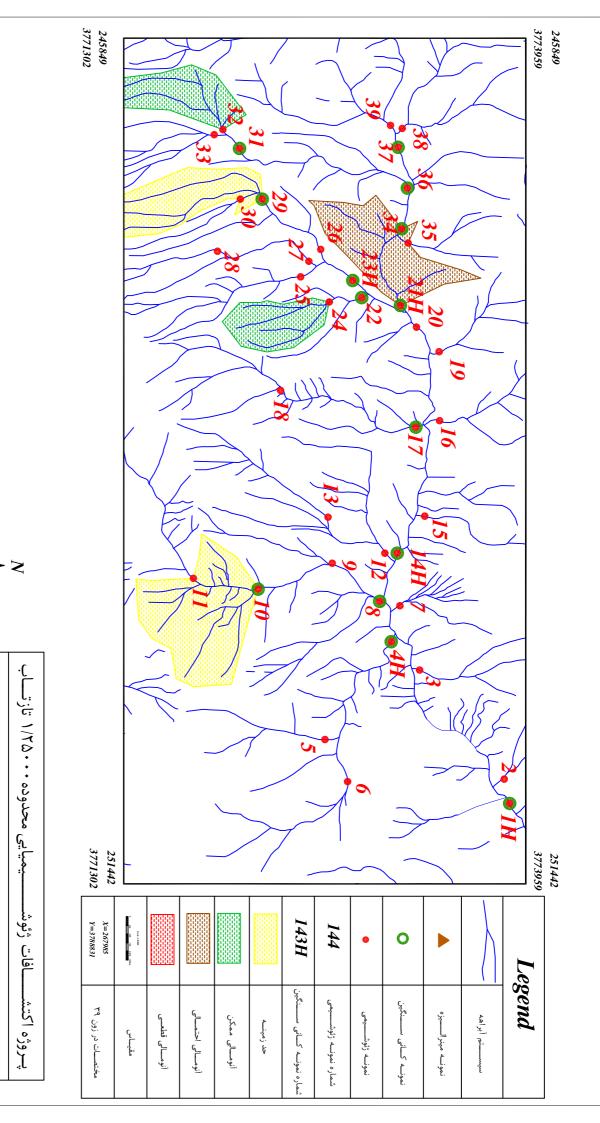

موضـوع: أنومـــالی های مــربوط بــه عنصــر تیتـــ

توسط: مهرداد موحدی - الهام چیت گـری

14 / /

ت وچهار

نقشــه شماره بیســ


موضوع: انومسالی های مسربوط بـه عنصــر اورانیـــوم

توسط: مهرداد موحدی - الهام چیت گـری

1477

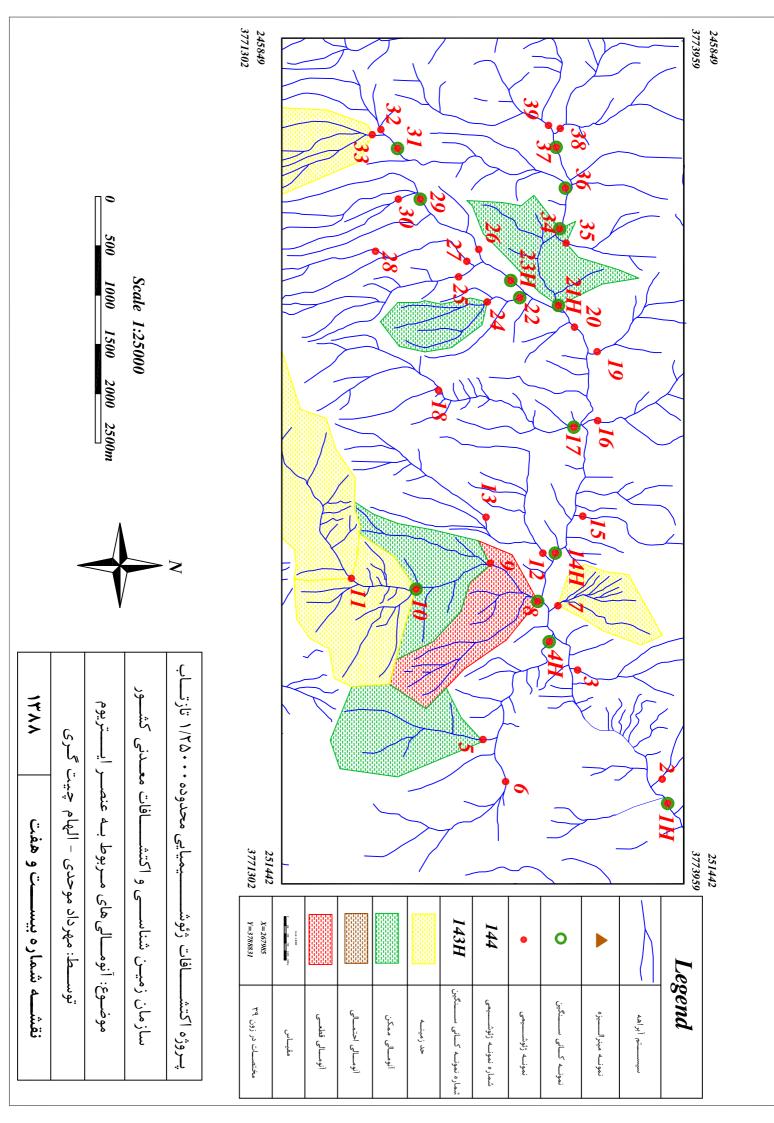
ت و پنے

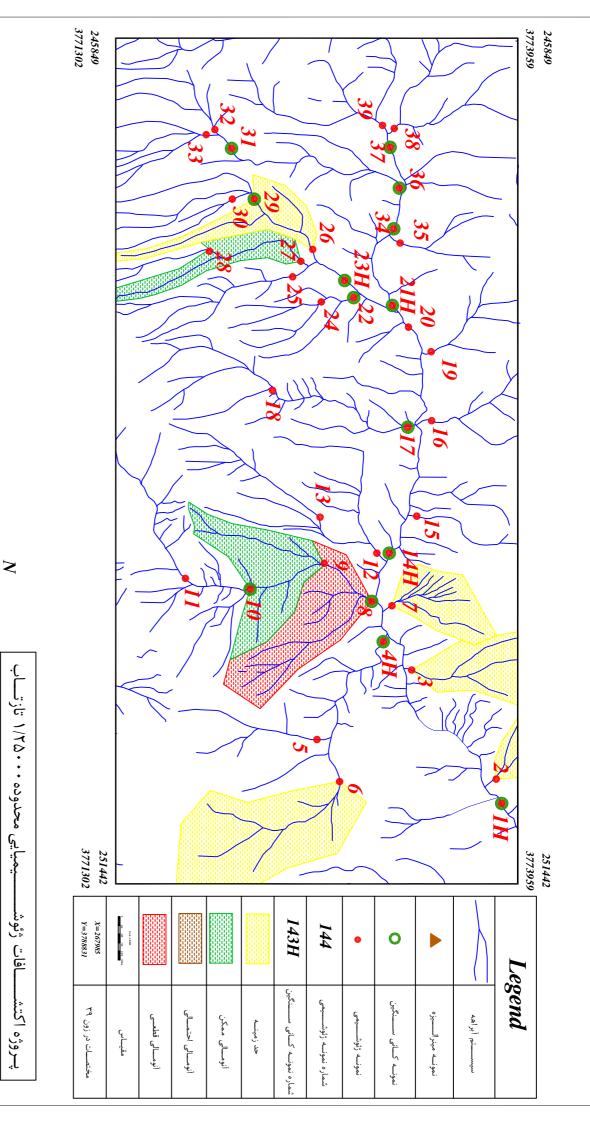
نقشــه شماره بیسـ

Scale 1:25000

افات معدنی کشور

سازمان زمیـن شناســـی و اکتشـ


موضوع: أنومسالي هاي مسربوط بــه عنصــر وانساديوم


توسط: مهرداد موحدی - الهام چیت گـری

1477

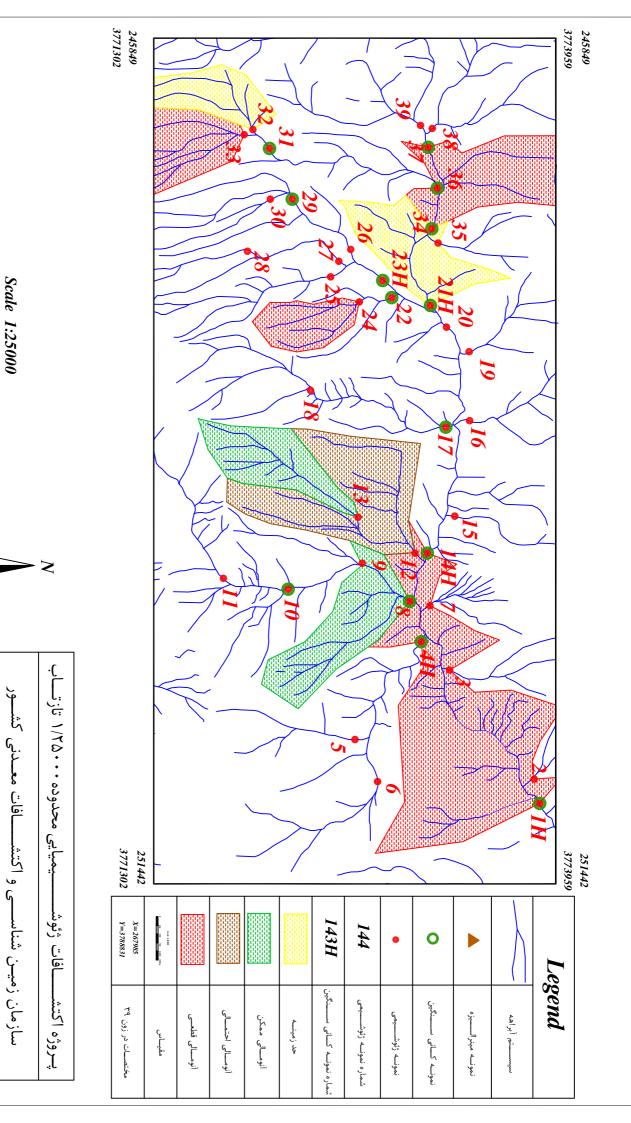
ت و شش

نقشـــه شماره بیسـ

موضوع: أنومــالي هاي مــربوط بــه عنصــر زيـــــر كونيوم

توسط: مهرداد موحدی - الهام چیت گـری

14 / /

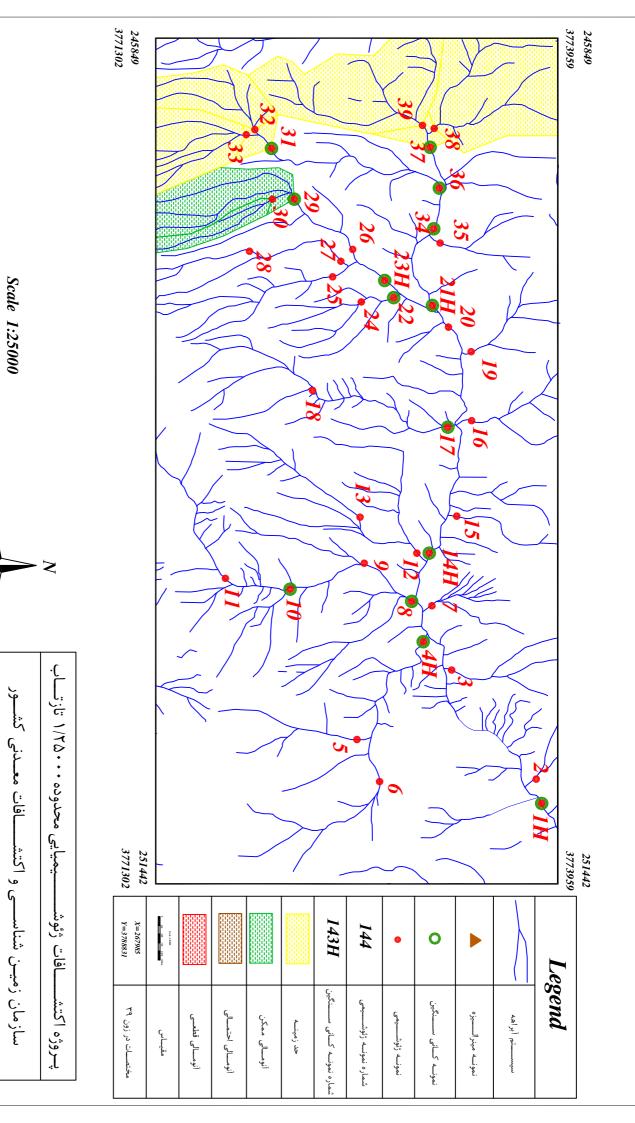

ت و هشت

نقشسه شماره بيس

افات معدنی کشور

سازمان زمین شناسسی و اکتش

Scale 1:25000

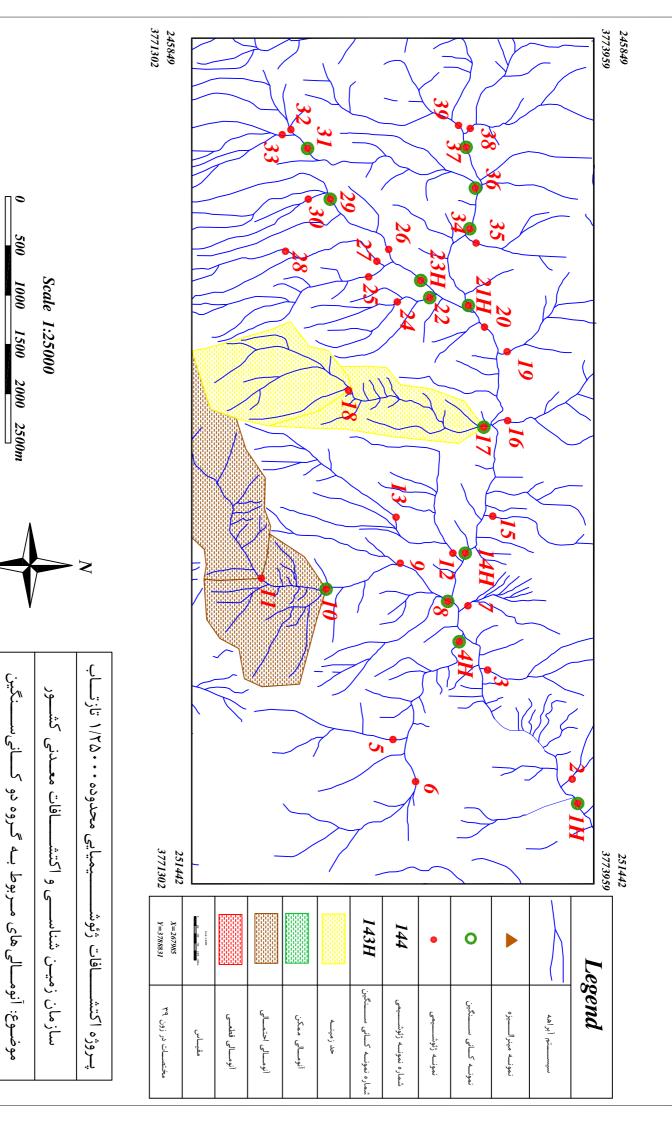

موضوع: انومالي هاي مربوط به عنصر روي

توسط: مهرداد موحدی - الهام چیت گـری

14 / /

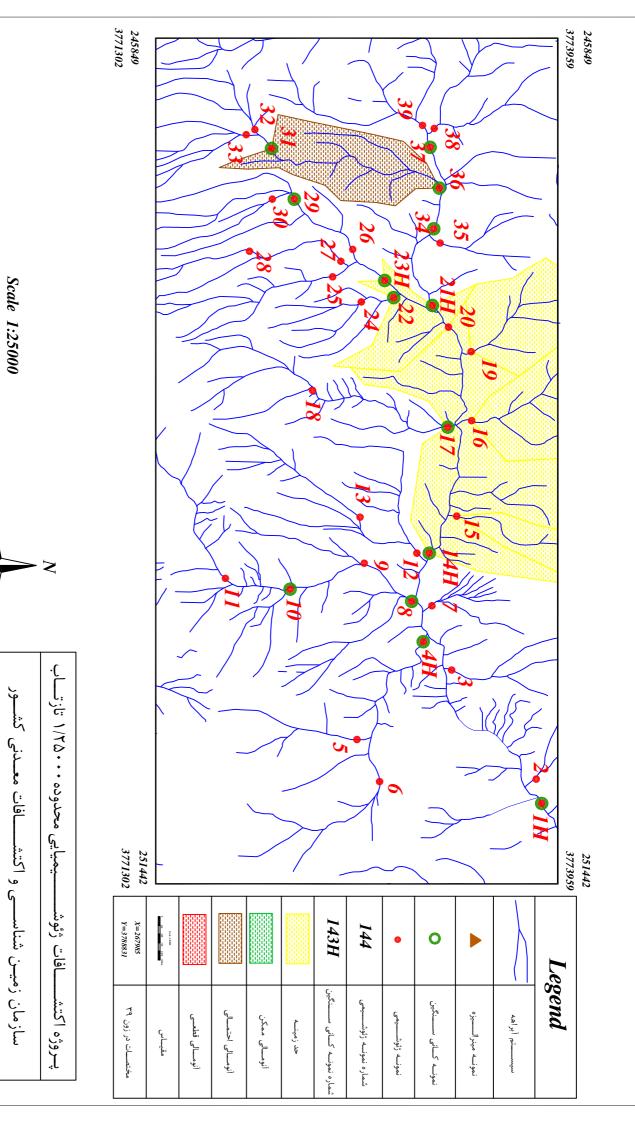
ج ا ا

نقشــه شماره بیسـ



موضـوع: آنومـــالی های مــربوط بــه گــروه یـک کـــانی ســــنگین

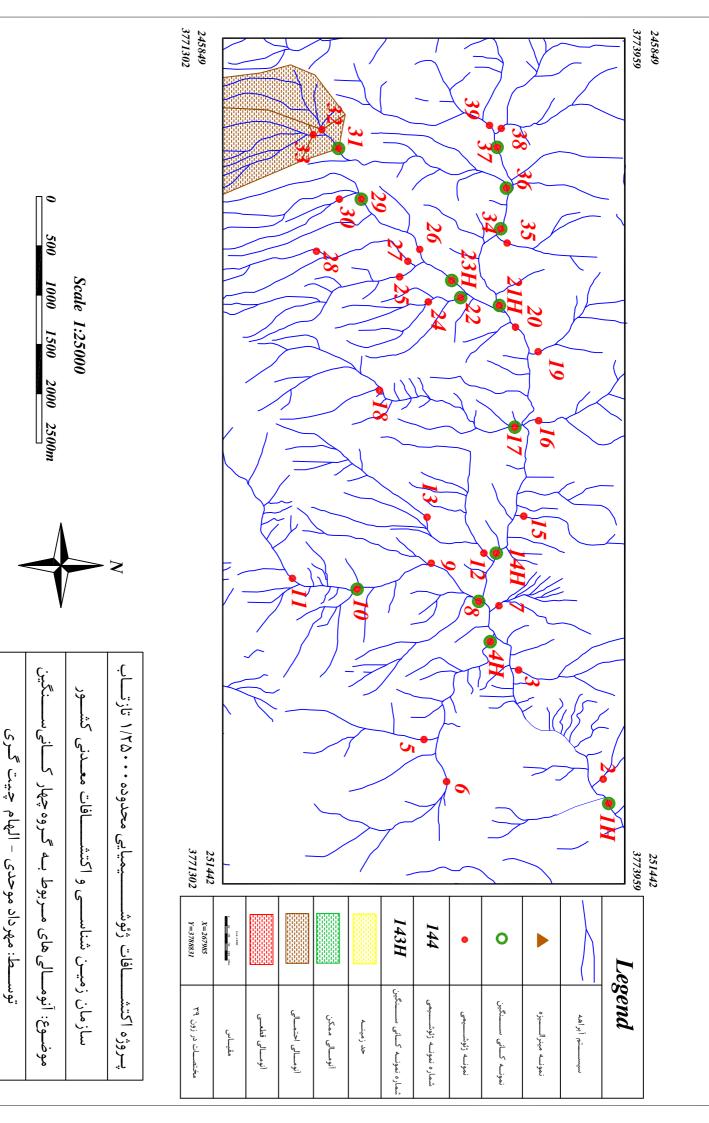
توسط: مهرداد موحدی - الهام چیت گـری


1477

نقشــه شماره سی

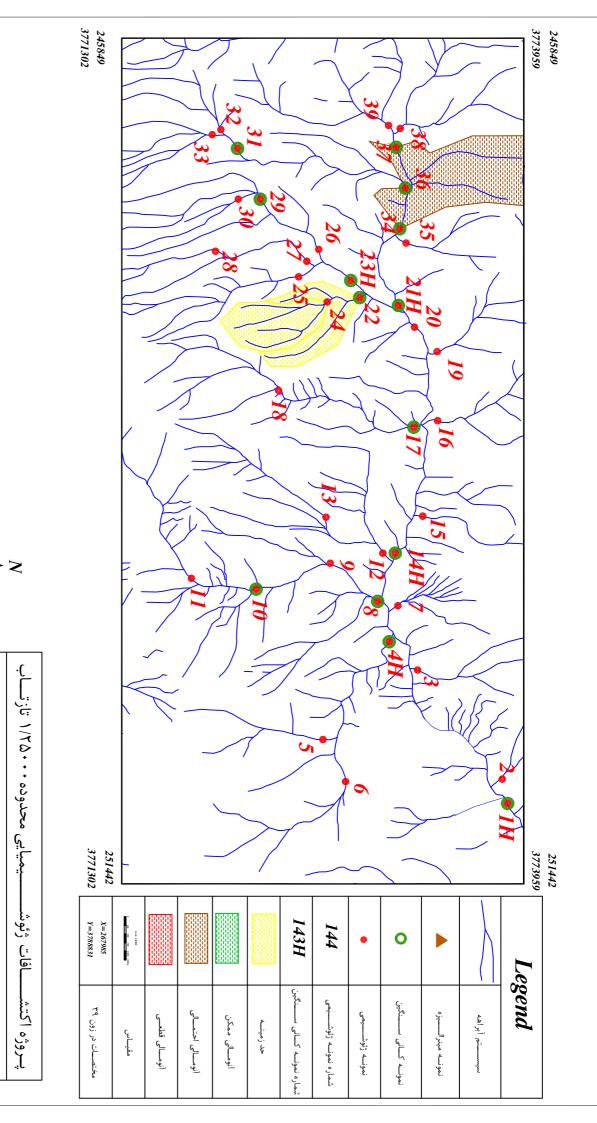
نقشــه شماره سی و یک

توسط: مهرداد موحدی - الهام چیت گـری



1477

نقشــه شماره سی و دو


موضـوع: أنومـــالی های مــربوط بــه گــروه سـه کـــانیســـ

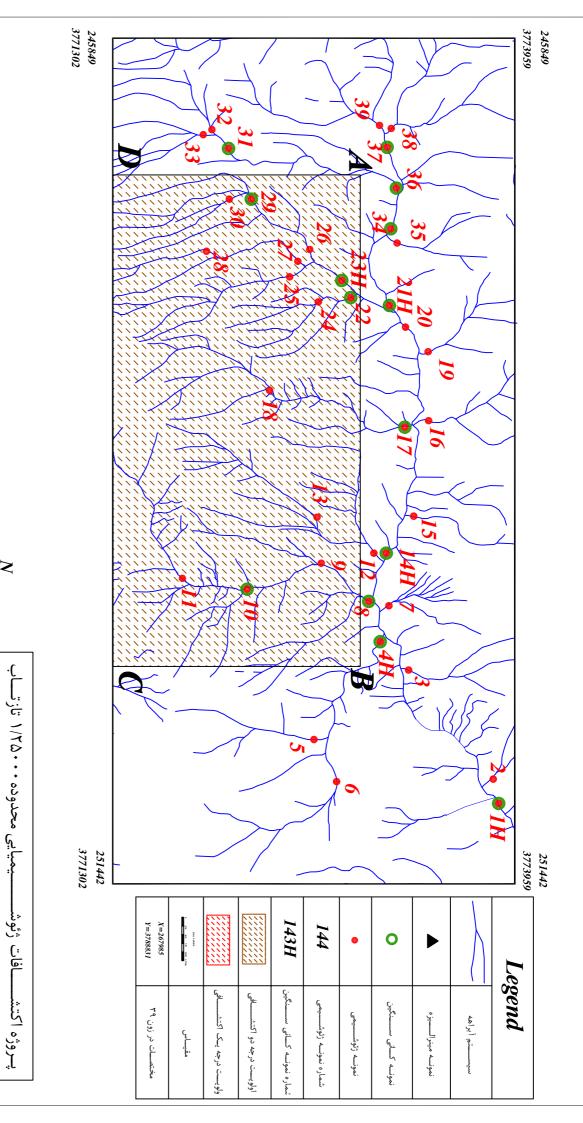
توسط: مهرداد موحدی - الهام چیت گـری

14 / /

نقشــه شماره سی و سه

Scale 1:25000

ـافات معـدنی کشــور


سازمان زمین شناسسی و اکتش

موضـوع: انومـــالی های مــربوط بــه گــروه پنــج کـــانی ســ

توسط: مهرداد موحدی - الهام چیت گـری

14 / /

نقشــه شماره سی و چهار

Scale 1:25000

سافات معمدنی کشسور

سازمان زمین شناسسی و اکتشـ

موضـوع: محدوده پیشـــــنهادی جهت کـار در مقیــاس بزرگـــ

توسط: مهرداد موحدی - الهام چیت گـری

1477

نقشــه شماره سی و پنــج

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	0.75	1	0.88	0.25
	NHS-30	NHS-101	0.75	0.75	0.75	0.00
n	NHS-31	NHS-102	0.75	1	0.88	0.25
Au	NHS-32	NHS-103	0.75	12	6.38	11.25
	NHS-33	NHS-104	3	3	3.00	0.00
	NHS-34	NHS-105	5	0.75	2.88	4.25

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	204.1	210.2	207.15	6.10
	NHS-30	NHS-101	251.7	260.6	256.15	8.90
	NHS-31	NHS-102	221	216.9	218.95	4.10
	NHS-32	NHS-103	227.3	229.6	228.45	2.30
	NHS-33	NHS-104	240.6	252.5	246.55	11.90
	NHS-34	NHS-105	150.7	152.1	151.40	1.40

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	103.6	111.9	107.75	8.30
	NHS-30	NHS-101	124.9	120.6	122.75	4.30
٠	NHS-31	NHS-102	132.7	135.6	134.15	2.90
C	NHS-32	NHS-103	164.7	154.5	159.6	10.20
	NHS-33	NHS-104	155.1	163.3	159.2	8.20
	NHS-34	NHS-105	162.1	153.4	157.75	8.70

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	31.5	33	32.25	1.50
	NHS-30	NHS-101	36.1	37.1	36.60	1.00
0	NHS-31	NHS-102	35.3	34.8	35.05	0.50
Co	NHS-32	NHS-103	36.9	36.8	36.85	0.10
	NHS-33	NHS-104	38.4	38.5	38.45	0.10
	NHS-34	NHS-105	22.9	23.8	23.35	0.90

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	42.4	44.1	43.25	1.70
	NHS-30	NHS-101	60	60.8	60.40	0.80
ï	NHS-31	NHS-102	65	65.2	65.10	0.20
Ni	NHS-32	NHS-103	74.7	68.9	71.80	5.80
	NHS-33	NHS-104	57.3	56.2	56.75	1.10
	NHS-34	NHS-105	79.7	83.3	81.50	3.60

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	65.7	65.8	65.75	0.10
	NHS-30	NHS-101	58.4	59.7	59.05	1.30
n	NHS-31	NHS-102	62.3	61.4	61.85	0.90
Cu	NHS-32	NHS-103	60.8	64.1	62.45	3.30
	NHS-33	NHS-104	73.9	73.4	73.65	0.50
	NHS-34	NHS-105	40.5	38.4	39.45	2.10

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	86.4	85.3	85.85	1.10
	NHS-30	NHS-101	222.9	98.2	160.55	124.70
$\it u$	NHS-31	NHS-102	91.9	90.4	91.15	1.50
Zn	NHS-32	NHS-103	93.4	90.4	91.90	3.00
	NHS-33	NHS-104	84.4	89.3	86.85	4.90
	NHS-34	NHS-105	77.9	80.4	79.15	2.50

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	0.413	0.567	0.49	0.15
	NHS-30	NHS-101	0.441	0.557	0.50	0.12
مم	NHS-31	NHS-102	0.446	0.529	0.49	0.08
Ag	NHS-32	NHS-103	0.488	0.479	0.48	0.01
	NHS-33	NHS-104	0.521	0.418	0.47	0.10
	NHS-34	NHS-105	0.543	0.393	0.47	0.15

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	145	146.4	145.70	1.40
	NHS-30	NHS-101	199.7	199.1	199.40	0.60
<u>.</u>	NHS-31	NHS-102	160.7	157.5	159.10	3.20
Sr	NHS-32	NHS-103	144.6	144.8	144.70	0.20
	NHS-33	NHS-104	125.6	122.8	124.20	2.80
	NHS-34	NHS-105	159.9	158.6	159.25	1.30

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	18.4	18.1	18.25	0.30
	NHS-30	NHS-101	19.4	18.4	18.90	1.00
_	NHS-31	NHS-102	18.2	18.2	18.20	0.00
Y	NHS-32	NHS-103	18.4	18.5	18.45	0.10
	NHS-33	NHS-104	17.3	17.5	17.40	0.20
	NHS-34	NHS-105	19.3	19.3	19.30	0.00

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	98.4	98	98.20	0.40
	NHS-30	NHS-101	104.9	104.2	104.55	0.70
i.	NHS-31	NHS-102	104.9	103.6	104.25	1.30
ΊZ	NHS-32	NHS-103	102.5	100.9	101.70	1.60
	NHS-33	NHS-104	88.5	84.9	86.70	3.60
	NHS-34	NHS-105	135.9	138.9	137.40	3.00

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	11.9	13.2	12.55	1.30
	NHS-30	NHS-101	10.9	11.6	11.25	0.70
9	NHS-31	NHS-102	13.4	14.1	13.75	0.70
q_N	NHS-32	NHS-103	13.3	13.7	13.50	0.40
-	NHS-33	NHS-104	13	11.6	12.30	1.40
	NHS-34	NHS-105	15	14.9	14.95	0.10

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	10.1	9.3	9.70	0.80
	NHS-30	NHS-101	9.7	9.3	9.50	0.40
S	NHS-31	NHS-102	9.8	9.3	9.55	0.50
Cs	NHS-32	NHS-103	10.8	9	9.90	1.80
	NHS-33	NHS-104	8.9	9.5	9.20	0.60
	NHS-34	NHS-105	8.5	7	7.75	1.50

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	336.9	287.1	312.00	49.80
	NHS-30	NHS-101	261.1	243.5	252.30	17.60
a	NHS-31	NHS-102	323.1	220.7	271.90	102.40
Ba	NHS-32	NHS-103	233.4	244.7	239.05	11.30
	NHS-33	NHS-104	306.6	254.5	280.55	52.10
	NHS-34	NHS-105	418.9	312.3	365.60	106.60

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	31.7	50.4	41.05	18.70
	NHS-30	NHS-101	15.4	28.7	22.05	13.30
z	NHS-31	NHS-102	29.9	47.3	38.60	17.40
La	NHS-32	NHS-103	16.5	31.1	23.80	14.60
	NHS-33	NHS-104	37.5	26.7	32.10	10.80
	NHS-34	NHS-105	29	50.2	39.60	21.20

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	0.443	0.266	0.35	0.18
	NHS-30	NHS-101	0.484	0.219	0.35	0.27
i.	NHS-31	NHS-102	0.446	0.184	0.32	0.26
Bi	NHS-32	NHS-103	0.431	0.223	0.33	0.21
	NHS-33	NHS-104	0.394	0.32	0.36	0.07
	NHS-34	NHS-105	0.319	0.452	0.39	0.13

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	51051	15923	33487	35128
	NHS-30	NHS-101	38098	14790	26444	23308
\boldsymbol{a}	NHS-31	NHS-102	23343	25665	24504	2323
NI	NHS-32	NHS-103	17568	40075	28821	22508
	NHS-33	NHS-104	17915	56558	37236	38643
	NHS-34	NHS-105	16790	72840	44815	56050

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	75893	85942	80917.67	10048.67
	NHS-30	NHS-101	80122	81392	80757	1270.00
1	NHS-31	NHS-102	83386	76298	79842	7088.00
Al	NHS-32	NHS-103	86234	71388	78811	14846.00
	NHS-33	NHS-104	88572	69714	79143	18858.00
	NHS-34	NHS-105	89088	70810	79949	18278.00

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	9.6	8.3	8.95	1.30
	NHS-30	NHS-101	11.1	9.5	10.3	1.60
9	NHS-31	NHS-102	20.2	15.8	18	4.40
Pb	NHS-32	NHS-103	14.1	14.3	14.2	0.20
	NHS-33	NHS-104	22.8	19.5	21.15	3.30
	NHS-34	NHS-105	14.2	12.2	13.2	2.00

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	2.3	1.5	1.90	0.80
	NHS-30	NHS-101	1.5	3.9	2.70	2.40
1	NHS-31	NHS-102	1.5	1.5	1.50	0.00
\boldsymbol{D}	NHS-32	NHS-103	1.5	2.4	1.95	0.90
	NHS-33	NHS-104	3.3	2.5	2.90	0.80
	NHS-34	NHS-105	1.5	2.6	2.05	1.10

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	668.9	736.3	702.60	67.40
	NHS-30	NHS-101	1415	1412	1413.45	2.30
	NHS-31	NHS-102	908.5	942.2	925.35	33.70
P	NHS-32	NHS-103	873.6	831.6	852.60	42.00
	NHS-33	NHS-104	530.5	602.8	566.65	72.30
	NHS-34	NHS-105	724.5	772.7	748.60	48.20

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	4452	4464	4458.05	12.30
	NHS-30	NHS-101	6963	6877	6919.70	86.00
:2	NHS-31	NHS-102	6082	5856	5968.90	225.80
Ti	NHS-32	NHS-103	6205	6186	6195.75	19.30
-	NHS-33	NHS-104	5022	5001	5011.05	20.90
	NHS-34	NHS-105	4295	4301	4298.15	5.50

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	412.7	389.2	400.95	23.50
	NHS-30	NHS-101	327.3	551.1	439.20	223.80
	NHS-31	NHS-102	466.4	339.9	403.15	126.50
S	NHS-32	NHS-103	448.1	326.1	387.10	122.00
	<i>NHS-33</i>	NHS-104	356.5	570.6	463.55	214.10
	NHS-34	NHS-105	540.5	845.9	693.20	305.40

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	9	8	8.50	1.00
	NHS-30	NHS-101	9.6	8.7	9.15	0.90
S	NHS-31	NHS-102	12.3	10.7	11.50	1.60
<u></u>	NHS-32	NHS-103	11	10.2	10.60	0.80
	NHS-33	NHS-104	12.8	11.4	12.10	1.40
	NHS-34	NHS-105	10.2	9.3	9.75	0.90

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	М	D
	NHS-29	NHS-100	13.6	76.4	45.00	62.80
	NHS-30	NHS-101	3.75	6.3	5.03	2.55
<i>a</i>	NHS-31	NHS-102	3.75	50.9	27.33	47.15
Ce	NHS-32	NHS-103	3.75	40.7	22.23	36.95
	NHS-33	NHS-104	15.5	3.75	9.63	11.75
	NHS-34	NHS-105	26.2	79.5	52.85	53.30

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	1164	1223	1193.70	58.80
	NHS-30	NHS-101	1223	1236	1229.60	13.20
u	NHS-31	NHS-102	1222	1232	1226.95	10.90
Mn	NHS-32	NHS-103	1246	1266	1255.90	19.20
	NHS-33	NHS-104	1262	1279	1270.85	16.90
	NHS-34	NHS-105	1008	1023	1015.75	15.30

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	59.1	60.3	59.70	1.20
	NHS-30	NHS-101	47.4	46.3	46.85	1.10
4	NHS-31	NHS-102	49.6	48.9	49.25	0.70
Rb	NHS-32	NHS-103	51.6	49.5	50.55	2.10
	NHS-33	NHS-104	51.2	50.4	50.80	0.80
	NHS-34	NHS-105	67	68.5	67.75	1.50

Table (3-1): Mean and Difference of Duplicated Analoysis

Variable	Sample No.	D No.	X1	X2	М	D
	NHS-29	NHS-100	25.8	28.9	27.35	3.10
	NHS-30	NHS-101	32	29.5	30.75	2.50
S	NHS-31	NHS-102	26.4	26.9	26.65	0.50
Sc	NHS-32	NHS-103	32.2	29.3	30.75	2.90
	NHS-33	NHS-104	28.1	29.3	28.70	1.20
	NHS-34	NHS-105	23.3	23.8	23.55	0.50

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	28533	30350	29442	1817
	NHS-30	NHS-101	27783	33075	30429	5292
. a	NHS-31	NHS-102	25775	34225	30000	8450
Fe	NHS-32	NHS-103	24925	34100	29513	9175
	NHS-33	NHS-104	25750	32275	29013	6525
	NHS-34	NHS-105	26725	30425	28575	3700

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	35287	40375	37831	5088
	NHS-30	NHS-101	32410	43085	37748	10675
	NHS-31	NHS-102	31763	44665	38214	12903
K	NHS-32	NHS-103	32570	45420	38995	12850
	NHS-33	NHS-104	35408	43540	39474	8133
	NHS-34	NHS-105	38123	39935	39029	1813

Table (3-1): Mean and Difference of Duplicated Analoysis

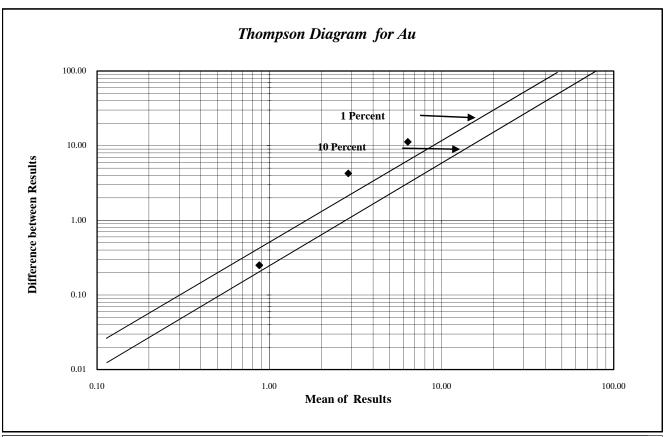
Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	23.15	19.8	21	3
	NHS-30	NHS-101	22.29	21.69	22	1
	NHS-31	NHS-102	20.2	23.34	22	3
Li	NHS-32	NHS-103	18.63	23.9	21	5
	NHS-33	NHS-104	17.55	23.9	21	6
	NHS-34	NHS-105	17.74	23.55	21	6

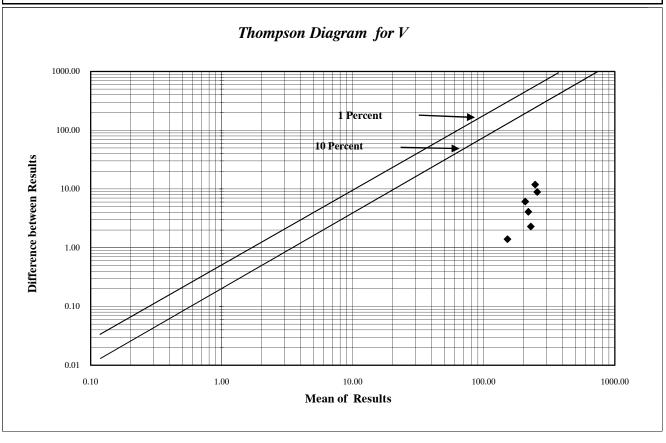
Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	11934	9155	10545	2779
	NHS-30	NHS-101	11680	9683	10681	1998
می	NHS-31	NHS-102	10746	10505	10625	241
Mg	NHS-32	NHS-103	9877	10708	10292	831
	NHS-33	NHS-104	8668	11078	9873	2410
	NHS-34	NHS-105	8485	11395	9940	2910

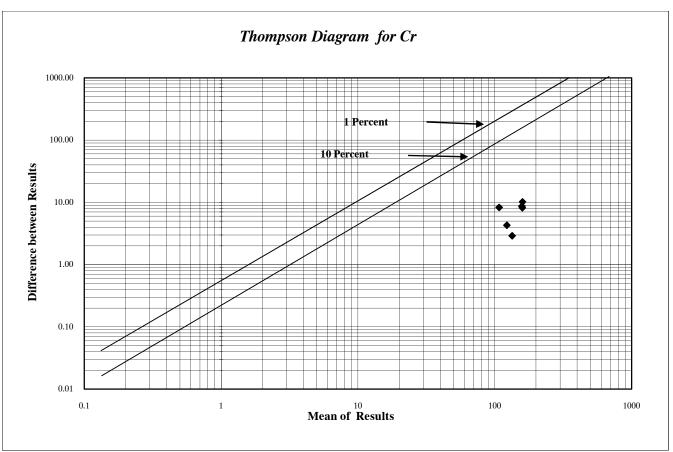
Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	11788	15693	13740	3904
	NHS-30	NHS-101	13203	13490	13347	287
a a	NHS-31	NHS-102	16447	13348	14897	3099
Na	NHS-32	NHS-103	19168	13283	16225	5885
	NHS-33	NHS-104	19280	12198	15739	7083
	NHS-34	NHS-105	18228	11708	14968	6520

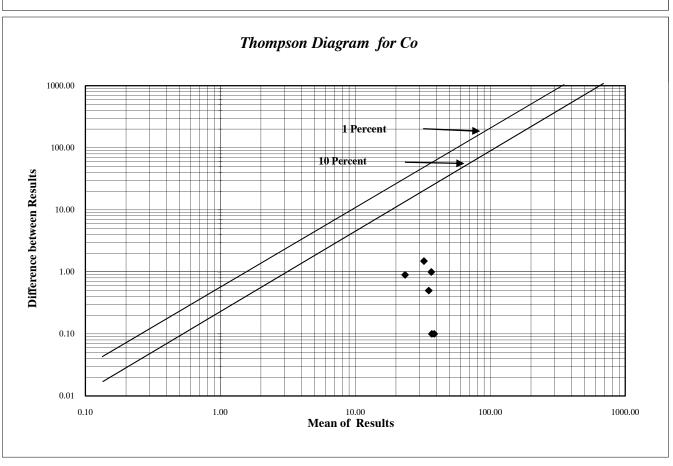
Table (3-1): Mean and Difference of Duplicated Analoysis

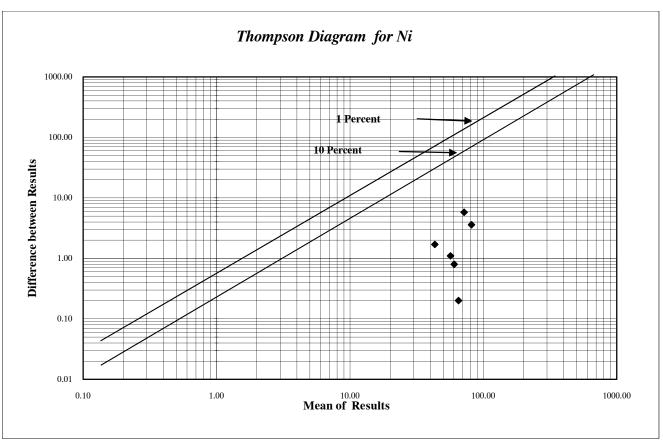
Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	2.535	1.969	2	1
	NHS-30	NHS-101	2.316	2.325	2	0
9	NHS-31	NHS-102	2.049	2.725	2	1
qS	NHS-32	NHS-103	1.861	3.031	2	1
	NHS-33	NHS-104	1.635	2.863	2	1
	NHS-34	NHS-105	1.544	2.731	2	1

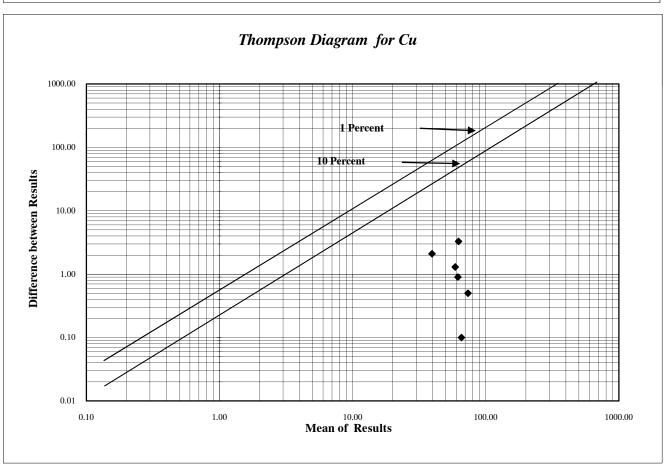

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	12.98	9.958	11.47	3.02
	NHS-30	NHS-101	12.12	10.38	11.25	1.74
<u>ی</u>	NHS-31	NHS-102	11.24	12.06	11.65	0.82
Sc	NHS-32	NHS-103	10.93	13.38	12.15	2.44
	<i>NHS-33</i>	NHS-104	9.974	13.88	11.92	3.90
	NHS-34	NHS-105	9.542	13.81	11.68	4.27

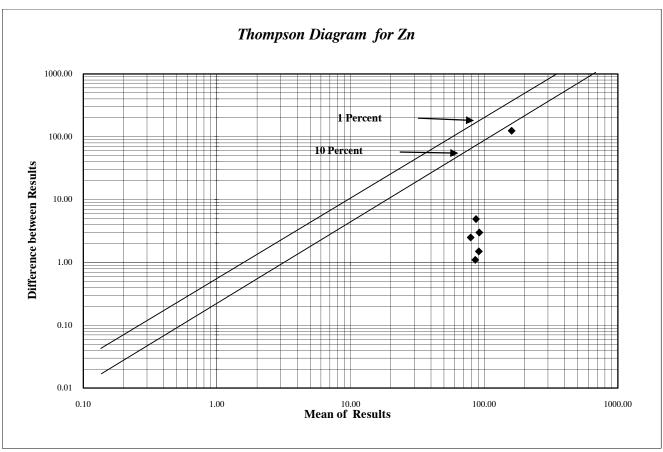

Variable	Sample No.	D No.	X1	X2	M	D
	NHS-29	NHS-100	2.108	1.935	2.02	0.17
	NHS-30	NHS-101	1.984	2.069	2.03	0.08
u	NHS-31	NHS-102	1.843	2.15	2.00	0.31
Sn	NHS-32	NHS-103	1.743	2.225	1.98	0.48
	NHS-33	NHS-104	1.736	2.222	1.98	0.49
	NHS-34	NHS-105	1.783	2.206	1.99	0.42

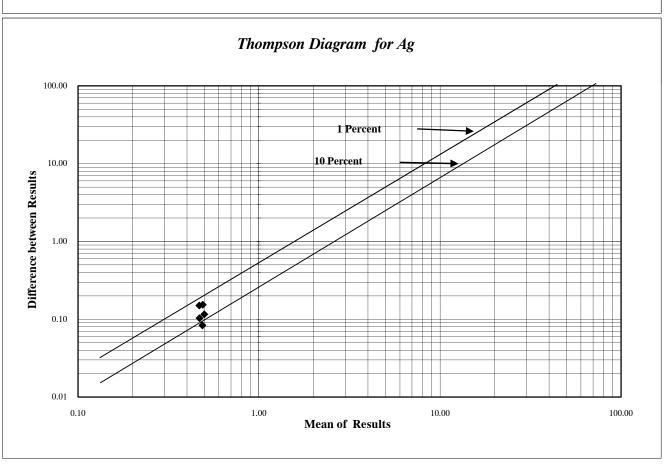

Table (3-1): Mean and Difference of Duplicated Analoysis

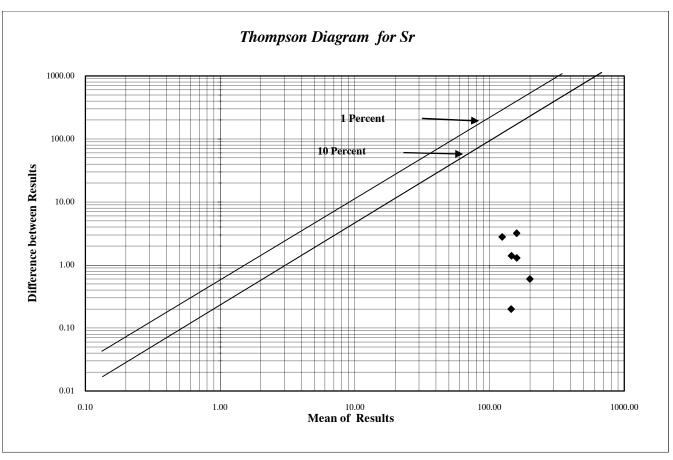

Variable	Sample No.	D No.	X1	X2	M	D
Th	NHS-29	NHS-100	7.815	8.692	8.25	0.88
	NHS-30	NHS-101	7.517	9.094	8.31	1.58
	NHS-31	NHS-102	7.258	8.721	7.99	1.46
	NHS-32	NHS-103	7.113	8.507	7.81	1.39
	NHS-33	NHS-104	7.709	8.292	8.00	0.58
	NHS-34	NHS-105	8.21	8.105	8.16	0.10

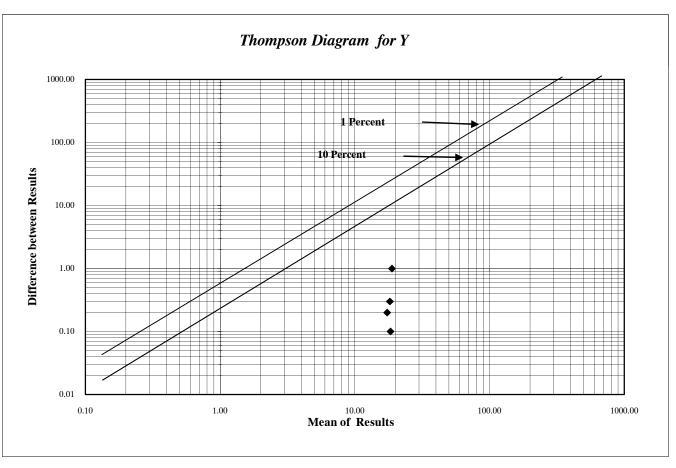

Variable	Sample No.	D No.	X1	X2	M	D
W	NHS-29	NHS-100	0.767	0.748	0.76	0.02
	NHS-30	NHS-101	0.804	0.739	0.77	0.07
	NHS-31	NHS-102	0.842	0.736	0.79	0.11
	NHS-32	NHS-103	0.847	0.769	0.81	0.08
	NHS-33	NHS-104	0.821	0.75	0.79	0.07
	NHS-34	NHS-105	0.763	0.725	0.74	0.04

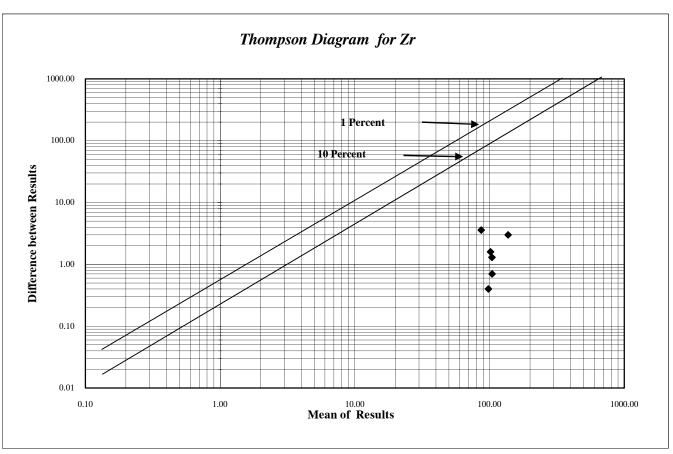


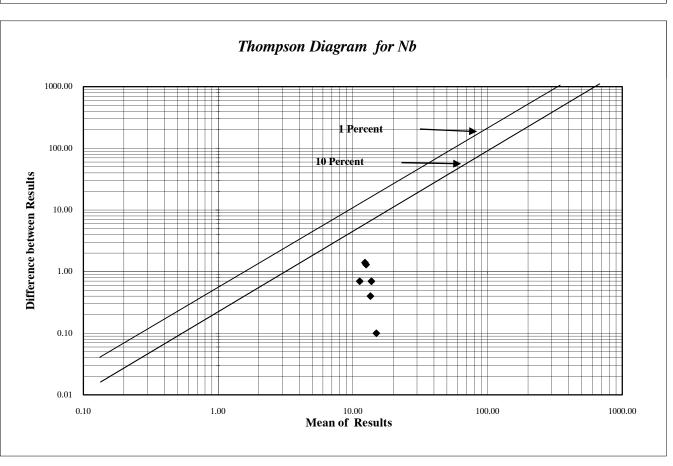


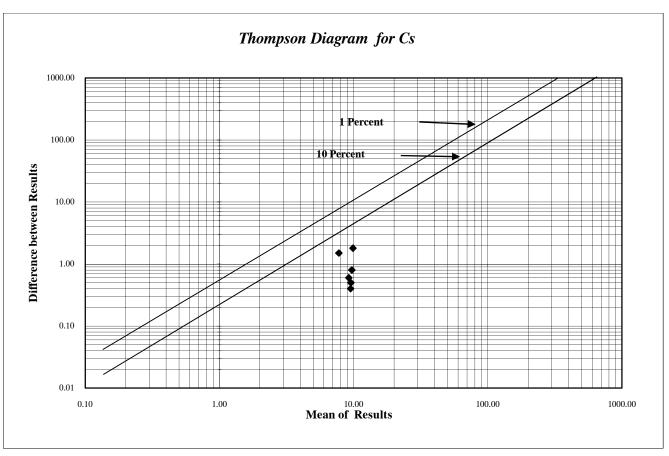


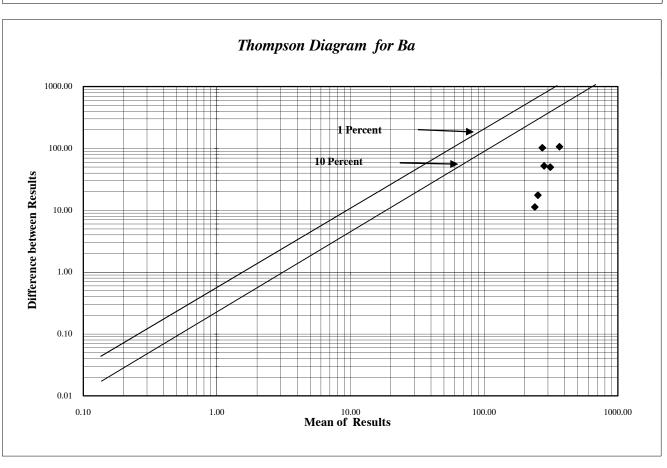


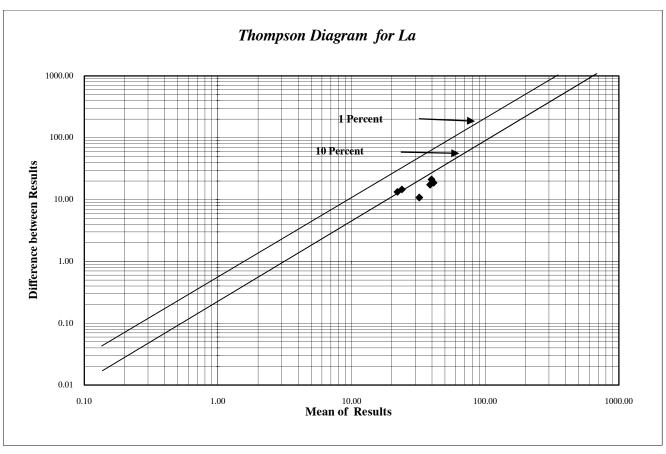


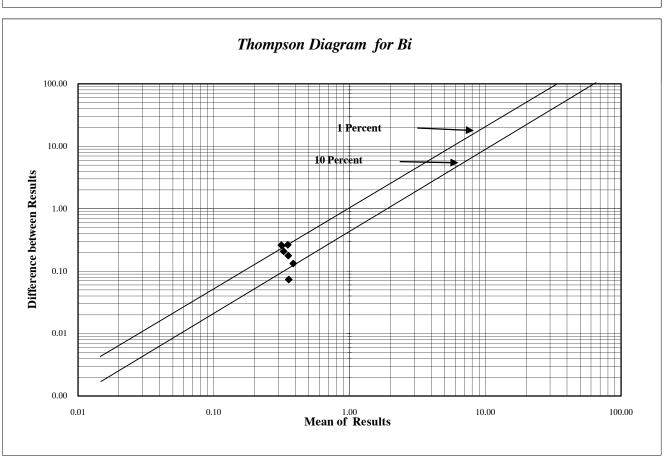


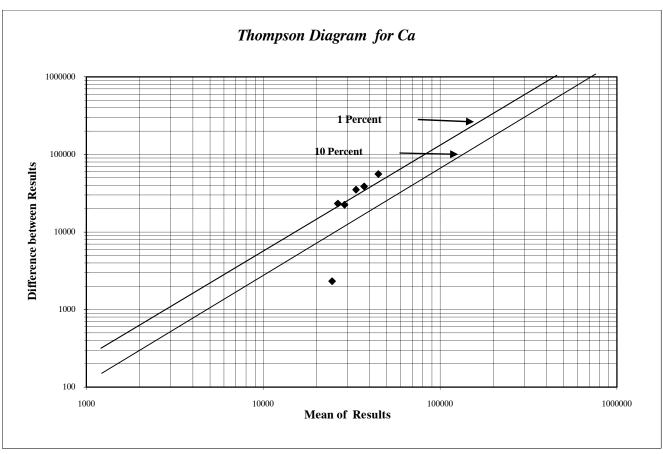


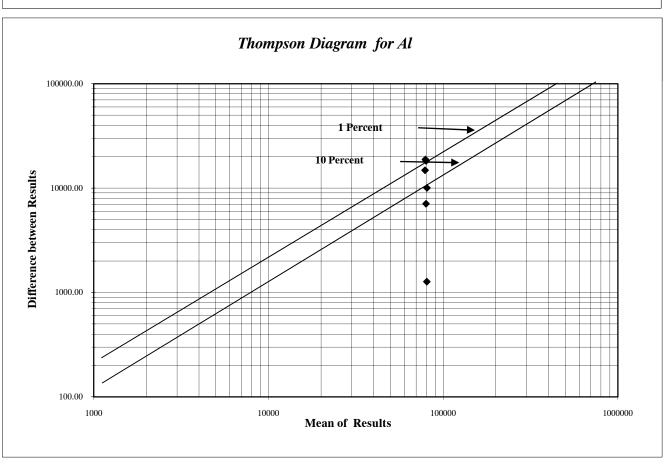


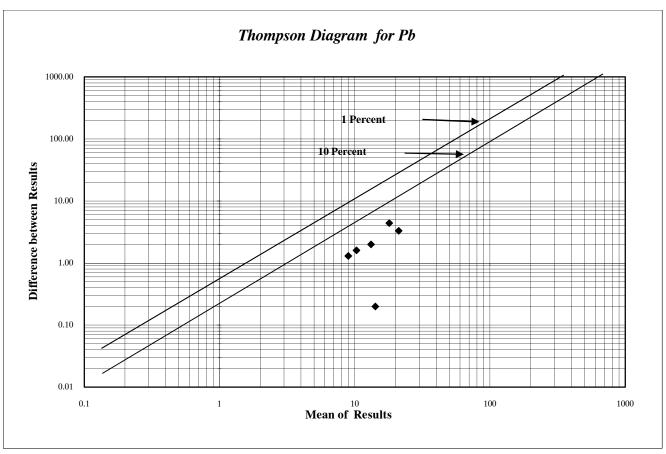


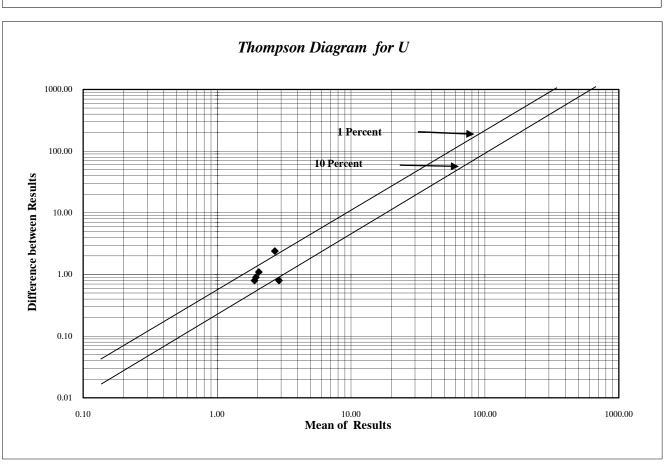


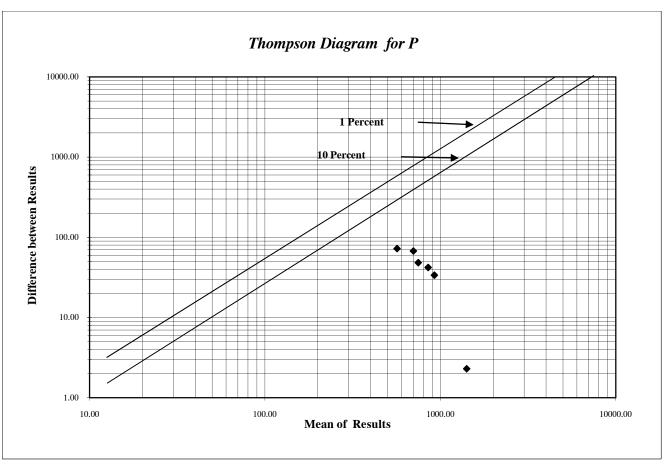


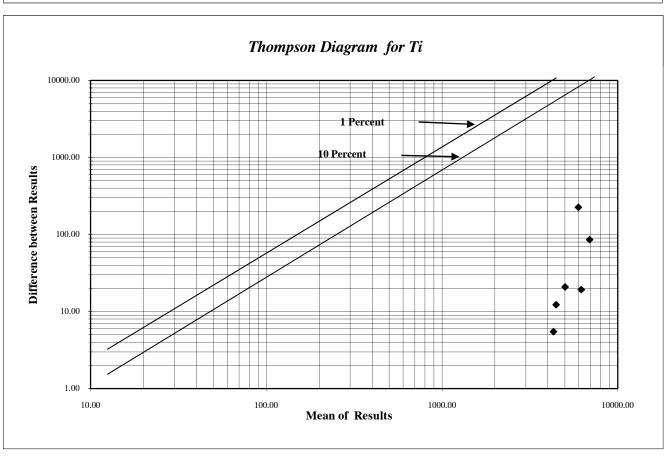


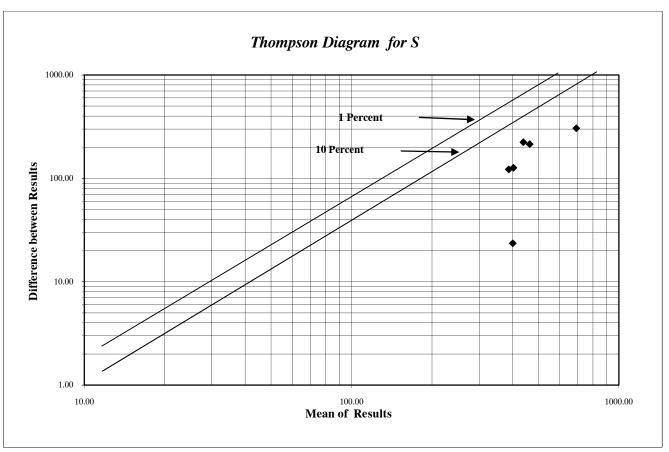


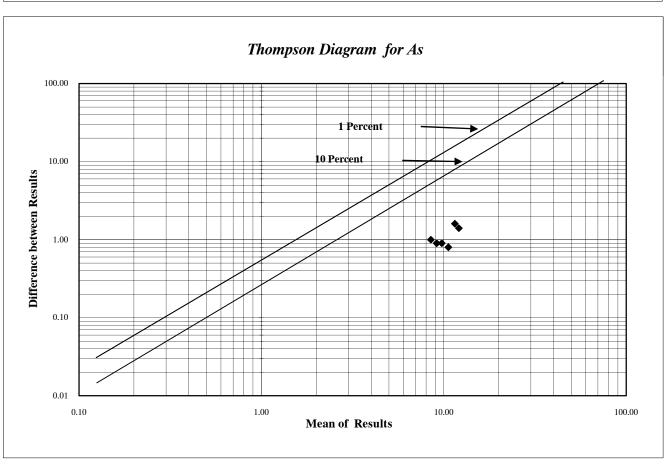


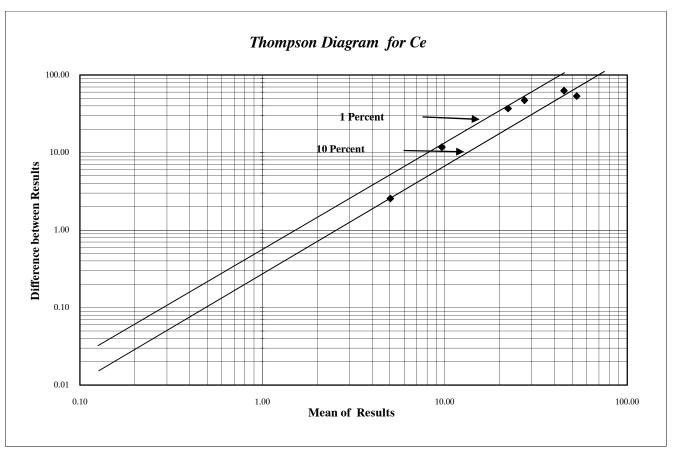


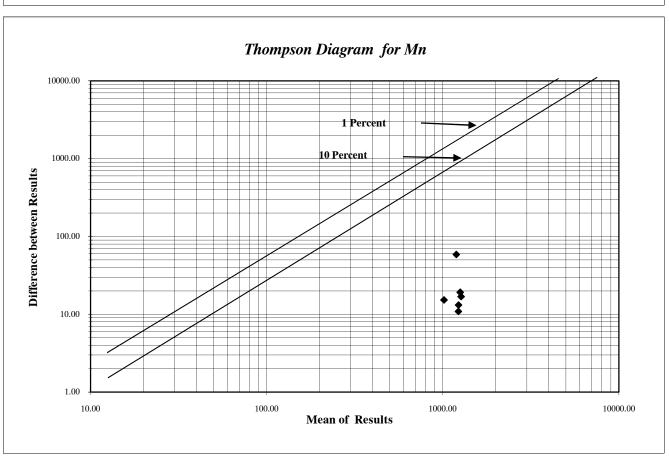


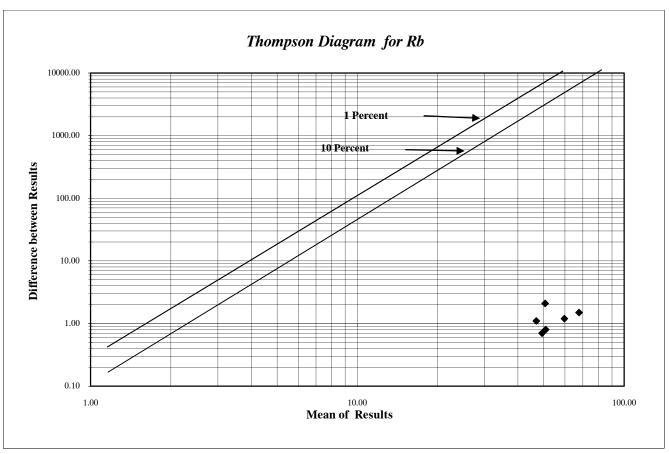


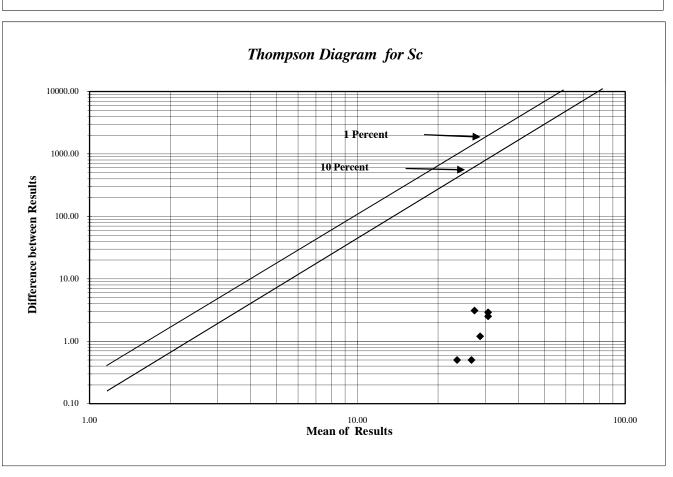


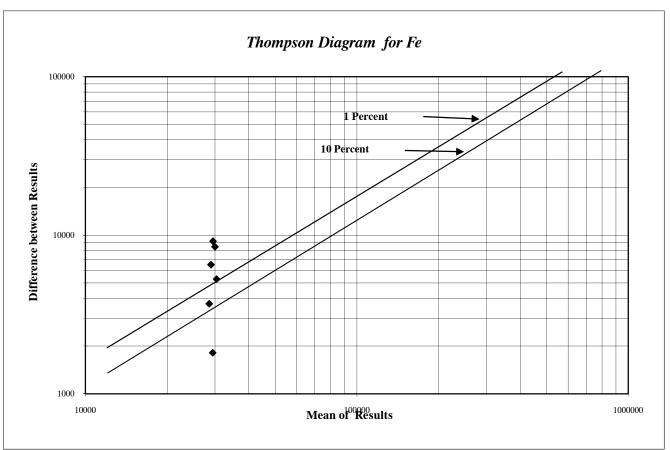


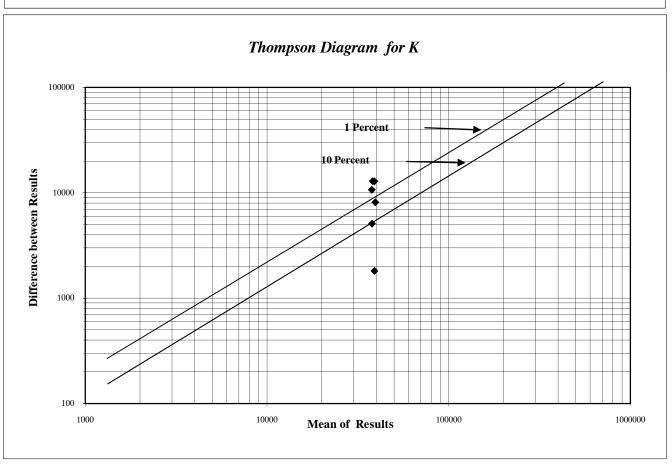


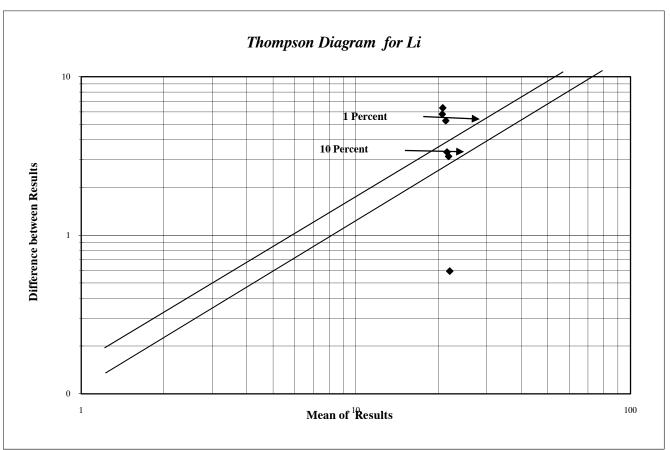


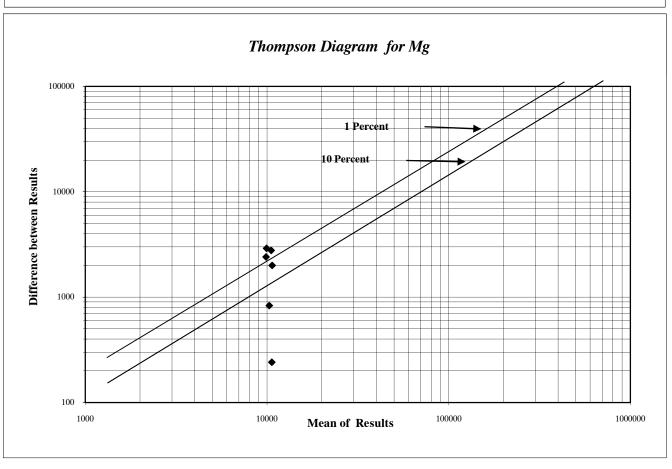


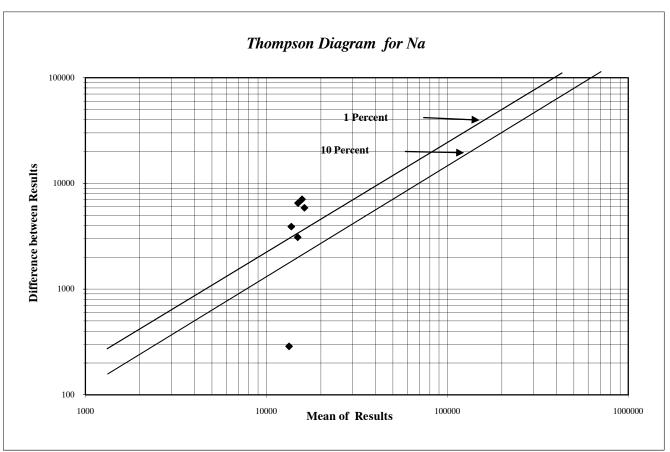


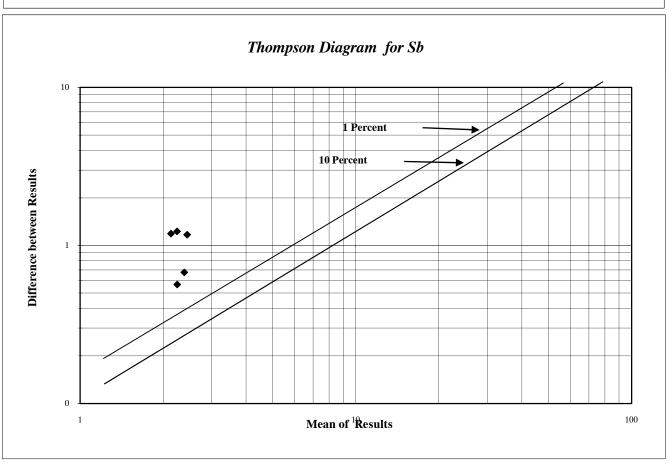


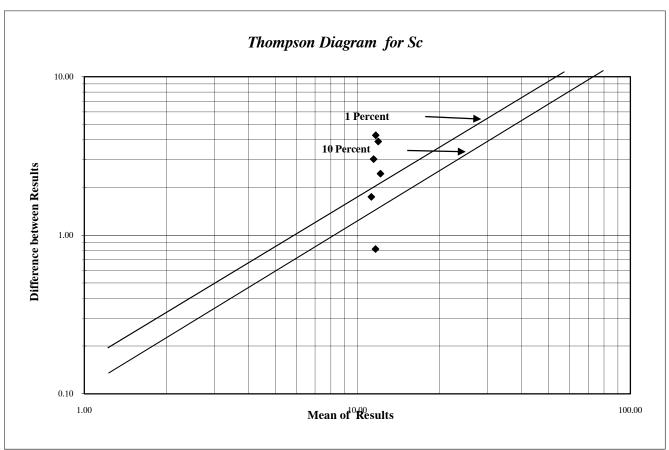


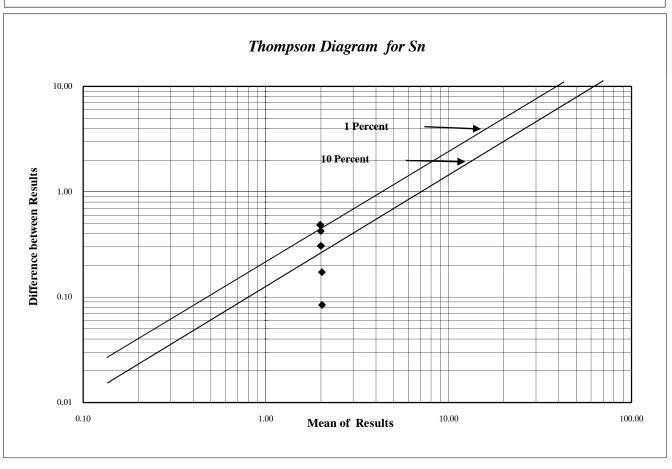


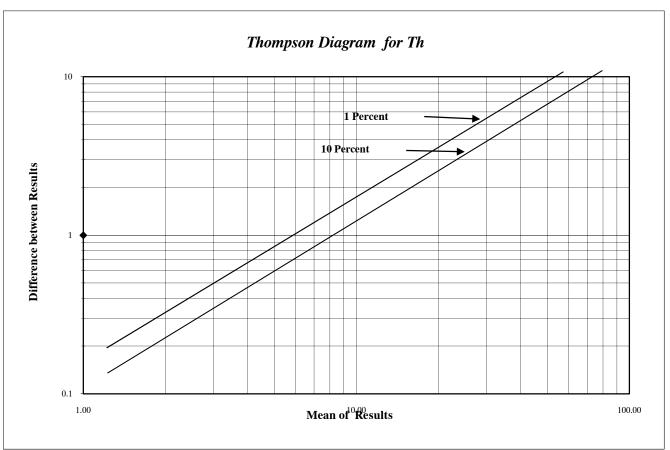


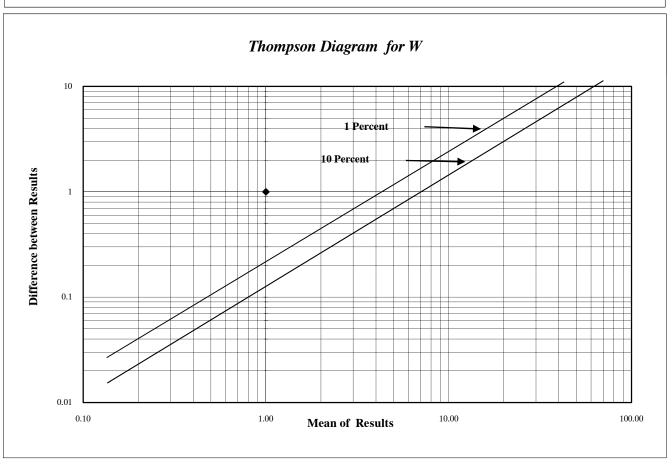


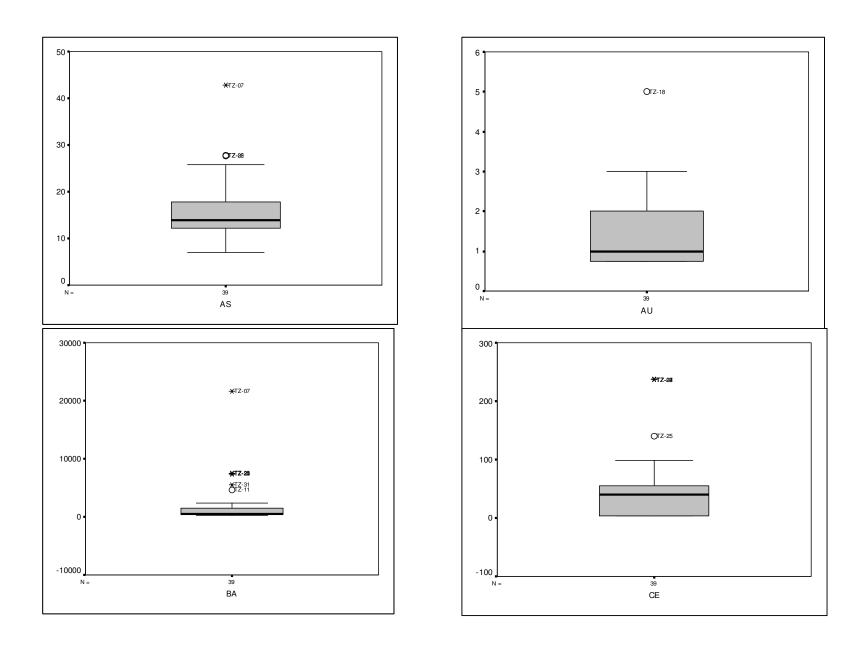


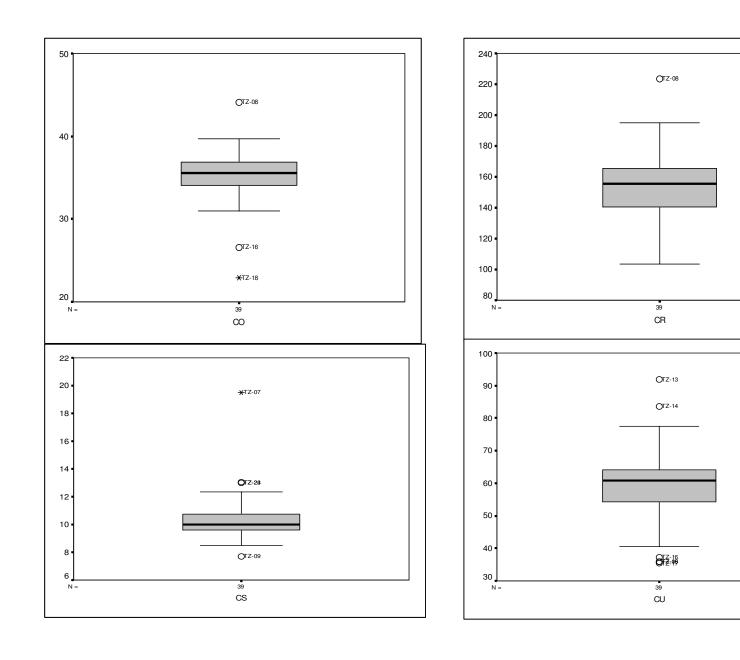


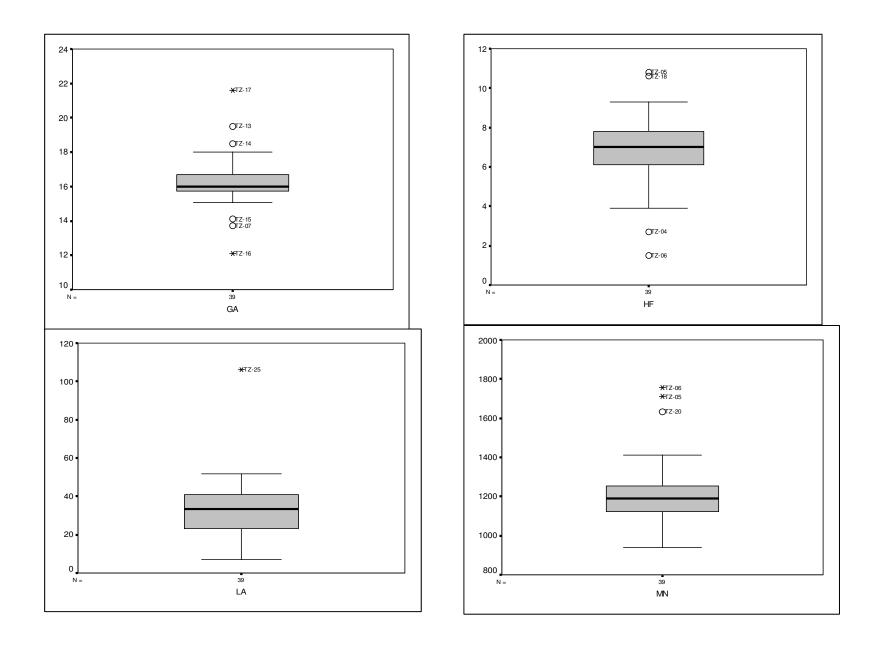


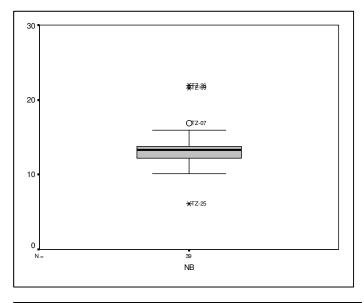


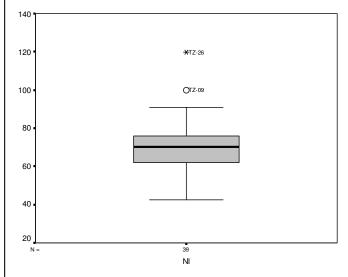


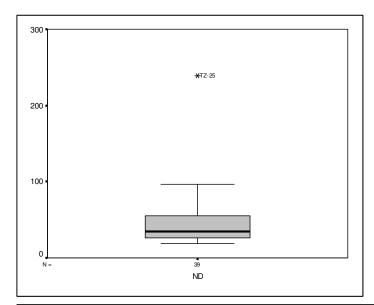


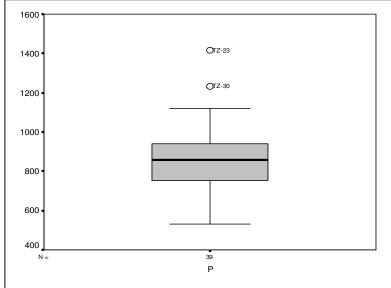


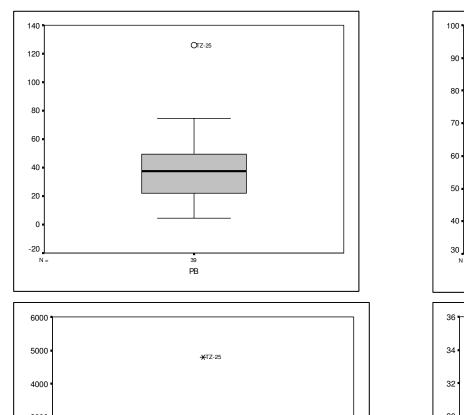


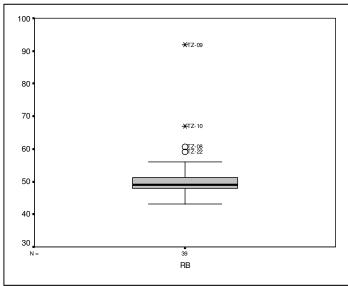


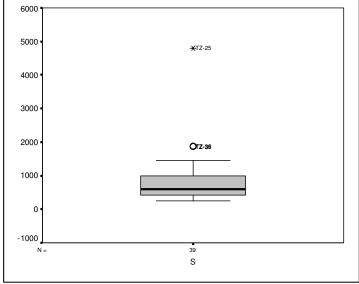


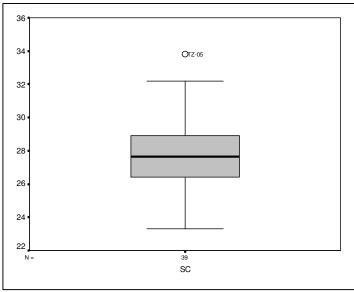


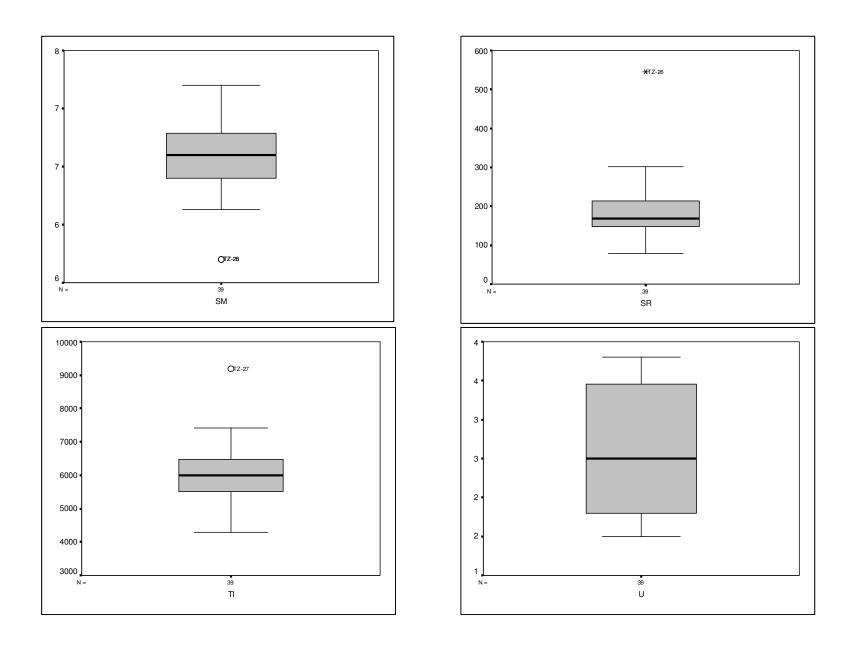


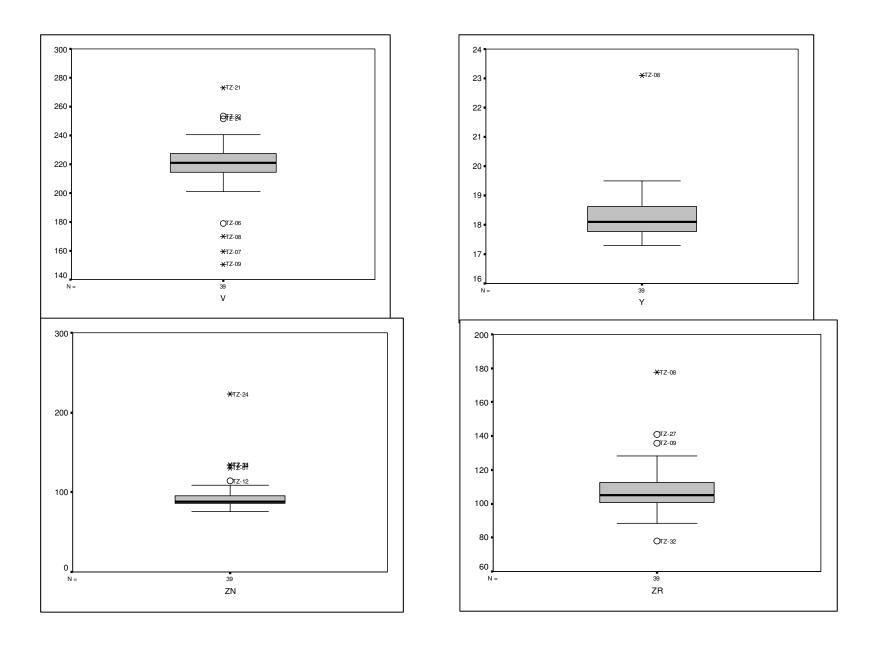












			AS	AU	BA	CE	CO	CR	CS	CU
Spearman's rho	AS	Correlation Coefficient	1.000	.249	.552**	.322	.406*	.308	.291	394*
		Sig. (2-tailed)		.132	.001	.056	.013	.060	.076	.014
		N	38	38	34	36	37	38	38	38
	AU	Correlation Coefficient	.249	1.000	.628**	.655**	.250	.267	348*	.164
		Sig. (2-tailed)	.132	.	.000	.000	.130	.101	.032	.320
		N	38	39	34	36	38	39	38	39
	BA	Correlation Coefficient	.552**	.628**	1.000	.612**	.236	107	.055	.193
		Sig. (2-tailed)	.001	.000		.000	.187	.545	.758	.273
		N	34	34	34	34	33	34	34	34
	CE	Correlation Coefficient	.322	.655**	.612**	1.000	.084	.187	095	.211
		Sig. (2-tailed)	.056	.000	.000	•	.633	.273	.581	.216
		N	36	36	34	36	35	36	36	36
	CO	Correlation Coefficient	.406*	.250	.236	.084	1.000	.015	.173	.300
		Sig. (2-tailed)	.013	.130	.187	.633	·	.927	.307	.067
		N	37	38	33	35	38	38	37	38
	CR	Correlation Coefficient	.308	.267	107	.187	.015	1.000	133	505**
		Sig. (2-tailed)	.060	.101	.545	.273	.927		.426	.001
		N	38	39	34	36	38	39	38	39
	CS	Correlation Coefficient	.291	348*	.055	095	.173	133	1.000	201
		Sig. (2-tailed)	.076	.032	.758	.581	.307	.426		.225
		N	38	38	34	36	37	38	38	38
	CU	Correlation Coefficient	394*	.164	.193	.211	.300	505**	201	1.000
		Sig. (2-tailed)	.014	.320	.273	.216	.067	.001	.225	
		N	38	39	34	36	38	39	38	39
	GA	Correlation Coefficient	396*	.197	080	.014	.151	.178	341*	.556*`
		Sig. (2-tailed)	.017	.242	.661	.939	.379	.292	.042	.000
		N	36	37	32	34	36	37	36	37
	HF	Correlation Coefficient	054	.124	158	126	029	.320*	357*	330*
		Sig. (2-tailed)	.748	.452	.372	.464	.861	.047	.028	.040
		N	38	39	34	36	38	39	38	39
	LA	Correlation Coefficient	251	.115	.112	.160	251	.118	026	.176
		Sig. (2-tailed)	.135	.492	.527	.359	.135	.479	.879	.290
		N	37	38	34	35	37	38	37	38

			AS	AU	ВА	CE	CO	CR	CS	CU
Spearman's rho	MN	Correlation Coefficient	049	.031	.124	011	020	155	.246	032
		Sig. (2-tailed)	.776	.857	.499	.950	.909	.360	.148	.849
		N	36	37	32	34	36	37	36	37
	NB	Correlation Coefficient	042	074	181	385*	134	.251	201	166
		Sig. (2-tailed)	.808	.662	.321	.025	.438	.134	.239	.327
		N	36	37	32	34	36	37	36	37
	ND	Correlation Coefficient	265	.071	.051	.102	267	.192	.094	.065
		Sig. (2-tailed)	.112	.673	.775	.561	.110	.247	.581	.699
		N	37	38	34	35	37	38	37	38
	NI	Correlation Coefficient	107	144	260	181	239	.196	204	049
		Sig. (2-tailed)	.529	.389	.144	.297	.154	.239	.227	.771
		N	37	38	33	35	37	38	37	38
	Р	Correlation Coefficient	009	260	036	029	.072	222	.087	.088
		Sig. (2-tailed)	.956	.110	.839	.865	.669	.174	.605	.593
		N	38	39	34	36	38	39	38	39
	PB	Correlation Coefficient	.123	.285	.175	.207	.027	.387*	.053	071
		Sig. (2-tailed)	.475	.088	.337	.241	.874	.018	.758	.678
		N	36	37	32	34	36	37	36	37
	RB	Correlation Coefficient	096	089	166	200	095	248	340*	.034
		Sig. (2-tailed)	.566	.591	.347	.242	.571	.127	.037	.837
		N	38	39	34	36	38	39	38	39
	S	Correlation Coefficient	184	017	077	.021	179	.260	.085	026
		Sig. (2-tailed)	.276	.921	.663	.907	.290	.115	.618	.877
		N	37	38	34	35	37	38	37	38
	SC	Correlation Coefficient	088	005	.080	146	.015	287	.157	.019
		Sig. (2-tailed)	.598	.977	.655	.397	.929	.076	.347	.910
		N	38	39	34	36	38	39	38	39
	SM	Correlation Coefficient	176	119	020	199	245	196	180	.096
		Sig. (2-tailed)	.292	.471	.908	.244	.139	.233	.280	.563
		N	38	39	34	36	38	39	38	39
	SR	Correlation Coefficient	067	170	102	303	.049	.297	.273	063
		Sig. (2-tailed)	.693	.308	.572	.077	.772	.070	.102	.706
		N	37	38	33	35	37	38	37	38

Table (2-4): Spearman Correlation on raw datas of Taz e Tab's geochemichal samples

			AS	AU	BA	CE	CO	CR	CS	CU
Spearman's rho	TI	Correlation Coefficient	141	286	326	507**	.234	.016	.118	.127
		Sig. (2-tailed)	.398	.078	.060	.002	.158	.925	.480	.440
		N	38	39	34	36	38	39	38	39
	U	Correlation Coefficient	259	.023	.052	027	298	.222	.017	.095
		Sig. (2-tailed)	.116	.891	.772	.878	.069	.174	.918	.565
		N	38	39	34	36	38	39	38	39
	V	Correlation Coefficient	058	.194	.069	.251	014	.069	124	055
		Sig. (2-tailed)	.741	.265	.711	.158	.938	.695	.479	.754
		N	35	35	31	33	35	35	35	35
	Υ	Correlation Coefficient	.090	134	109	140	.184	360*	071	029
		Sig. (2-tailed)	.596	.424	.544	.421	.268	.026	.676	.861
		N	37	38	33	35	38	38	37	38
	ZN	Correlation Coefficient	237	158	270	291	.155	152	128	.094
		Sig. (2-tailed)	.176	.366	.142	.100	.381	.384	.470	.592
		N	34	35	31	33	34	35	34	35
	ZR	Correlation Coefficient	042	064	029	059	395*	.050	.035	200
		Sig. (2-tailed)	.803	.703	.874	.736	.014	.766	.836	.229
		N	37	38	33	35	38	38	37	38

			GA	HF	LA	MN	NB	ND	NI	Р
Spearman's rho	AS	Correlation Coefficient	396*	054	251	049	042	265	107	009
		Sig. (2-tailed)	.017	.748	.135	.776	.808	.112	.529	.956
		N	36	38	37	36	36	37	37	38
	AU	Correlation Coefficient	.197	.124	.115	.031	074	.071	144	260
		Sig. (2-tailed)	.242	.452	.492	.857	.662	.673	.389	.110
		N	37	39	38	37	37	38	38	39
	BA	Correlation Coefficient	080	158	.112	.124	181	.051	260	036
		Sig. (2-tailed)	.661	.372	.527	.499	.321	.775	.144	.839
		N	32	34	34	32	32	34	33	34
	CE	Correlation Coefficient	.014	126	.160	011	385*	.102	181	029
		Sig. (2-tailed)	.939	.464	.359	.950	.025	.561	.297	.865
		N	34	36	35	34	34	35	35	36
	CO	Correlation Coefficient	.151	029	251	020	134	267	239	.072
		Sig. (2-tailed)	.379	.861	.135	.909	.438	.110	.154	.669
		N	36	38	37	36	36	37	37	38
	CR	Correlation Coefficient	.178	.320*	.118	155	.251	.192	.196	222
		Sig. (2-tailed)	.292	.047	.479	.360	.134	.247	.239	.174
		N	37	39	38	37	37	38	38	39
	CS	Correlation Coefficient	341*	357*	026	.246	201	.094	204	.087
		Sig. (2-tailed)	.042	.028	.879	.148	.239	.581	.227	.605
		N	36	38	37	36	36	37	37	38
	CU	Correlation Coefficient	.556**	330*	.176	032	166	.065	049	.088
		Sig. (2-tailed)	.000	.040	.290	.849	.327	.699	.771	.593
		N	37	39	38	37	37	38	38	39
	GA	Correlation Coefficient	1.000	.274	.196	068	.061	.189	.170	048
		Sig. (2-tailed)		.100	.252	.698	.729	.269	.323	.780
		N	37	37	36	35	35	36	36	37
	HF	Correlation Coefficient	.274	1.000	154	042	.119	167	.110	111
		Sig. (2-tailed)	.100		.356	.805	.484	.315	.509	.502
		N	37	39	38	37	37	38	38	39
	LA	Correlation Coefficient	.196	154	1.000	196	.126	.902**	.126	343*
		Sig. (2-tailed)	.252	.356		.252	.466	.000	.459	.035
		N	36	38	38	36	36	38	37	38

			GA	HF	LA	MN	NB	ND	NI	Р
Spearman's rho	MN	Correlation Coefficient	068	042	196	1.000	505**	084	657**	.032
		Sig. (2-tailed)	.698	.805	.252		.002	.628	.000	.852
		N	35	37	36	37	35	36	36	37
	NB	Correlation Coefficient	.061	.119	.126	505**	1.000	.008	.807**	194
		Sig. (2-tailed)	.729	.484	.466	.002		.963	.000	.251
		N	35	37	36	35	37	36	37	37
	ND	Correlation Coefficient	.189	167	.902**	084	.008	1.000	.083	306
		Sig. (2-tailed)	.269	.315	.000	.628	.963		.626	.062
		N	36	38	38	36	36	38	37	38
	NI	Correlation Coefficient	.170	.110	.126	657**	.807**	.083	1.000	.054
		Sig. (2-tailed)	.323	.509	.459	.000	.000	.626	.	.747
		N	36	38	37	36	37	37	38	38
	Р	Correlation Coefficient	048	111	343*	.032	194	306	.054	1.000
		Sig. (2-tailed)	.780	.502	.035	.852	.251	.062	.747	
		N	37	39	38	37	37	38	38	39
	PB	Correlation Coefficient	.210	.037	.553**	470**	.165	.680**	.293	413*
		Sig. (2-tailed)	.226	.830	.000	.004	.338	.000	.083	.011
		N	35	37	36	35	36	36	36	37
	RB	Correlation Coefficient	189	.019	216	.067	.210	412*	.024	033
		Sig. (2-tailed)	.263	.910	.192	.693	.213	.010	.887	.843
		N	37	39	38	37	37	38	38	39
	S	Correlation Coefficient	.205	049	.744**	230	.082	.885**	.240	230
		Sig. (2-tailed)	.231	.770	.000	.176	.635	.000	.152	.165
		N	36	38	38	36	36	38	37	38
	SC	Correlation Coefficient	011	.066	135	.839**	402*	100	589**	.128
		Sig. (2-tailed)	.948	.688	.420	.000	.014	.550	.000	.438
		N	37	39	38	37	37	38	38	39
	SM	Correlation Coefficient	119	043	.254	.282	.052	.005	167	033
		Sig. (2-tailed)	.484	.793	.124	.091	.761	.977	.316	.840
		N	37	39	38	37	37	38	38	39
	SR	Correlation Coefficient	.233	.082	.267	051	.188	.363*	.201	.024
		Sig. (2-tailed)	.171	.626	.110	.768	.265	.027	.227	.889
		N	36	38	37	36	37	37	38	38

Table (2-4): Spearman Correlation on raw datas of Taz e Tab's geochemichal samples

			GA	HF	LA	MN	NB	ND	NI	Р
Spearman's rho	TI	Correlation Coefficient	.131	112	.098	001	.216	.040	.102	207
		Sig. (2-tailed)	.440	.498	.559	.994	.199	.810	.543	.206
		N	37	39	38	37	37	38	38	39
	U	Correlation Coefficient	.325*	004	.409*	.233	.119	.416**	.083	010
		Sig. (2-tailed)	.050	.978	.011	.165	.484	.009	.622	.950
		N	37	39	38	37	37	38	38	39
	V	Correlation Coefficient	.075	.072	.017	144	015	.039	011	080
		Sig. (2-tailed)	.677	.682	.923	.425	.935	.827	.951	.650
		N	33	35	34	33	34	34	34	35
	Υ	Correlation Coefficient	203	.035	395*	146	052	443**	.002	.104
		Sig. (2-tailed)	.235	.834	.016	.397	.765	.006	.988	.536
		N	36	38	37	36	36	37	37	38
	ZN	Correlation Coefficient	.051	.013	020	044	003	.015	079	225
		Sig. (2-tailed)	.780	.942	.912	.807	.987	.934	.657	.194
		N	33	35	34	33	33	34	34	35
	ZR	Correlation Coefficient	.050	063	.347*	174	.031	.406*	.212	132
		Sig. (2-tailed)	.774	.707	.035	.310	.860	.013	.207	.430
		N	36	38	37	36	36	37	37	38

			PB	RB	S	SC	SM	SR	TI	U
Spearman's rho	AS	Correlation Coefficient	.123	096	184	088	176	067	141	259
		Sig. (2-tailed)	.475	.566	.276	.598	.292	.693	.398	.116
		N	36	38	37	38	38	37	38	38
	AU	Correlation Coefficient	.285	089	017	005	119	170	286	.023
		Sig. (2-tailed)	.088	.591	.921	.977	.471	.308	.078	.891
		N	37	39	38	39	39	38	39	39
	BA	Correlation Coefficient	.175	166	077	.080	020	102	326	.052
		Sig. (2-tailed)	.337	.347	.663	.655	.908	.572	.060	.772
		N	32	34	34	34	34	33	34	34
	CE	Correlation Coefficient	.207	200	.021	146	199	303	507**	027
		Sig. (2-tailed)	.241	.242	.907	.397	.244	.077	.002	.878
		N	34	36	35	36	36	35	36	36
	CO	Correlation Coefficient	.027	095	179	.015	245	.049	.234	298
		Sig. (2-tailed)	.874	.571	.290	.929	.139	.772	.158	.069
		N	36	38	37	38	38	37	38	38
	CR	Correlation Coefficient	.387*	248	.260	287	196	.297	.016	.222
		Sig. (2-tailed)	.018	.127	.115	.076	.233	.070	.925	.174
		N	37	39	38	39	39	38	39	39
	CS	Correlation Coefficient	.053	340*	.085	.157	180	.273	.118	.017
		Sig. (2-tailed)	.758	.037	.618	.347	.280	.102	.480	.918
		N	36	38	37	38	38	37	38	38
	CU	Correlation Coefficient	071	.034	026	.019	.096	063	.127	.095
		Sig. (2-tailed)	.678	.837	.877	.910	.563	.706	.440	.565
		N	37	39	38	39	39	38	39	39
	GA	Correlation Coefficient	.210	189	.205	011	119	.233	.131	.325*
		Sig. (2-tailed)	.226	.263	.231	.948	.484	.171	.440	.050
		N	35	37	36	37	37	36	37	37
	HF	Correlation Coefficient	.037	.019	049	.066	043	.082	112	004
		Sig. (2-tailed)	.830	.910	.770	.688	.793	.626	.498	.978
		N	37	39	38	39	39	38	39	39
	LA	Correlation Coefficient	.553**	216	.744**	135	.254	.267	.098	.409*
		Sig. (2-tailed)	.000	.192	.000	.420	.124	.110	.559	.011
		N	36	38	38	38	38	37	38	38

			PB	RB	S	SC	SM	SR	TI	U
Spearman's rho	MN	Correlation Coefficient	470**	.067	230	.839**	.282	051	001	.233
		Sig. (2-tailed)	.004	.693	.176	.000	.091	.768	.994	.165
		N	35	37	36	37	37	36	37	37
	NB	Correlation Coefficient	.165	.210	.082	402*	.052	.188	.216	.119
		Sig. (2-tailed)	.338	.213	.635	.014	.761	.265	.199	.484
		N	36	37	36	37	37	37	37	37
	ND	Correlation Coefficient	.680**	412*	.885**	100	.005	.363*	.040	.416**
		Sig. (2-tailed)	.000	.010	.000	.550	.977	.027	.810	.009
		N	36	38	38	38	38	37	38	38
	NI	Correlation Coefficient	.293	.024	.240	589**	167	.201	.102	.083
		Sig. (2-tailed)	.083	.887	.152	.000	.316	.227	.543	.622
		N	36	38	37	38	38	38	38	38
	Р	Correlation Coefficient	413*	033	230	.128	033	.024	207	010
		Sig. (2-tailed)	.011	.843	.165	.438	.840	.889	.206	.950
		N	37	39	38	39	39	38	39	39
	PB	Correlation Coefficient	1.000	708**	.709**	403*	501**	.278	013	.063
		Sig. (2-tailed)		.000	.000	.014	.002	.100	.940	.711
		N	37	37	36	37	37	36	37	37
	RB	Correlation Coefficient	708**	1.000	330*	.051	.468**	389*	.144	167
		Sig. (2-tailed)	.000	•	.043	.759	.003	.016	.383	.309
		N	37	39	38	39	39	38	39	39
	S	Correlation Coefficient	.709**	330*	1.000	187	222	.321	.088	.239
		Sig. (2-tailed)	.000	.043		.261	.180	.053	.600	.148
		N	36	38	38	38	38	37	38	38
	SC	Correlation Coefficient	403*	.051	187	1.000	.215	171	018	.123
		Sig. (2-tailed)	.014	.759	.261		.189	.303	.914	.457
		N	37	39	38	39	39	38	39	39
	SM	Correlation Coefficient	501**	.468**	222	.215	1.000	027	.124	.238
		Sig. (2-tailed)	.002	.003	.180	.189		.874	.450	.144
		N	37	39	38	39	39	38	39	39
	SR	Correlation Coefficient	.278	389*	.321	171	027	1.000	.343*	.374*
		Sig. (2-tailed)	.100	.016	.053	.303	.874		.035	.021
		N	36	38	37	38	38	38	38	38

Table (2-4): Spearman Correlation on raw datas of Taz e Tab's geochemichal samples

			PB	RB	S	SC	SM	SR	TI	U
Spearman's rho	TI	Correlation Coefficient	013	.144	.088	018	.124	.343*	1.000	.133
		Sig. (2-tailed)	.940	.383	.600	.914	.450	.035	.	.419
		N	37	39	38	39	39	38	39	39
	U	Correlation Coefficient	.063	167	.239	.123	.238	.374*	.133	1.000
		Sig. (2-tailed)	.711	.309	.148	.457	.144	.021	.419	
		N	37	39	38	39	39	38	39	39
	V	Correlation Coefficient	037	.299	.168	261	166	465**	353*	295
		Sig. (2-tailed)	.836	.081	.342	.130	.340	.006	.038	.085
		N	34	35	34	35	35	34	35	35
	Υ	Correlation Coefficient	289	.426**	253	.028	090	326*	.021	740**
		Sig. (2-tailed)	.088	.008	.131	.866	.589	.049	.900	.000
		N	36	38	37	38	38	37	38	38
	ZN	Correlation Coefficient	103	.231	.062	.127	091	231	.523**	257
		Sig. (2-tailed)	.569	.182	.727	.468	.601	.189	.001	.136
		N	33	35	34	35	35	34	35	35
	ZR	Correlation Coefficient	.304	138	.322	116	011	.092	213	.186
		Sig. (2-tailed)	.072	.410	.052	.488	.949	.590	.198	.264
		N	36	38	37	38	38	37	38	38

			V	Υ	ZN	ZR
Spearman's rho	AS	Correlation Coefficient	058	.090	237	042
		Sig. (2-tailed)	.741	.596	.176	.803
		N	35	37	34	37
	AU	Correlation Coefficient	.194	134	158	064
		Sig. (2-tailed)	.265	.424	.366	.703
		N	35	38	35	38
	BA	Correlation Coefficient	.069	109	270	029
		Sig. (2-tailed)	.711	.544	.142	.874
		N	31	33	31	33
	CE	Correlation Coefficient	.251	140	291	059
		Sig. (2-tailed)	.158	.421	.100	.736
		N	33	35	33	35
	CO	Correlation Coefficient	014	.184	.155	395*
		Sig. (2-tailed)	.938	.268	.381	.014
		N	35	38	34	38
	CR	Correlation Coefficient	.069	360*	152	.050
		Sig. (2-tailed)	.695	.026	.384	.766
		N	35	38	35	38
	CS	Correlation Coefficient	124	071	128	.035
		Sig. (2-tailed)	.479	.676	.470	.836
		N	35	37	34	37
	CU	Correlation Coefficient	055	029	.094	200
		Sig. (2-tailed)	.754	.861	.592	.229
		N	35	38	35	38
	GA	Correlation Coefficient	.075	203	.051	.050
		Sig. (2-tailed)	.677	.235	.780	.774
		N	33	36	33	36
	HF	Correlation Coefficient	.072	.035	.013	063
		Sig. (2-tailed)	.682	.834	.942	.707
		N	35	38	35	38
	LA	Correlation Coefficient	.017	395*	020	.347*
		Sig. (2-tailed)	.923	.016	.912	.035
		N	34	37	34	37

			V	Υ	ZN	ZR
Spearman's rho	MN	Correlation Coefficient	144	146	044	174
		Sig. (2-tailed)	.425	.397	.807	.310
		N	33	36	33	36
	NB	Correlation Coefficient	015	052	003	.031
		Sig. (2-tailed)	.935	.765	.987	.860
		N	34	36	33	36
	ND	Correlation Coefficient	.039	443**	.015	.406*
		Sig. (2-tailed)	.827	.006	.934	.013
		N	34	37	34	37
	NI	Correlation Coefficient	011	.002	079	.212
		Sig. (2-tailed)	.951	.988	.657	.207
		N	34	37	34	37
	Р	Correlation Coefficient	080	.104	225	132
		Sig. (2-tailed)	.650	.536	.194	.430
		N	35	38	35	38
	PB	Correlation Coefficient	037	289	103	.304
		Sig. (2-tailed)	.836	.088	.569	.072
		N	34	36	33	36
	RB	Correlation Coefficient	.299	.426**	.231	138
		Sig. (2-tailed)	.081	.008	.182	.410
		N	35	38	35	38
	S	Correlation Coefficient	.168	253	.062	.322
		Sig. (2-tailed)	.342	.131	.727	.052
		N	34	37	34	37
	SC	Correlation Coefficient	261	.028	.127	116
		Sig. (2-tailed)	.130	.866	.468	.488
		N	35	38	35	38
	SM	Correlation Coefficient	166	090	091	011
		Sig. (2-tailed)	.340	.589	.601	.949
		N	35	38	35	38
	SR	Correlation Coefficient	465**	326*	231	.092
		Sig. (2-tailed)	.006	.049	.189	.590
		N	34	37	34	37

Table (2-4): Spearman Correlation on raw datas of Taz e Tab's geochemichal samples

			V	Υ	ZN	ZR
Spearman's rho	TI	Correlation Coefficient	353*	.021	.523**	213
		Sig. (2-tailed)	.038	.900	.001	.198
		N	35	38	35	38
	U	Correlation Coefficient	295	740**	257	.186
		Sig. (2-tailed)	.085	.000	.136	.264
		N	35	38	35	38
	V	Correlation Coefficient	1.000	.397*	.246	006
		Sig. (2-tailed)		.018	.182	.973
		N	35	35	31	35
	Υ	Correlation Coefficient	.397*	1.000	.521**	179
		Sig. (2-tailed)	.018	.	.002	.283
		N	35	38	34	38
	ZN	Correlation Coefficient	.246	.521**	1.000	187
		Sig. (2-tailed)	.182	.002		.289
		N	31	34	35	34
	ZR	Correlation Coefficient	006	179	187	1.000
		Sig. (2-tailed)	.973	.283	.289	
		N	35	38	34	38

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

S.N	As	Au	Ва	Ce	Со	Cr	Cs	Си	Ga	Hf
TZ-01	12.6	0.75	360.6	3.75	35.6	142	10.7	60.2	16.7	8.2
TZ-02	27.8	1	2429.8	3.75	39.7	140.6	11.8	61.4	15.8	6
TZ-03	11	0.75	233.4	3.75	36.9	164.7	10.8	60.8	18	9.3
TZ-04	9	0.75	336.9	13.6	31.5	103.6	10.1	65.7	15.8	2.7
TZ-05	9.6	0.75	261.1	3.75	36.1	124.9	9.7	58.4	15.8	10.8
TZ-06	12.3	0.75	323.1	3.75	35.3	132.7	9.8	62.3	15.7	1.5
TZ-07	42.8	0.75	21628.4	237.1	31.6	140.8	19.5	52.1	13.7	6.4
TZ-08	22.1	0.75	248.4	3.75	44.1	223.5	9.8	36	16.1	7.7
TZ-09	18.1	1	800.4	43.2	34.6	132.4	7.7	63.3	16	7.8
TZ-10	12.8	3	306.6	15.5	38.4	155.1	8.9	73.9	16.4	7.1
TZ-11	21.6	3	4661.4	98.6	36.8	156.9	11.1	57.5	15.6	6.1
TZ-12	11.9	0.75	437.6	3.75	32.1	138	10.1	57.3	15.6	7
TZ-13	7	1	243	3.75	37	158.2	10	91.8	19.5	3.9
TZ-14	12.5	1	488.4	53.1	36.1	168.5	8.7	83.6	18.5	8.9
TZ-15	16.5	0.75	322.1	3.75	33.5	177.8	10.6	36	14.1	4.9
TZ-16	12.8	0.75	354	3.75	26.6	168.3	10	37.3	12.1	8.8

جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

S.N	As	Au	Ва	Ce	Со	Cr	Cs	Си	Ga	Hf
TZ-17	17.9	1	332	40.2	35.6	194.8	9.6	35.4	21.6	7.8
TZ-18	10.2	5	418.9	26.2	22.9	162.1	8.5	40.5	15.9	10.6
TZ-19	17.1	1	1007.9	3.8	37.4	149.1	11.1	60.8	16.8	7.8
TZ-20	15.9	1	1000.0	13.6	36.0	136.3	10.9	62.6	16.5	6.0
TZ-21	9.9	1	277.1	13.6	34.8	131.1	10.2	61.6	16.5	7.6
TZ-22	10.3	1	307.0	13.6	34.3	120.4	9.9	62.1	15.8	5.0
TZ-23	21.6	1	7404.2	237.1	34.3	132.8	13.0	57.6	15.1	6.2
TZ-24	25.7	1	7400.0	237.1	37.0	165.7	13.0	50.1	15.2	5.2
TZ-25	27.7	1	7559.1	140.2	36.8	165.6	12.3	50.5	15.3	7.3
TZ-26	17.7	2	451.8	29.4	39.0	170.3	8.8	57.7	16.2	7.5
TZ-27	17.5	2	1922.8	52.4	36.6	148.1	9.2	64.9	16.0	7.0
TZ-28	15.4	3	1801.9	57.1	35.8	150.0	10.0	62.9	15.9	6.7
TZ-29	13.5	2	1780.7	98.6	35.3	151.0	10.4	68.9	16.9	5.7
TZ-30	10.5	1	389.7	53.1	35.1	154.9	9.6	77.6	17.9	6.6
TZ-31	23.5	2	5529.0	98.6	37.1	161.7	11.4	56.6	15.6	7.0
TZ-32	17.3	2	1290.9	52.4	37.2	161.2	9.5	57.6	15.9	7.1

جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

S.N	As	Au	Ва	Ce	Со	Cr	Cs	Си	Ga	Hf
TZ-33	14.3	2	1289.8	52.4	35.8	148.1	9.6	68.8	16.6	6.4
TZ-34	13.2	2	1227.4	55.7	36.1	155.3	9.8	72.8	17.1	6.6
TZ-35	13.9	2	1230.5	75.9	35.1	159.9	10.1	65.2	16.7	6.2
TZ-36	12.1	1	369.0	53.1	33.1	162.2	9.9	61.2	16.0	6.7
TZ-37	13.3	1	347.9	46.7	33.8	173.5	9.8	56.8	17.2	6.9
TZ-38	14.0	2	383.1	39.8	30.9	174.3	9.5	46.6	16.4	8.2
TZ-39	14.9	2	487.0	33.2	31.2	170.4	10.0	42.0	16.1	8.0

Median	13.942	1	404.283	31.275	35.6	155.34	9.98	60.8	16	7
Std. Deviation	5.15322	0.94665	892.596	34.1923	3.20348	21.2029	1.12395	12.4983	1.08196	1.79839
X+S	19.1	2	1296.9	65.5	38.8	176.5	11.1	73.3	17.1	8.8
X+2S	24.2	3	2189.5	99.7	42.0	197.7	12.2	85.8	18.2	10.6
X+3S	29.4	4	3082.1	133.9	45.2	218.9	13.4	98.3	19.2	12.4
X+4S	34.6	5	3974.7	168.0	48.4	240.2	14.5	110.8	20.3	14.2

جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

S.N	La	Mn	Nb	Nd	Ni	P	Pb	Rb	S	Sc
TZ-01	47.4	1113.4	13.5	77.6	74.1	724.6	59.4	47.9	1445.0	26.9
TZ-02	30.6	1147.9	14.7	35.1	77.2	823.2	38.5	48.5	564.0	27.0
TZ-03	33.4	1299.5	12.7	36.5	64.3	837.7	28.6	49.1	586.0	29.1
TZ-04	34.4	1409.9	13.0	38.1	66.9	908.6	24.6	50.5	613.8	28.8
TZ-05	21	1710.3	12	25.2	55.4	1064.8	4.6	49.5	476.9	33.8
TZ-06	47	1755.9	14.3	40.4	71.9	958.7	21.3	56	559.2	29.7
TZ-07	12.3	938.7	16.9	21.1	90.1	865.1	32.7	55.8	349.3	23.4
TZ-08	15.6	937.8	15.7	22.6	90.9	852.8	25.9	60.7	623.8	25.5
TZ-09	37.4	1019.5	21.6	29.5	100	943.7	41.5	91.8	636.1	26.1
TZ-10	29	1008.1	15	25.8	79.7	724.5	14.2	67	540.5	23.3
TZ-11	39.4	1137.8	12.3	67.8	67.9	932.8	43.6	49.1	1280.5	27.4
TZ-12	40.9	1123.5	13.1	68.1	71.8	877.5	49.2	48.4	1277.5	27.0
TZ-13	44.0	1122.7	13.3	71.5	73.2	804.0	54.2	47.9	1334.3	27.1
TZ-14	40.8	1130.9	13.9	60.6	74.6	767.7	50.2	48.2	1096.9	26.9
TZ-15	37.1	1186.9	13.6	49.7	71.8	795.2	42.2	48.5	865.0	27.6
TZ-16	32.8	1285.8	13.4	36.6	69.5	856.5	30.6	49.4	587.9	28.3

جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

S.N	La	Mn	Nb	Nd	Ni	P	Pb	Rb	S	Sc
TZ-17	36.5	1280.5	12.9	46.8	68.6	859.6	34.6	49.2	800.7	28.1
TZ-18	37	1221	13	48	71	820	39	49	838	28
TZ-19	18.6	1199	13.8	22.1	70.4	1120.6	23.5	48.2	240.6	28.3
TZ-20	24.5	1632.5	10.8	37.8	46.7	714.2	74.7	43.1	839.5	30.6
TZ-21	16.5	1246.3	13.3	21.6	74.7	873.6	14.1	51.6	448.1	32.2
TZ-22	31.7	1164.3	11.9	30.7	42.4	668.9	9.6	59.1	412.7	25.8
TZ-23	15.4	1223	10.9	23.5	60	1414.6	11.1	47.4	327.3	32
TZ-24	29.9	1221.5	13.4	25.7	65	908.5	20.2	49.6	466.4	26.4
TZ-25	106.2	1017.1	6.1	239.2	62	741.1	125.9	44.6	4799.5	24.9
TZ-26	7.2	952	21.9	18.4	119.6	992.4	53.8	46.8	367	23.5
TZ-27	41.7	1203.9	13	32.4	58.9	603.9	41.5	48.9	420	31
TZ-28	37.5	1262.4	13	29.1	57.3	530.5	22.8	51.2	356.5	28.1
TZ-29	44.5	1131.4	13.5	69.0	72.6	755.3	52.8	48.2	1281.9	26.8
TZ-30	22.2	1189.6	12	26.8	77.4	1233.9	21.5	47.6	394.5	25.6
TZ-31	19.9	1359.3	12.6	27.2	63.9	902.8	37.4	47.6	509.4	30.4
TZ-32	24.2	1347.7	12.0	30.0	54.6	752.2	32.8	51.3	566.8	29.5

جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

S.N	La	Mn	Nb	Nd	Ni	P	Pb	Rb	S	Sc
TZ-33	21.2	1211.2	12.0	25.3	59.0	985.7	11.6	52.7	396.0	30.0
TZ-34	25.7	1202.9	12.1	26.6	55.8	997.3	13.6	52.0	402.1	28.1
TZ-35	50.5	1153.9	10.1	96.1	62.3	1021.4	52.4	47.2	1864.4	27.8
TZ-36	47.8	1063.5	13.8	94.4	82.2	880.7	66.6	47.0	1877.6	24.9
TZ-37	51.7	1057.7	13.7	96.7	80.2	779.1	73.7	46.8	1862.2	26.5
TZ-38	28.8	1139.4	16.0	26.6	78.6	708.9	39.4	49.0	381.2	27.5
TZ-39	41.2	1199.2	13.2	43.5	62.9	629.9	39.0	49.4	686.1	28.6

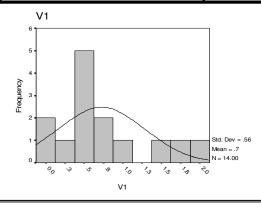
Median	33.0967	1186.91	13.16	33.766	69.9293	856.503	37.4333	48.9667	576.361	27.636
Std. Deviation	11.51	136.706	1.79322	22.4903	11.7056	167.948	23.1278	7.999	457.9	2.36992
X+S	44.6	1324	15.0	56.3	81.6	1024.5	60.6	57.0	1034.3	30.0
X+2S	56.1	1460	16.7	78.7	93.3	1192.4	83.7	65.0	1492.2	32.4
X+3S	67.6	1597	18.5	101.2	105.0	1360.3	106.8	73.0	1950.1	34.7
X+4S	79.1	1734	20.3	123.7	116.8	1528.3	129.9	81.0	2408.0	37.1

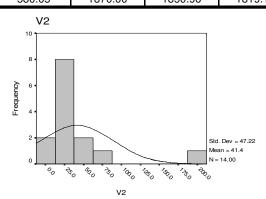
جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

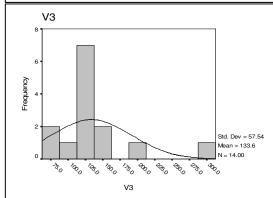
S.N	Sm	Sr	Ti	$oldsymbol{U}$	V	Y	Zn	Zr
TZ-01	6.5	301.7	6339.8	1.5	226.6	18.5	130.4	110.3
TZ-02	6.7	279.8	7080.2	3.3	209.7	18.0	87.7	122.4
TZ-03	6.8	280.5	6812.9	3.6	209.3	17.8	85.8	120.5
TZ-04	6.9	140.7	6495.1	3.5	220.5	17.6	88.4	109.6
TZ-05	6.8	92	5203.7	1.5	233	19.3	95.7	92.9
TZ-06	7.2	165.5	6557.4	2.5	179.1	18.3	90.4	128.2
TZ-07	6.4	151.8	5132.6	2.3	159.4	18.9	84.9	127.7
TZ-08	6.3	163	7408.5	2.5	169.9	23.1	109	177.6
TZ-09	6.9	159.9	4295.4	1.5	150.7	19.3	77.9	135.9
TZ-10	6.4	151.7	6542.4	2.2	239.9	18.8	94.7	104.0
TZ-11	6.5	142.6	5980.2	2.2	234.8	18.8	93.6	100.9
TZ-12	6.5	238.7	6387.7	2.9	219.8	18.3	114.4	111.6
TZ-13	6.5	234.2	6512.0	3.2	218.3	18.1	105.2	113.1
TZ-14	6.6	234.8	6452.9	3.5	218.4	17.9	95.6	112.5
TZ-15	6.7	212.2	6285.7	3.4	217.8	17.7	86.2	110.7
TZ-16	6.8	190.9	5991.9	3.5	221.4	17.7	86.3	105.8

جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب

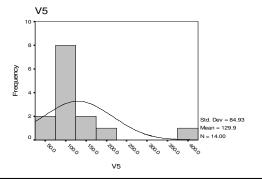
S.N	Sm	Sr	Ti	U	V	Y	Zn	Zr
TZ-17	6.7	160.6	5677.9	3.5	226.1	17.9	87.4	100.0
TZ-18	7	180.1	5649.6	3.5	225.4	17.9	86.8	100.6
TZ-19	6.4	186	5901	3	223	18	87	104
TZ-20	5.7	172.3	6138.4	2.2	219.4	18.6	89.7	107.6
TZ-21	6.3	138.2	7283.3	2.1	273.1	19.5	100.9	101.8
TZ-22	6.8	144.6	6205.4	1.5	227.3	18.4	93.4	102.5
TZ-23	6.6	145	4451.9	2.3	204.1	18.4	86.4	98.4
TZ-24	6.9	199.7	6962.7	1.5	251.7	19.4	222.9	104.9
TZ-25	5.7	160.7	6081.8	1.5	221	18.2	91.9	104.9
TZ-26	6.3	544.8	5974.9	1.5	207.1	17.8	76.4	121.2
TZ-27	6.9	134	9183.9	3.3	200.9	18	94.8	141
TZ-28	7.1	162.6	5280	3.8	219.9	17.5	86.1	99.4
TZ-29	6.6	125.6	5021.5	3.3	240.6	17.3	84.4	88.5
TZ-30	6.6	225.5	6308.4	3.5	217.9	17.8	86.7	111.0
TZ-31	6.1	215.7	5181.4	1.5	211.7	17.9	79.6	104.6
TZ-32	6.3	78.4	5343.4	1.5	253.3	18.6	98	77.8


جدول (۴-۴): نمونههای سنسورد گیری شده که مقادیر خارج از رده نیز در آنها تعدیل گردیده، همراه با حدود زمینه و آنومالی های ممکن و احتمالی و قطعی نمونه های ژئوشیمیایی محدوده ۱/۲۵۰۰۰ تازتاب


S.N	Sm	Sr	Ti	U	V	Y	Zn	Zr
TZ-33	6.6	163.1	5873.3	2.3	227.7	18.7	134.2	101.9
TZ-34	6.8	168.5	5832.1	2.3	225.6	18.7	133.7	102.7
TZ-35	6.4	171.2	5536.6	3.5	226.1	17.5	85.7	99.6
TZ-36	6.3	188.9	5503.8	3.4	223.4	17.7	83.6	101.4
TZ-37	6.3	173.2	5611.1	3.5	227.6	18.1	88.1	97.8
TZ-38	6.8	128.7	5242.8	1.5	232.7	18.6	91.1	91.8
TZ-39	6.9	238.5	6353.7	3.5	217.3	17.7	85.7	112.2


Median	6.59733	166.983	5991.91	2.5	221.387	18.0933	87.7	104.75
Std. Deviation	0.31689	49.2541	875.06	0.8321	13.7749	0.5748	8.04935	12.5488
X+S	6.9	216	6867.0	3.3	235.2	18.7	95.7	117.3
X+2S	7.2	265	7742.0	4.2	248.9	19.2	103.8	129.8
X+3S	7.5	315	8617.1	5.0	262.7	19.8	111.8	142.4
X+4S	7.9	364	9492.1	5.8	276.5	20.4	119.9	154.9


Statistics


		V1	V2	V3	V4	V5
N	Valid	14	14	14	14	14
	Missing	0	0	0	0	0
Mean		0.72	41.43	133.57	132.21	129.94
Std. Error of Mean		0.15	12.62	15.38	29.70	22.70
Median		0.56	26.17	122.59	104.68	114.95
Mode		0.03	8.08	64.80	30.01	42.84
Std. Deviation		0.56	47.22	57.54	111.12	84.93
Variance		0.32	2229.60	3311.10	12348.63	7212.93
Skewness		1.02	2.85	1.95	2.34	2.32
Std. Error of Skewr	ness	0.60	0.60	0.60	0.60	0.60
Kurtosis		0.37	9.00	5.08	6.67	6.60
Std. Error of Kurtos	sis	1.15	1.15	1.15	1.15	1.15
Minimum		0.03	8.08	64.80	30.01	42.84
Maximum		1.93	192.22	298.42	468.69	385.95
Sum		10.12	580.05	1870.00	1850.96	1819.17

جدول (۵–۵): گروههای متغییر کانیسنگین محدوده ۲:۲۵۰۰۰ تازتاب

FIELD NO.	V1	V2	V3	V4	V5
TZ-1	0.89	40.51	128.91	162.62	117.79
TZ-10	0.52	192.22	122.32	208.82	113.75
TZ-14	0.03	13.29	200.57	96.53	42.84
TZ-17	0.35	73.60	122.86	80.39	115.65
TZ-21	0.45	18.19	95.31	119.78	114.25
TZ-22	0.69	21.47	114.79	54.90	205.98
TZ-23	0.71	28.74	140.34	57.40	88.70
TZ-29	1.93	61.57	70.68	58.41	84.48
TZ-31	1.40	9.98	120.45	468.69	52.65
TZ-34	0.04	22.61	144.51	173.67	385.95
TZ-36	0.39	23.59	298.42	30.01	77.94
TZ-37	1.63	8.08	64.80	58.01	168.60
TZ-4	0.49	32.53	128.36	168.88	122.84
TZ-8	0.59	33.67	117.69	112.83	127.74

Median (X)	0.56	26.17	122.59	104.68	114.95
Std. Deviation	0.56	47.22	57.54	111.12	84.93
X+S	1.12	73.38	180.13	215.81	199.88
X+2S	1.68	120.60	237.67	326.93	284.81
X+3S	2.25	167.82	295.21	438.06	369.74
X+4S	2.81	215.04	352.75	549.18	454.67

جدول (۵–۶): نتایج حاصل از مطالعات نمونههای کانیسنگین محدوده ۲۵۰۰۰ تازتاب

FIELD NO.	TZ-1	TZ-4	TZ-8	TZ-10	TZ-14	TZ-17	TZ-21	TZ-22
Altered minerals	82.03	88.24	80.87	168.00	64.91	80.37	118.57	31.50
Amphiboles	4.60	5.02	5.09	42.00	3.14	5.32	6.27	7.80
Anatase	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01
Andalusite	1.03	1.04	1.00	0.00	0.83	0.94	1.65	1.52
Apatite	0.01	0.01	0.01	0.13	0.01	0.01	0.01	0.01
Azorite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Barite	0.03	0.04	0.03	0.01	0.02	0.03	0.02	0.02
Biotite	0.92	1.02	1.12	0.01	1.30	1.20	2.37	2.37
Brookite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca,Carbonate	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.01
Cassiterite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cerussite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chalcopyrite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chlorite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cinnabar	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01
Corundum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Epidotes	80.01	80.06	31.74	40.52	31.40	0.01	1.21	23.23
Galena	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Garnets	29.86	30.70	23.33	24.37	22.27	0.01	17.27	20.69
Gold	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hematite	78.78	79.63	74.87	79.30	72.86	110.46	58.61	71.39
Ilmenite	9.12	9.35	10.48	5.07	5.65	3.29	1.79	4.23
Kyanite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Leucoxene	0.59	0.59	0.22	0.30	0.23	0.01	0.00	0.17
Light minerals	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Limonite	4.04	5.25	5.75	5.18	5.51	49.00	2.64	5.51

جدول (۵–۶): نتایج حاصل از مطالعات نمونههای کانیسنگین محدوده ۲۵۰۰۰ تازتاب

FIELD NO.	TZ-1	TZ-4	TZ-8	TZ-10	TZ-14	TZ-17	TZ-21	TZ-22
Litharge	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Magnetite	31.86	22.26	22.83	145.04	4.65	19.28	9.29	8.16
Malachite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Martite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mimetite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Monazite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Native copper	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Native lead	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oligiste	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01
Olivine	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pyrite	0.01	0.01	0.01	0.00	0.01	0.01	0.03	0.03
Pyrite Limonite	0.27	0.30	0.31	0.00	0.43	0.33	0.86	0.86
Pyrite oxide	91.70	95.63	98.34	93.46	35.00	96.11	93.40	169.73
Pyrolusite	7.79	8.72	9.70	8.66	0.00	8.50	8.80	17.00
Pyromorphite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pyroxenes	19.91	17.63	19.07	18.53	105.00	11.93	18.45	21.60
Q,F	2.82	2.77	2.58	2.43	0.00	2.10	2.31	4.19
Rutile	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.03
Scheelite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sillimanite	0.77	0.39	0.48	0.41	0.00	0.23	0.35	0.46
Sphalerite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sphene	0.09	0.07	0.08	0.08	0.01	0.10	0.07	0.19
Spinel	0.08	0.09	0.10	0.11	0.00	0.12	0.12	0.24
Staurolite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Zircon	4.35	4.24	4.45	3.97	0.01	3.43	3.86	6.86

FIELD NO.	TZ-23	TZ-29	TZ-31	TZ-34	TZ-36	TZ-37
Altered minerals	54.99	55.99	312.00	13.71	30.00	50.80
Amphiboles	5.75	2.95	3.40	6.17	9.23	8.00
Anatase	0.01	0.01	0.01	0.01	0.01	0.01
Andalusite	1.92	1.69	0.43	2.56	1.97	0.04
Apatite	0.01	0.01	0.01	0.01	0.01	0.00
Azorite	0.00	0.00	0.00	0.00	0.00	0.00
Barite	0.09	0.09	0.01	0.05	0.01	0.01
Biotite	0.31	0.01	0.01	6.17	0.92	0.01
Brookite	0.00	0.00	0.00	0.00	0.00	0.00
Ca,Carbonate	0.01	0.02	0.00	0.01	0.00	0.01
Cassiterite	0.00	0.00	0.00	0.00	0.00	0.00
Cerussite	0.00	0.00	0.00	0.00	0.00	0.00
Chalcopyrite	0.00	0.00	0.00	0.00	0.00	0.00
Chlorite	0.00	0.00	0.00	0.00	0.00	0.00
Cinnabar	0.01	0.01	0.01	0.00	0.00	0.01
Corundum	0.00	0.00	0.00	0.00	0.00	0.00
Epidotes	2.41	2.41	155.51	158.78	0.01	7.20
Galena	0.00	0.00	0.00	0.00	0.00	0.01
Garnets	31.54	16.44	37.83	37.09	45.33	24.69
Gold	0.00	0.00	0.00	0.00	0.00	0.00
Hematite	97.49	36.71	68.44	72.38	238.45	21.64
Ilmenite	3.23	3.23	0.01	17.55	0.01	9.67
Kyanite	0.00	0.00	0.00	0.01	0.01	0.00
Leucoxene	0.00	0.01	1.17	1.18	0.00	0.01
Light minerals	0.00	0.00	0.00	0.00	0.00	0.01
Limonite	0.02	3.13	3.13	6.38	0.01	0.01

FIELD NO.	TZ-23	TZ-29	TZ-31	TZ-34	TZ-36	TZ-37
Litharge	0.00	0.00	0.00	0.00	0.00	0.00
Magnetite	22.97	55.49	3.45	10.06	14.34	0.07
Malachite	0.00	0.00	0.00	0.00	0.00	0.00
Martite	0.00	0.00	0.00	0.00	0.00	0.00
Mimetite	0.00	0.00	0.00	0.00	0.00	0.00
Monazite	0.00	0.00	0.00	0.00	0.00	0.00
Native copper	0.00	0.00	0.00	0.00	0.01	0.00
Native lead	0.00	0.00	0.00	0.00	0.00	0.00
Oligiste	0.01	0.01	0.01	0.01	0.01	0.01
Olivine	0.00	0.00	0.00	0.00	0.00	0.00
Pyrite	0.01	0.01	0.01	0.06	0.01	0.01
Pyrite Limonite	0.52	0.01	0.00	1.03	1.54	0.01
Pyrite oxide	79.73	74.24	46.29	283.33	72.00	153.85
Pyrolusite	0.00	0.01	0.00	51.00	0.00	0.01
Pyromorphite	0.00	0.00	0.00	0.00	0.00	0.00
Pyroxenes	10.53	17.53	14.17	34.00	12.34	18.46
Q, F	1.91	2.14	2.61	7.20	2.47	2.91
Rutile	0.03	0.03	0.01	0.01	0.01	0.06
Scheelite	0.00	0.00	0.00	0.00	0.01	0.00
Sillimanite	0.47	1.60	1.29	0.01	0.37	0.99
Sphalerite	0.00	0.00	0.00	0.00	0.00	0.00
Sphene	0.19	0.25	0.07	0.01	0.01	0.54
Spinel	0.24	0.00	0.00	0.00	0.72	0.00
Staurolite	0.00	0.01	0.01	0.00	0.00	0.00
Zircon	1.46	3.05	3.25	18.00	0.51	2.08

S.N	As	Au	Ва	Cd	Се	Со	Cr	Cs	Си	Eu	Ga	Ge	Hf
3. <i>I</i> V	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
TZ-01	12.6	<1	360.6	2<	5<	35.6	142	10.7	60.2	2<	16.7	<2	8.2
TZ-02	27.8	1	2429.8	2<	5<	39.7	140.6	11.8	61.4	2<	15.8	<2	6
TZ-03	11	<1	233.4	2<	5<	36.9	164.7	10.8	60.8	2<	18	<2	9.3
TZ-04	9	<1	336.9	2<	13.6	31.5	103.6	10.1	65.7	2<	15.8	<2	2.7
TZ-05	9.6	<1	261.1	2<	5<	36.1	124.9	9.7	58.4	2<	15.8	<2	10.8
TZ-06	12.3	<1	323.1	2<	5<	35.3	132.7	9.8	62.3	2<	15.7	<2	1.5
TZ-07	42.8	<1	21628.4	2<	237.1	31.6	140.8	19.5	52.1	2<	13.7	<2	6.4
TZ-08	22.1	<1	248.4	2<	5<	44.1	223.5	9.8	36	2<	16.1	<2	7.7
TZ-09	18.1	1	800.4	2<	43.2	34.6	132.4	7.7	63.3	2<	16	<2	7.8
TZ-10	12.8	3	306.6	2<	15.5	38.4	155.1	8.9	73.9	2<	16.4	<2	7.1
TZ-11	21.6	3	4661.4	2<	98.6	36.8	156.9	11.1	57.5	2<	15.6	<2	6.1
TZ-12	11.9	<1	437.6	2<	5<	32.1	138	10.1	57.3	2<	15.6	<2	7
TZ-13	7	1	243	2<	5<	37	158.2	10	91.8	2<	19.5	<2	3.9
TZ-14	12.5	1	488.4	2<	53.1	36.1	168.5	8.7	83.6	2<	18.5	<2	8.9
TZ-15	16.5	<1	322.1	2<	5<	33.5	177.8	10.6	36	2<	14.1	<2	4.9
TZ-16	12.8	<1	354	2<	5<	26.6	168.3	10	37.3	2<	12.1	<2	8.8
TZ-17	17.9	1	332	2<	40.2	35.6	194.8	9.6	35.4	2<	21.6	<2	7.8
TZ-18	10.2	5	418.9	2<	26.2	22.9	162.1	8.5	40.5	2<	15.9	<2	10.6
TZ-19	17.1	1	1007.9	2<	5<	37.4	149.1	11.1	60.8	2<	16.8	<2	7.8
TZ-20	15.9	1	1000.0	2<	13.6	36.0	136.3	10.9	62.6	2<	16.5	<2	6.0

CAI	As	Au	Ва	Cd	Ce	Со	Cr	Cs	Си	Eu	Ga	Ge	Hf
S.N	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
TZ-21	9.9	<1	277.1	2<	13.6	34.8	131.1	10.2	61.6	2<	16.5	<2	7.6
TZ-22	10.3	<1	307.0	2<	13.6	34.3	120.4	9.9	62.1	2<	15.8	<2	5.0
TZ-23	21.6	<1	7404.2	2<	237.1	34.3	132.8	13.0	57.6	2<	15.1	<2	6.2
TZ-24	25.7	<1	7400.0	2<	237.1	37.0	165.7	13.0	50.1	2<	15.2	<2	5.2
TZ-25	27.7	1	7559.1	2<	140.2	36.8	165.6	12.3	50.5	2<	15.3	<2	7.3
TZ-26	17.7	2	451.8	2<	29.4	39.0	170.3	8.8	57.7	2<	16.2	<2	7.5
TZ-27	17.5	2	1922.8	2<	52.4	36.6	148.1	9.2	64.9	2<	16.0	<2	7.0
TZ-28	15.4	3	1801.9	2<	57.1	35.8	150.0	10.0	62.9	2<	15.9	<2	6.7
TZ-29	13.5	2	1780.7	2<	98.6	35.3	151.0	10.4	68.9	2<	16.9	<2	5.7
TZ-30	10.5	1	389.7	2<	53.1	35.1	154.9	9.6	77.6	2<	17.9	<2	6.6
TZ-31	23.5	2	5529.0	2<	98.6	37.1	161.7	11.4	56.6	2<	15.6	<2	7.0
TZ-32	17.3	2	1290.9	2<	52.4	37.2	161.2	9.5	57.6	2<	15.9	<2	7.1
TZ-33	14.3	2	1289.8	2<	52.4	35.8	148.1	9.6	68.8	2<	16.6	<2	6.4
TZ-34	13.2	2	1227.4	2<	55.7	36.1	155.3	9.8	72.8	2<	17.1	<2	6.6
TZ-35	13.9	2	1230.5	2<	75.9	35.1	159.9	10.1	65.2	2<	16.7	<2	6.2
TZ-36	12.1	1	369.0	2<	53.1	33.1	162.2	9.9	61.2	2<	16.0	<2	6.7
TZ-37	13.3	1	347.9	2<	46.7	33.8	173.5	9.8	56.8	2<	17.2	<2	6.9
TZ-38	14.0	2	383.1	2<	39.8	30.9	174.3	9.5	46.6	2<	16.4	<2	8.2
TZ-39	14.9	2	487.0	2<	33.2	31.2	170.4	10.0	42.0	2<	16.1	<2	8.0

CN	La	Mn	Мо	Nb	Nd	Ni	P	Pb	Rb	S	Sc	Sm
S.N	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
TZ-01	47.4	1113.4	5<	13.5	77.6	74.1	724.6	59.4	47.9	1445.0	26.9	6.5
TZ-02	30.6	1147.9	5<	14.7	35.1	77.2	823.2	38.5	48.5	564.0	27.0	6.7
TZ-03	33.4	1299.5	5<	12.7	36.5	64.3	837.7	28.6	49.1	586.0	29.1	6.8
TZ-04	34.4	1409.9	5<	13.0	38.1	66.9	908.6	24.6	50.5	613.8	28.8	6.9
TZ-05	21	1710.3	5<	12	25.2	55.4	1064.8	4.6	49.5	476.9	33.8	6.8
TZ-06	47	1755.9	5<	14.3	40.4	71.9	958.7	21.3	56	559.2	29.7	7.2
TZ-07	12.3	938.7	5<	16.9	21.1	90.1	865.1	32.7	55.8	349.3	23.4	6.4
TZ-08	15.6	937.8	5<	15.7	22.6	90.9	852.8	25.9	60.7	623.8	25.5	6.3
TZ-09	37.4	1019.5	5<	21.6	29.5	100	943.7	41.5	91.8	636.1	26.1	6.9
TZ-10	29	1008.1	5<	15	25.8	79.7	724.5	14.2	67	540.5	23.3	6.4
TZ-11	39.4	1137.8	5<	12.3	67.8	67.9	932.8	43.6	49.1	1280.5	27.4	6.5
TZ-12	40.9	1123.5	5<	13.1	68.1	71.8	877.5	49.2	48.4	1277.5	27.0	6.5
TZ-13	44.0	1122.7	5<	13.3	71.5	73.2	804.0	54.2	47.9	1334.3	27.1	6.5
TZ-14	40.8	1130.9	5<	13.9	60.6	74.6	767.7	50.2	48.2	1096.9	26.9	6.6
TZ-15	37.1	1186.9	5<	13.6	49.7	71.8	795.2	42.2	48.5	865.0	27.6	6.7
TZ-16	32.8	1285.8	5<	13.4	36.6	69.5	856.5	30.6	49.4	587.9	28.3	6.8
TZ-17	36.5	1280.5	5<	12.9	46.8	68.6	859.6	34.6	49.2	800.7	28.1	6.7
TZ-18	37	1221	5<	13	48	71	820	39	49	838	28	7
TZ-19	18.6	1199	5<	13.8	22.1	70.4	1120.6	23.5	48.2	240.6	28.3	6.4
TZ-20	24.5	1632.5	5<	10.8	37.8	46.7	714.2	74.7	43.1	839.5	30.6	5.7

CM	La	Mn	Мо	Nb	Nd	Ni	P	Pb	Rb	S	Sc	Sm
S.N	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
TZ-21	16.5	1246.3	5<	13.3	21.6	74.7	873.6	14.1	51.6	448.1	32.2	6.3
TZ-22	31.7	1164.3	5<	11.9	30.7	42.4	668.9	9.6	59.1	412.7	25.8	6.8
TZ-23	15.4	1223	5<	10.9	23.5	60	1414.6	11.1	47.4	327.3	32	6.6
TZ-24	29.9	1221.5	5<	13.4	25.7	65	908.5	20.2	49.6	466.4	26.4	6.9
TZ-25	106.2	1017.1	5<	6.1	239.2	62	741.1	125.9	44.6	4799.5	24.9	5.7
TZ-26	7.2	952	5<	21.9	18.4	119.6	992.4	53.8	46.8	367	23.5	6.3
TZ-27	41.7	1203.9	5<	13	32.4	58.9	603.9	41.5	48.9	420	31	6.9
TZ-28	37.5	1262.4	5<	13	29.1	57.3	530.5	22.8	51.2	356.5	28.1	7.1
TZ-29	44.5	1131.4	5<	13.5	69.0	72.6	755.3	52.8	48.2	1281.9	26.8	6.6
TZ-30	22.2	1189.6	5<	12	26.8	77.4	1233.9	21.5	47.6	394.5	25.6	6.6
TZ-31	19.9	1359.3	5<	12.6	27.2	63.9	902.8	37.4	47.6	509.4	30.4	6.1
TZ-32	24.2	1347.7	5<	12.0	30.0	54.6	752.2	32.8	51.3	566.8	29.5	6.3
TZ-33	21.2	1211.2	5<	12.0	25.3	59.0	985.7	11.6	52.7	396.0	30.0	6.6
TZ-34	25.7	1202.9	5<	12.1	26.6	55.8	997.3	13.6	52.0	402.1	28.1	6.8
TZ-35	50.5	1153.9	5<	10.1	96.1	62.3	1021.4	52.4	47.2	1864.4	27.8	6.4
TZ-36	47.8	1063.5	5<	13.8	94.4	82.2	880.7	66.6	47.0	1877.6	24.9	6.3
TZ-37	51.7	1057.7	5<	13.7	96.7	80.2	779.1	73.7	46.8	1862.2	26.5	6.3
TZ-38	28.8	1139.4	5<	16.0	26.6	78.6	708.9	39.4	49.0	381.2	27.5	6.8
TZ-39	41.2	1199.2	5<	13.2	43.5	62.9	629.9	39.0	49.4	686.1	28.6	6.9

CAI	Sr	Ta	Tb	Ti	Tl	U	V	Y	Zn	Zr
S.N	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
TZ-01	301.7	5<	2<	6339.8	2<	2<	226.6	18.5	130.4	110.3
TZ-02	279.8	5<	2<	7080.2	2<	3.3	209.7	18.0	87.7	122.4
TZ-03	280.5	5<	2<	6812.9	2<	3.6	209.3	17.8	85.8	120.5
TZ-04	140.7	5<	2<	6495.1	2<	3.5	220.5	17.6	88.4	109.6
TZ-05	92	5<	2<	5203.7	2<	2<	233	19.3	95.7	92.9
TZ-06	165.5	5<	2<	6557.4	2<	2.5	179.1	18.3	90.4	128.2
TZ-07	151.8	5<	2<	5132.6	2<	2.3	159.4	18.9	84.9	127.7
TZ-08	163	5<	2<	7408.5	2<	2.5	169.9	23.1	109	177.6
TZ-09	159.9	5<	2<	4295.4	2<	2<	150.7	19.3	77.9	135.9
TZ-10	151.7	5<	2<	6542.4	2<	2.2	239.9	18.8	94.7	104.0
TZ-11	142.6	5<	2<	5980.2	2<	2.2	234.8	18.8	93.6	100.9
TZ-12	238.7	5<	2<	6387.7	2<	2.9	219.8	18.3	114.4	111.6
TZ-13	234.2	5<	2<	6512.0	2<	3.2	218.3	18.1	105.2	113.1
TZ-14	234.8	5<	2<	6452.9	2<	3.5	218.4	17.9	95.6	112.5
TZ-15	212.2	5<	2<	6285.7	2<	3.4	217.8	17.7	86.2	110.7
TZ-16	190.9	5<	2<	5991.9	2<	3.5	221.4	17.7	86.3	105.8
TZ-17	160.6	5<	2<	5677.9	2<	3.5	226.1	17.9	87.4	100.0
TZ-18	180.1	5<	2<	5649.6	2<	3.5	225.4	17.9	86.8	100.6
TZ-19	186	5<	2<	5901	2<	3	223	18	87	104
TZ-20	172.3	5<	2<	6138.4	2<	2.2	219.4	18.6	89.7	107.6

CN	Sr	Та	Tb	Ti	Tl	U	V	Y	Zn	Zr
S.N	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
TZ-21	138.2	5<	2<	7283.3	2<	2.1	273.1	19.5	100.9	101.8
TZ-22	144.6	5<	2<	6205.4	2<	2<	227.3	18.4	93.4	102.5
TZ-23	145	5<	2<	4451.9	2<	2.3	204.1	18.4	86.4	98.4
TZ-24	199.7	5<	2<	6962.7	2<	2<	251.7	19.4	222.9	104.9
TZ-25	160.7	5<	2<	6081.8	2<	2<	221	18.2	91.9	104.9
TZ-26	544.8	5<	2<	5974.9	2<	2<	207.1	17.8	76.4	121.2
TZ-27	134	5<	2<	9183.9	2<	3.3	200.9	18	94.8	141
TZ-28	162.6	5<	2<	5280	2<	3.8	219.9	17.5	86.1	99.4
TZ-29	125.6	5<	2<	5021.5	2<	3.3	240.6	17.3	84.4	88.5
TZ-30	225.5	5<	2<	6308.4	2<	3.5	217.9	17.8	86.7	111.0
TZ-31	215.7	5<	2<	5181.4	2<	2<	211.7	17.9	79.6	104.6
TZ-32	78.4	5<	2<	5343.4	2<	2<	253.3	18.6	98	77.8
TZ-33	163.1	5<	2<	5873.3	2<	2.3	227.7	18.7	134.2	101.9
TZ-34	168.5	5<	2<	5832.1	2<	2.3	225.6	18.7	133.7	102.7
TZ-35	171.2	5<	2<	5536.6	2<	3.5	226.1	17.5	85.7	99.6
TZ-36	188.9	5<	2<	5503.8	2<	3.4	223.4	17.7	83.6	101.4
TZ-37	173.2	5<	2<	5611.1	2<	3.5	227.6	18.1	88.1	97.8
TZ-38	128.7	5<	2<	5242.8	2<	2<	232.7	18.6	91.1	91.8
TZ-39	238.5	5<	2<	6353.7	2<	3.5	217.3	17.7	85.7	112.2