

۴-۱- فاز کنترل آنومالیهای مقدماتی
 در اکتشافات ژئوشیمیائی به روش آبراههای که به منظور کشف هالههای ثانوی کانسارهای
 احتمالی انجام میپذیرد، معمولاً منطقه وسیعی تحت پوشش اکتشافی قرار میگیرد. این روند
 سبب کشف آنومالیهای ظاهری موجود در محیطهای ثانوی میشود. این آنومالیها در اثر عوامل
 متعددی به وجود میآیند که عبارتند از:
 – تأثیر سنگ بالادست
 – آلودگیهای مختلف موجود در محیط (صنعتی، کشاورزی و...)

- ناهمگنی موجود در نمونه آنالیز شده

- عوامل كانەزائى

از طرفی به دلیل اینکه در روش ژئوشیمیائی، هر عنصر مستقیماً مورد آنالیز قرار می گیرد توجهی به فاز پیدایش آن نمی شود، از اینرو هاله های ثانوی کشف شده نمی توانند همیشه معرف کانی سازی باشند، بنابراین برای تمیز دادن آنومالی های واقعی (که در ارتباط با پدیده کانی سازی بوده و دارای مؤلفه اپی ژنتیک قابل ملاحظه می باشند)، از انواع کاذب مرتبط با پدیده های سنگ زائی (مؤلفه سین ژنتیک) و یا آلودگی های زیست محیطی باید به کنترل زمینی آنها پرداخت. معمولاً اکتشاف مولفه های سن ژنتیک با استفاده از روش ژئوشیمی اکتشافی کمتر معمول است و از متدهای اکتشافی دیگر استفاده می شود. روش های مختلفی برای کنترل آنومالی ها وجود دارد که می توان به کمک آنها آنومالی های مقدماتی ژئوشیمیائی عناصر را تأئید و یا رد نمود. این

بیجویی به روش اکتشاف ژئوشیمیایی درمحدوده توسیرکان ۲

۱- بررسی مناطق دگرسان شده و زونهای مینرالیزه احتمالی

۲- برداشت نمونه از سیستمهای درز و شکاف پرشده توسط مواد معدنی

روشهای مذکور نوعی از شواهد واقعی بودن آنومالیهای ژئوفیزیکی یا ژئوشیمیائی پیدایش مناطق کانیسازی در سطح زمین می باشند. اگر سطح فرسایش کنونی، سطح کانیسازی احتمالی را قطع کرده باشد، میتوان آثار کانیسازی را مستقیماً دید. در این صورت لازم است از عوارض مرتبط با کانیسازی نمونههایی برداشت نمود. این نمونهها با این هدف برداشت میشوند که بیشترین عیار را نمایان سازند. بنابراین نمونه ها به طور نظام مند از مناطق پرعیار برداشت خواهند شد و لذا از این نمونهها نمیتوان و نباید استنباطی در مورد عیار ماده معدنی به عمل آورد.

از دیگر نمونههایی که لازم است برای کنترل آنومالیها برداشت گردد، نمونههای مرتبط با دگرسانیهای وابسته به کانیسازی احتمالی است. معمولاً هالههای دگرسانی مانند غلافی هسته کانیسازی را در بر می گیرند و گاهی نیز با کانی سازی همراه می شوند. از آنجا که هالههای دگرسانی بزرگتر از تودههای کانیسازی شده هستند، لذا احتمال این که سطح فرسایش کنونی آنها را قطع کند و نمایان شوند، بیشتر است. این امر به خصوص در مورد تودههای کانیسازی پنهان که اکتشاف آنها پر هزینه و ریسک آنها بالاتر است صادق است.

از اینرو نمونهبرداری از هالههای دگرسانی به منظور تعیین ترکیب کانیشناسی هالههای دگرسانی و همچنین عیارسنجی آن بسیار ضروری بوده و میتواند نتایجی را دال بر تأئید یا تکذیب آنومالی در اختیار قرار دهد.

در منطقه مطالعاتی تویسرکان، با توجه به نتایج آنومالیهای ژئوشیمیایی اولیه مهمترین آنومالیهای معنی دار ژئوشیمیایی، آنومالیهای عناصر سرب، روی، مس و آهن میباشد. در این میان بهترین نتایج ژئوشیمیایی در عناصر سرب و روی دیده میشود. آنومالیهای عنصر طلا هرچند دارای مقادیر معنیداری نیست (دلیل آن احتمالاً عدم انتخاب مش مناسب نمونه برداری

فرا زمین ساخت مهند مین شاور

پیچویی بهروش اکتشاف ژئوشیمیایی در محدوده توسیرکان ۲

است)، اما در مناطقی که با آنومالیهای سایر عناصر تطبیق داشته باشد، کنترل آنومالیهای طلا میتواند مفید باشد. در پروژه حاضر با تلفیق آنومالیهای ژئوشیمیایی و کانیسنگین، دو منطقه امیدبخش مشخص گردید که در زیر به معرفی آنها پرداخته می شود.

۴-۱-۱- منطقه امیدبخش شماره یک (بخش شمال و باختر روستای حلور بالا)

این منطقه به وسعت تقریبی ۴ کیلومترمربع به مختصات جدول ۴–۱، دارای آنومالیهای سرب، روی، نقره، کادمیوم، مس و آنتیموان بوده که با تطابق جالبی گسترش دارند. از طرفی نمونههای کانی سنگین، بخصوص H.M-117، H.M-115، H.M-110، H.M-125 وH.M-125 دارای مقادیر قابل توجهی از کانی های گروه سرب و روی بوده و آنومالی های ژئوشیمیایی را در این منطقه تأئید می کند.

	X	Y
A	238891.1	3843314
В	239517.3	3842281
С	241533.5	3843577
D	240923.7	3844544

جدول ۴–۱– مختصات محدوده اكتشافي حلور بالا

این آنومالی از لحاظ زمینشناسی در برگیرنده واحد شیستی است که در حاشیه باختری توده الوند گسترش داشته و شامل شیست ها و اسلیت هایی به رنگ تیره و در بردارنده پرفیروبلاست کردیریت و گرونا می باشد که از تأثیر دگرگونی حرارتی بر روی دگرگونی ناحیه ای، بوجود آمده است. سنگ های مذکور به دو دسته قابل تفکیک هستند:

پیچویی بهروش اکتشاف ژئوشیمیایی درمحدوده توسیرکان۲

الف- شیست های لکه داری که لکه های کردیریت آنها در اثر یک دگرگونی برگشتی به
مجموعه ای از سریسیت، مسکوویت، کلریت و گرونا تبدیل شده است.
ب- شیست های لکه داری که در اثر دگرگونی پاراژنزهای خود را از دست دادهاند و به مجموعه
سریسیت، کلریت، بیوتیت و گرونا تبدیل شده اند. مهمترین نمونههای دارای ناهنجاری
ژئوشیمیایی در محدوده این منطقه امیدبخش به شرح جدول زیر است:

حلور بالا	محدوده اكتشافي	ای ژئوشیمی در	هد ناهنجاری نمونهه	۲-۴- نمونههای شاه	جدول
-----------	----------------	---------------	--------------------	-------------------	------

فرازمین یاخت هندسین شاور

پیچوبی بهروش اکتشاف ژنوشیمیایی درمحدوده توسیرکان ۲

فرا زمین ساخت مندسین مثاور

نمونههای کانی سنگین مهم و دارای کانی مینرالیزه در این منطقه به شرح زیر است:

کانی سنگین حاوی کانیهای مینرالیزه در محدوده اکتشافی حلور بالا	حدول ۴–۳– نمونههای	>
---	---------------------------	---

شماره نمونه	عيار(گرم درتن)	نوع کانی سنگین	ليتولوژي	X	Y	
	0.14	Cerussite				
H.M-130	0.16	Galena	شيست و مرمر	240051	3843541	
	PTS	smithsonite				
H.M-100	0.23	Cerussite		220220	2041756	
	0.27	Galena	شیست و مرمر –	239229	3841756	
	18	Barite				
H.M-11	6.50	Cerussite		240246	2820810	
	97.5	Galena	سيست و مرمر	240246	3839810	
	0.44	smithsonite				
H.M-101	PTS	Cerussite	شیست و مرمر	238793	3842079	
H.M-105	PTS	Cerussite		220562	2941529	
	PTS	Galena	سيست و مرمر	239303	5071520	
	2109.38 Barite					
	1015.63	Cerussite		239485	3842220	
H.M-110	3515.63	Galena	شیست و مرمر			
	PTS	Phyromorphite	Phyromorphite			
	PTS	Cinnabar				
H M 112	PTS	Cerussite				
H.M-113	PTS	Gold	شيست و مرمر	239916	3841733	
	PTS	Galena				
	9.29	Cerussite				
H.M-115	10.71	Galena		239811 شيست و م	3842310	
	0.24	Phyromorphite	سيست و مرمر		5642510	
	12.57	smithsonite				
H.M-116	PTS	smithsonite	شیست و مرمر	239525	3842721	

پیچویی بهروش اکتش**اف ژ**لوشیمیایی درمحدوده توسیرکان ۲

شماره نمونه	عيار(گرم درتن)	نوع کانی سنگین	ليتولوژي	X	Y	
	12.86	Barite				
H.M-117	9.29	Cerussite		220424	2842072	
	21.43	Galena	سیست و مرمر	239424	3842903	
	0.16	Smithsonite				
H.M-120	PTS	Cerussite	· · · · · · · · · ·	240210	29/1979	
	PTS	Galena	سيست و مرمر	240319	3641676	
	22.50	Barite				
H.M-125	9.29	Cerussite	• • • · · · · · · •	240258	2040000	
	37.50	Galena	سيست و مرمر	240558	3642262	
	0.31	Smithsonite				
	PTS	Cerussite				
H.M-126	PTS	Galena	شيست و مرمر	240044	3842663	
	PTS	Smithsonite				
	0.28	Cerussite				
H.M-127	0.32	Galena	شیست و مرمر	240337	3842854	
	PTS	Smithsonite				
H.M-133	PTS	Cerussite	· · · · · · · · · ·	240781	3842735	
	PTS	Galena	سيست و مرمر	240781	5042755	
H.M-142	H.M-142 PTS Ceruss			241079	3842761	
	PTS	S Galena		241079	5642701	
H M 147	0.42	Cerussite				
H.M-14/	0.48	Galena	شیست و مرمر	240739	3844024	
	0.28	Smithsonite				
H.M-148	PTS	Cerussite		240509	3843974	
	PTS	Galena		240307	567577	
II M 151	0.36	Cerussite				
H.M-131	0.42	Galena	شيست و مرمر	241628	3843586	
	0.25	Smithsonite				
H.M-153	0.28	Cerussite	شیست و مرمر	241112	3844169	
	0.32	Galena			5077107	
H.M-155	PTS	Cerussite	شیست و مرمر	241886	3843236	
	PTS	Galena				
H.M-164	0.28	Cerussite	_			
	0.32	Galena	شيست و مرمر	241402	3844191	
	PTS	Smithsonite				
H.M-165	0.18	Cerussite	_			
100	0.21	Galena	شيست و مرمر	240964	3844629	
	0.12	Smithsonite				
H.M-172	PTS	Cerussite	شيست و مرمر	241808	3844726	
	PTS	Galena				

ورزمین ساخت مهندسين مثاور

پیچوبی به روش اکتشاف ژئوشمیایی درمحدود ه توسیرکان ۲

در جریان عملیات کنترل آنومالی از این محدوده تعداد ۳۶ نمونه مینرالیزه جهت آنالیز *PD* ۷ نمونه دگرسانی جهت آنالیز *XRD* و ۲۱ نمونه کانی سنگین برداشت گردید که مشخصات آنها در جدول ۴–۴ ارائه شده است.مهمترین رخنمون ماده معدنی در این محدوده، لایه سیلیسی بطول ۴۰ متر و ضخامت ۲۰ الی ۳۰ سانتیمتر می باشد که با روند تقریبی خاوری– باختری و به مختصات ۲۴۰۰۳۸ و ۳۸۴۳۴۶۲ واقع در شمال روستای حلوربالا برونزد دارد (اشکال ۴–۱). از محل این رگه، نمونههای ۳۱۷ و ۲۱۴ برداشت شده است. بررسیهای انجام شده نشان می دهد، مهمترین کانهزایی در امتداد این لایه بصورت گوتیت، کالکوپیریت، لیمونیت، هماتیت، مهمترین کانهزایی در امتداد این لایه بصورت گوتیت، کالکوپیریت، لیمونیت، هماتیت، میدرواکسیدهای منگنز و مالاکیت بهمراه کربناتهای سرب و روی است. بافت ماده معدنی اغلب بصورت *Boxwork texture* معدنی اغلب در بخشهای فوقانی این لایه گسترده بوده و در نتیجه زون اکسیدان با ضخامت زیاد شکل گرفته است (اشکال ۴–۲ و ۴–۳).مطالعات پی جویی در منطقه شمال روستای حلوربالا همچنین نشان می دهد، گاهی مواد معدنی بصورت عدسیهای سیلیسی در میان لایههای شیست برونزد دارند. این

شکل ۴–۱–الف– لایه حاوی کانهزایی مواد معدنی در شمال روستای حلور بالا

پیچویی به روش اکتشاف ژئوشیمیایی در محدوده توسیرکان ۲

شکل ۴-۱-ب- لایه حاوی کانهزایی مواد معدنی در شمال روستای حلور بالا

شکل ۴-۲- نمایی از کانهزایی آهن- مس ثانویه در لایه سیلیسی شمال روستای حلور بالا

پیچوبی بهروش اکتش**اف ژ** نوشیمیایی در محدوده توسیرکان ۲

شکل ۴–۳- نمایی از بافت جعبهای حاوی کانهزایی آهن در لایه سیلیسی شمال روستای حلور بالا

شکل ۴–۴– نمایی از عدسیهای سیلیسی-گوتیتی میان لایههای شیستی در شمال روستای حلوربالا

نمونه های سنگی مینرالیزه	Y	X	NO
سنگهای بالادست شیست+رگههای سیلیسی بشدت هماتیتی شده	3842476	239319	87-LT-700
سنگهای بالادست شیست+ر گههای سیلیسی بشدت هماتیتی و لیمونیتی شده بهمراه کالکوپیریت-گوتیت	3842499	239328	87-LT-701
رگەھاى سىلىسى داراى دگرسانى ھماتىتى-لىمونىتى	3842544	239336	87-LT-702
رگەھای سیلیسی دارای دگرسانی ھماتیتی	3842550	239342	87-LT-703
رگچه های سیلیسی-گوتیتی - هماتیتی- حاوی مالاکیت-پیریت	3842958	239301	87-LT-704
رگچه های سیلیسی- گوتیتی بهمراه مالاکیت	3842988	239311	87-LT-705
شیستهای دگرسان شده رسی- لیمونیتی	3842826	239485	87-LT-706
رگه حاوی آلتراسیون آرژیلی به رنگ سفید شیری همراه با برش سیلیسی- لیمونیتی- هماتیتی	3842676	239557	87-LT-707
رگه سیلیسی در داخل شیستهای تکتونیزه به رنگ قرمز(آلتراسیون هماتیتی- لیمونیتی)	3842641	240093	87-LT-708
رگه سیلیسی در داخل شیستهای تکتونیزه (آلتراسیون لیمونیتی)	3842656	240102	87-LT-709
رگه سیلیسی درداخل شیست حاوی هماتیت- لیمونیت-گوتیت	3842851	239953	87-LT-710
رگه سیلیسی درداخل شیست حاوی گوتیت- لیمونیت	3842861	239923	87-LT-711
رگه سیلیسی دارای دگرسانی هماتیتی- لیمونیتی بهمراه مالاکیت-گوتیت	3843596	239907	87-LT-712
رگه کانی سازی شده آهن-مس (گوتیت-کالکوپیریت-لیمونیت- مالاکیت) به طول ۴۰ متری- دارای روند شمالشرق-جنوب غرب به ضخامت ۱۰ تا ۴۰ سانتیمتر	3843462	240038	87-LT-713
نمونه دیگری از همان رگه کانی سازی شده در امتدادجنوب غربی آن (طول ۴۰ متر و به ضخامت ۱۰ تا ۴۰ سانتیمتر)	3843475	240023	87-LT-714
لنز هایی از کانی سازی آهن (گوتیت-هماتیت-لیمونیت)	3843238	239971	87-LT-715
لنز ها و رگچه هایی از کانی سازی آهن (گوتیت-پیریت-لیمونیت)	3843258	239965	87-LT-716
شیست با رگچههای سیلیسی- گوتیت- هماتیت- لیمونیت	3842875	240353	87-LT-717
شیست با رگچههای سیلیسی- هماتیت- لیمونیت	3842865	240372	87-LT-718
رگچه سیلیسی حاوی گوتیت-مالاکیت و پیریت در داخل شیستها	3843076	240679	87-LT-719
رگه گوتیت- هماتیتی بهمراه پیریت و مالاکیت در داخل شیستها	3843644	241038	87-LT-720
رگه گوتیتی بهمراه مالاکیت و پیریت در داخل شیستها	3843667	241059	87-LT-721
رگه سیلیسی با دگرسانی هماتیتی- لیمونیتی	3843856	240872	87-LT-722
رگە سىلىسى- گوتىتى- ليمونىتى	3843847	240861	87-LT-723

جدول ۴-۴- مشخصات نمونههای مینرالیزه برداشت شده از محدوده اکتشافی حلور بالا

بیجویی به روش اکتشاف ژئوشیمیایی درمحدوده توسیرکان ۲

نمونه های سنگی مینرالیزه	Y	X	NO
رگه سیلیسی بهمراه کالکوپیریت و مالاکیت در داخل شیست و فیلیتها	3843895	240772	87-LT-724
رگه سیلیسی کانی زایی مس بصورت رگچه های کالکوپیریت و مالاکیت در داخل شیست و فیلیتها	3843880	240750	87-LT-725
رگه سیلیسی- گوتیتی بهمراه کانیسازی مس بصورت کالکوپیریت و مالاکیت فراوان در خلل و فرج سنگ	3843848	241297	87-LT-726
رگه سیلیسی- گوتیتی بهمراه کانیسازی مس (مالاکیت فراوان در خلل و فرج سنگ)	3843830	241290	87-LT-727
لنز سیلیسی- گوتیتی بهمراه دگرسانی لیمونیتی	3843797	241211	87-LT-728
رگە سىلىسى- گوتىتى	3843788	241219	87-LT-729
رگە سىلىسى گوتىتى- ليمونيتى	3843460	240605	87-LT-730
رگە سىلىسى گوتىتى- ليمونىتى	3843489	240625	87-LT-731
رگە سىلىسى-گوتىتى بەمراە مالاكىت	3843204	240572	87-LT-732
رگه سیلیسی- لیمونیتی شده بهمراه گوتیت-مالاکیت	3843250	240590	87-LT-733
رگچەھاى نسبتاً مجتمع سيليسى بهمراہ گوتيت-ھماتيت- ليمونيتى كمى مالاكيت	3842560	238701	87-LT-734
رگچەھاى سىلىسى-گوتىتى	3842541	238735	87-LT-735

۴-۱-۱-۱ مطالعات مینرالوگرافی و بررسی های پاراژنزی

در جریان عملیات کنترل آنومالی از محدوده امیدبخش شماره یک، از میان نمونههای مینرالیزه تعداد ۱۸ نمونه انتخاب و از آنها بمنظور مطالعات مینرالوگرافی، مقطع صیقلی تهیه گردید. در زیر نتایج مطالعات مینرالوگرافی نمونه های مینرالیزه شرح داده شده است.

نمونه شماره 727-*P*₀ این نمونه از بخش شمالی روستای ویرایی برداشت گردید. در مطالعات ماکروسکوپی این نمونه کانه های کالکوپیریت، مالاکیت، گوتیت و لیمونیت با گانگ کوارتز و در مقاطع صیقلی این نمونه کانه های زیر شناسایی گردید.

۱ - کالکوپیریت: کانه کالکوپیریت بصورت هپیدومورف بوده که از حواشی در حال تبدیل شدن
 به کوولیت (آبی رنگ)، کالکوسیت (خاکستری مایل به آبی)، دیژنیت (خاکستری تیره) و
 هیدروکسید ثانویه آهن (گوتیت) می باشد (شکل ۴–۵). این تبدیل ها نشانگر توسعه فرآیند

پیچوبی به روش اکتشاف ژئوشمیایی در محدوده توسیرکان ۲

سوپرژن بوده که در طی این فرآیند، مس از کانه اولیه آن (کالکوپیریت) شسته شده و در قسمتهای پایینی رگه بصورت کانه های دارای عیار بالای مس (کوولیت، کالکوسیت و دیژنیت)، در حواشی و شکستگیهای کالکوپیریت ترسیب شده است (اشکال ۴-۶ تا ۴-۸).

شكل ۴-۵- جایگزینی كالكوپیریت توسط كوولیت Cov، كالكوسیت Ch cit و گوتیت Goe

شکل ۴-۶- جایگزینی کالکوپیریت Ch py توسط کوولیت Cov (آبی رنگ)

پیچوبی به روش اکتش**اف ژ**لوشمیایی درمحدوده توسیرکان ۲

شکل ۴-۷- جانشینی کالکوپیریت توسط کوولیت Cov، دیژنیت Dij و کالکوسیت

شکل ۴-۸- جانشینی کالکوپیریت Ch py توسط کوولیت Cov و کالکوسیت

۲- پیریت: پیریت ها اکثراً در اثر عملکرد فرآیند سوپرژن به گوتیت تبدیل شده اند و تنها آثار جزئی از آنها باقی مانده است (شکل ۴–۹).

پیچوبی به روش انتشاف ژئوشیمیایی در محدوده توسیرکان ۲

شکل ۴–۹- جانشین شدن پیریت *Py* توسط گوتیت *Goe*

۳- گوتیت: گوتیت فراوانترین کانه مشاهده شده در این نمونه می باشد که از تجزیه پیریت و کالکوپیریت حاصل شده است (شکل ۴-۱۰). گوتیت ها عموماً بافت جعبه ای از خود نشان می دهند که نشانگر توسعه فرآیند هوازدگی می باشد (اشکال ۴-۱۱ و ۴-۱۲).

شکل ۴–۱۰- جانشین شدن کالکوپیریت توسط گوتیت

فرا زمین ساخت مهندسین شاور

شکل ۴-۱۱- بافت جعبه ای گوتیت

شکل۴-۱۲- بافت جعبه ای گوتیت

۴- مالاکیت: بر طبق مطالعات میکروسکوپی، کربنات ثانویه مس (مالاکیت) از تجزیه
 کالکوپیریت های اولیه حاصل شده و شکستگیها و حفرات گانگ را پر نموده است (اشکال ۴-۱۳ و
 ۴-۱۴).

پیچوبی به روش اکتشاف ژئوشمیایی در محدوده توسیرکان ۲

شکل ۴–۱۳-تجزیه کالکوپیریت به کوولیت به صورت بافت حاشیهای

شکل ۴–۱۴– پرشدگی حفرات و شکستگیها توسط مالاکیت Mal که از تجزیه کالکوپیریت حاصل شده اند

نمونه 726-726: در مطالعات میکروسکوپی، این نمونه حاوی گوتیت با گانگ کوارتز بوده که در زیر میکروسکوپ، گوتیت بافت جعبه ای از خود نشان داده و فضای خالی بین آنها توسط مالاکیت پر شده است (شکل ۴–۱۵). بر طبق مطالعات مینرالوگرافی، گوتیت از تجزیه پیریت حاصل شده

بیجویی به روش اکتشاف ژئوشمیایی درمحدوده توسیرکان ۲

و تشکیل این کانه بهمراه کانه کربناتی مس ثانویه (مالاکیت) توسعه پدیده هوازدگی را نشان

می دهد.

شکل ۴–۱۵– بافت جعبه ای گوتیت که حفرات آن توسط مالاکیت پر شده است

نمونه 707- P_0 این نمونه شامل کوارتز بوده که شکستگیهای آن توسط رگچه های کربنات مس (مالاکیت) پر شده و بعضاً بصورت پراکنده در متن نمونه کالکوپیریت مشاهده می شود (اشکال ۴–۱۶ و ۴–۱۷). بنظر می رسد، در اثر فرآیندهای جوی، کالکوپیریت ها به کربنات مس تبدیل شده اند.

شکل ۴-1۶- رگچه مالاکیت داخل گانگ کوار تز با آثار کالکوپیریت

پیچوبی به روش اکتشاف ژئوشمیایی در محدوده توسیرکان ۲

شکل ۴–۱۷- رگچه مالاکیت داخل گانگ کوارتز

نمونه 725- P_0 این نمونه شامل گانگ کوارتز بوده که توسط رگچه های کالکوپیریت قطع شده است (شکل ۴–۱۸). کالکوپیریت خود نیز در حال تبدیل شدن به کوولیت، کالکوسیت و مالاکیت می باشد. این مقطع بافت پرشدگی توسط کانه کالکوپیریت را نشان می دهد که بعد از گانگ کوارتز تشکیل شده است.

شکل ۴–۱۸ رگچه کالکوپیریت داخل کوارتز

پیچوبی بهروش اکتشاف ژئوشمیایی در محدوده توسیرکان ۲

نمونه 719-*P*₀ این نمونه حاوی پیریت اولیه و گوتیت ثانویه می باشد. پیریت ها در حال تبدیل شدن به گوتیت بوده و توسعه فرآیندهای هوازدگی را نشان می دهند (اشکال ۴–۱۹ و ۲۰-۴).

شکل ۴–۱۹– پیریت که از حواشی در حال تبدیل به گوتیت می باشد

شکل ۴-۲۰- رگچه پیریت در حال تبدیل به گوتیت

بیجویی به روش اکتشاف ژئوشمیایی درمحدوده توسیرکان ۲

فرازمین ساخت مهند سین مثاور

شکل ۴-۲۱- پیریت شکل دار داخل گانگ کوارتز

نمونه 735- P_0 این نمونه حاوی پیریت اولیه و گوتیت ثانویه بوده که پیریت ها توسط P_0 -735 هیدرواکسید آهن (گوتیت) در حال جایگزین شدن هستند (شکل ۴–۲۲). این نمونه نیز پدیده

شکل ۴-۲۲- پیریت در حال تجزیه به گوتیت

فرازمین ساخت مهندسین شاور

بیجویی به روش اکتشاف ژئوشیمیایی درمحدوده توسیرکان ۲

نمونه 716-9، این نمونه نیز از کوارتز تشکیل شده که حفرات و شکستگیهای آن توسط گوتیت و مالاکیت پر شده است. پیریت ها بطور کامل به گوتیت تبدیل شده اند و تنها آثاری از آنها بصورت جزئی باقی مانده است (شکل ۴–۲۲). در این نمونه نیز گوتیت ها بافت جعبه ای نشان می دهند که نشانگر توسعه فرآیند هوازدگی می باشد.

شکل ۴–۲۳ - تبدیل پیریت به گوتیت و پرشدگی حفرات به مالاکیت

نمونه 721-70 در این نمونه پدیده جایگزین شدن پیریت توسط هیدرواکسید ثانویه آهن (گوتیت) بخوبی دیده می شود و شکستگیهای گانـگ توسط مالاکیـت پـر شـده اسـت (شـکل ۴-۴۲). جایگزینی پیریت توسط گوتیت و توسعه کانه زایی مالاکیت، عملکرد فرآینـد سـوپرژن را بخوبی نشان می دهد.

پیچوبی به روش اکتشاف ژئوشمیایی در محدوده توسیرکان ۲

شکل ۴-۲۴- پیریت در حال تبدیل به گوتیت

نمونه 731- P_0 این نمونه از کوارتز تشکیل شده که حاوی کانه زایی گوتیت می باشد. در این نمونه پیریت بطور کامل به گوتیت تبدیل شده و تنها شبحی از آنها باقی مانده است (شکل + - ۲۵). گوتیت در این نمونه نیز بافت جعبه ای نشان می دهد که تحت تأثیر فرآیندهای هوازدگی تشکیل شده است.

شکل ۴–۲۵- پیریت در حال تبدیل به گوتیت

فرازمین ساخت جند سین شاور

بیجویی به روش اکتشاف ژئوشمیایی درمحدوده توسیرکان ۲

نمونه 701-9، این نمونه از پیریت، کالکوپیریت و گوتیت با گانگ کوارتز تشکیل شده و شکستگی و حفرات آن توسط مالاکیت پر شده است. پیریت و کالکوپیریت اکثراً به گوتیت تبدیل شده و تنها بخشی از آنها سالم باقی مانده است (شکل ۴–۲۶).

شکل ۴-۲۶- تبدیل پیریت و کالکوپیریت به گوتیت و پرشدگی حفرات با مالاکیت

نمونه 712-90 این نمونه نیز عمدتاً از کوارتز تشکیل شده که توسط رگچه های پیریت قطع شده است (شکل ۴–۲۷). پیریت ها خود به گوتیت تبدیل شده اند. در این مقطع مقداری کانه مالاکیت که بصورت ثانویه تشکیل شده، مشاهده می گردد.

شکل ۴–۲۷- رگچه پیریت داخل کوارتز

پیچویی به روش اکتشاف ژئوشمیایی درمحدود ه توسیرکان ۲

نمونه 714-*P*₀: این نمونه عمدتاً از کوارتز، گوتیت و مالاکیت تشکیل شده است. در این نمونه کانه گوتیت بافت جعبه ای را بخوبی نشان می دهد که نشانگر توسعه فرآیند سوپرژن می باشد (شکل ۴–۲۸). شکستگیهای بین گوتیت ها توسط مالاکیت پر شده است که بنظر می رسد کانه اولیه، کالکوپیریت بوده که آهن آن کانه به گوتیت و مس آن طی فرآیند هوازدگی به مالاکیت تبدیل شده است.

شکل ۴–۲۸– بافت جعبه ای شاخص از گوتیت که فضاهای بین آن توسط مالاکیت پر شده است

نمونه 713-Pe این نمونه حاوی کالکوپیریت، کوارتز، مالاکیت و گوتیت می باشد. کالکوپیریت ها در حال تبدیل به گوتیت بوده و گوتیت ها بافت جعبه ای تشکیل داده اند که حفرات بین آنها توسط کربنات مس (مالاکیت) پر شده است (اشکال ۴-۲۹ و ۴-۳۰).

پیچوبی بهروش اکتشاف ژئوشیمیایی در محدوده توسیرکان ۲

شکل ۴-۲۹ -کالکوپیریت در حال تبدیل به گوتیت

شکل ۴-۳۰-گوتیت با بافت جعبه ای که حفرات آن با مالاکیت پر شده است

فرازمین ساخت جند سین شاور

بیجویی به روش اکتشاف ژئوشمیایی درمحدوده توسیرکان ۲

است.

نمونه 710-P₀. این نمونه نیز از کوارتز و گوتیت تشکیل شده است. گوتیت ها از تجزیه پیریت ها حاصل شده اند که آثار جزئی از آنها باقی مانده است (شکل ۴–۳۱).

شکل ۴–۳۱– تجزیه پیریت های اولیه به گوتیت های ثانویه تحت فرآیندهای سوپرژن

نمونه 704-*P*₀ این نمونه نیز از کوارتز، مالاکیت، گوتیت و پیریت تشکیل شده است. پیریت ها در حجم زیادی در حال تبدیل به گوتیت هستند که تنها بخشی از آنها باقی مانده است (شکل ۴–۳۲). در این نمونه نیز شکستگی و حفرات بین گوتیت و گانگ توسط مالاکیت پر شده

شکل ۴–۳۲ پیریت در حال تجزیه به گوتیت

فرازمین ساخت مهند مین شاور

پیچوبی به روش اکتشاف ژئوشمیایی در محدوده توسیرکان ۲

نمونه 732- P_0 این نمونه نیز عمدتاً از کوارتز و گوتیت با مقدار جزئی پیریت تشکیل شده است. پیریت ها عمدتاً از حواشی در حال تبدیل به گوتیت بوده و همچنین پیریت ها حالت زونینگ از خود نشان می دهند (اشکال ۴–۳۳ و ۴–۳۴).

شکل ۴-۳۳- تبدیل پیریت از حواشی به گوتیت و پرشدگی حفرات آن با مالاکیت

شکل ۴–۳۴– بافت زونینگ در پیریت

بیجویی به روش انتشاف ژئوشمیایی درمحدوده توسیرکان ۲

فرازمین ساخت مهند سین مثاور

نمونه 718-*P*₀-718 این نمونه بیشتر حاوی گوتیت، مالاکیت با مقدار اندکی کالکوپیریت می باشد.

بنظر می رسد، گوتیت ها از تجزیه کالکوپیریت حاصل شده اند (شکل ۴-۳۵).

شکل ۴-۳۵- لکه کالکوپیریت داخل گوتیت و پرشدگی حفرات گوتیت با مالاکیت

در حالت کلی از مطالعه نمونههای برداشت شده از منطقه اکتشافی حلور بالا نتایج زیر حاصل گردید:

۱- بطور عمده کانه های مـشاهده شـده شـامل کالکوپیریـت، پیریـت، کوولیـت، کالکوسـیت، دیژنیت، گوتیت و مالاکیت با گانگ عمدتاً کوارتز می باشند.

۲- کوولیت، کالکوسیت و دیژنیت در نتیجه غنی شدگی ثانویه حاصل شده اند. بنظر می رسد، کانه اولیه مس (کالکوپیریت) از قسمتهای فوقانی رگه شسته شده و در واکنش با کانه اولیه در بخش پایینی، کانه های پر عیار مس (کالکوسیت، کوولیت و دیژنیت) را بوجود آورده است.

۳- کالکوپیریت و پیریت در حجم گستردگی در حال تبدیل به هیدرواکسیدهای ثانویه آهن
 (گوتیت و لیمونیت) بوده و گوتیت بافت جعبه ای نشان می دهند که نشانگر توسعه فرآیند هوازدگی می باشد.

پیچوبی به روش اکتشاف ژئوشیمیایی درمحدوده توسیرکان ۲

فرازمین ساخت مهندسین مثاور

۴- در بخـش اکـسیدان رگـه عـلاوه بـر تـشکیل هیدرواکـسیدهای ثانویـه آهـن (گوتیـت و لیمونیت)، مالاکیت نیز تشکیل شده که از تجزیه کالکوپیریت حاصل شده است.

با عنایت به نتایج مطالعات مینرالوگرافی و نیز انجام مطالعات کانی سنگین، روابط پاراژنزی به صورت جدول ۴-۵ ارائه می گردد:

07 .				•22 2
رديف	نام کانی	نوع مطالعات	فرایندهای هیپوژن	فرایندهای سوپرژن
١	پيريت	مینرالوگرافی و کانیسنگین		
۲	كالكوپيريت	مينرالوگرافي		
٣	ديژنيت	مينرالوگرافي		
۴	كووليت	مینرالوگرافی		
۵	كالكوسيت	مینرالوگرافی		
۶	مالاكيت	مینرالوگرافی و کانیسنگین		
٧	بروشانتيت	کانی سنگین		
٨	گالن	کانی سنگین		
٩	هیدروکسیدهای آهن	مینرالوگرافی و کانیسنگین		
۱٠	پيرولوزيت	مينرالوگرافي		
11	اسميت زونيت	کانی سنگین		
١٢	همىمورفيت	کانی سنگین		
۱۳	اسفالريت	کانی سنگین		
14	سروزيت	کانی سنگین		
۱۵	مالاكيت	مشاهده در نمونه دستی		

جدول ۴-۵ – بررسیهای پاراژنزی و فرایندهای پیدایش کانیهای کانسارساز محدوده حلوربالا

بیچویی به روش اکتشاف ژئوشیمیایی درمحدود ه توسیرکان ۲

قرازمین ساخت

۴-۱-۱-۲ بررسی آنالیزهای کانیشناسی و شیمیایی

در جریان عملیات کنترل آنومالی، تعداد ۳۶ نمونه مینرالیزه جهت انجـام آنـالیز شـیمیایی بـه

روش ICP-OES و ۷ نمونه جهت آنالیز XRD برداشت و به آزمایشگاههای مربوطه ارسال شد.

نتایج آنالیز شیمیایی حاکی از بالا بودن عیار عناصر طلا، مس، سرب، روی، منگنز، نقره، آرسنیک و گاهی قلع است. مقدار طلا در برخی نمونهها بالا و حداکثر مقدار آن ۳۳۷۰ میلی گرم در تن (نمونه ۷۰۳) گزارش شده است. میانگین و حداکثر مقدار مس در این نمونهها به ترتیب ۲۰۷۷ گرم در تن و ۲/۵ درصد (در نمونه ۷۲۷) گزارش شده که این عیارها بسیار بالا و معنی دار است.

عناصر سرب و روی نیز در اغلب نمونهها دارای عیار بالایی هستند. میانگین عیار سرب و روی در نمونههای این منطقه به ترتیب ۴۶۹۲ و ۷۷۸۰ گرم در تن و حداکثر مقدار عنصر سرب ۵۷۷۰۰ گرم در تن (در نمونه ۷۱۸) و حداکثر مقدار عنصر روی ۴۰۸۰۰ گرم در تن گزارش شده است. این چنین مقادیر میانگینی برای عناصر فوق الذکر، در میان نمونههای مینرالیزه قابل توجه است.

میانگین عیار عناصر آنتیموان، نقره و کادمیم به ترتیب ۸۹/۵ و ۲۰ و ۱۷/۵ گرم در تن بوده و حداکثر مقدار عنصر آنتیموان ۷۵۹ گرم در تن (در نمونه ۷۰۳)، حداکثر مقدار نقره ۲۱۷ گرم در تن (در نمونه ۷۱۸) و حداکثر مقدار عنصر کادمیوم ۱۵۲ گرم در تن (در نمونه ۷۱۳) می باشد. بررسی این مقادیر و مقایسه آن با کلارک عناصر در پوسته زمین نشان از غنی شدگی این عناصر دارد.

بررسی نتایج آنالیز کانیشناسی نمونههای دگرسان به روش XRD نشاندهنده اینست که کانیهای فاز اصلی شامل کوارتز و کائولینیت و کانیهای فاز فرعی نمونه ها شامل گوتیت، مسکوویت، ایلیت، هماتیت و کلریت می باشد.

پیچوبی به روش اکتشاف ژئوشمیایی درمحدود ه توسیرکان ۲

۴–۱–۲– منطقه امیدبخش شماره دو (بخش شمال و خاور روستای ویرایی) این محدوده به مساحت ۱۰ کیلومتر مربع به مختصات جدول ۴–۶ در بخش خاوری و شمالی روستای ویرایی قرار دارد. در این محدوده آنومالی های گسترده ای از عناصر قلیایی، نادر خاکی و عناصر حرارت بالا نظیر تنگستن، قلع و بیسموت تظاهر داشته که مطالعه نمونه های کانی سنگین با وجود کانیهایی نظیر شئلیت آنومالی های فوق را تأئید می کند. بنابراین پیشنهاد می شود علاوه بر اندیس شناسایی شده، این آنومالی ها نیز کنترل گردد.

فرازمین ساخت مندسین شاور

	X	Y
A	248568	3848756
В	249703	3846147
С	245792	3845748
D	245276	3847324

جدول ۴-۶- مختصات چهارگوش محدوده ویرایی

آنومالیهای ژئوشیمیایی در این محدوده به شرح جدول زیر است:

		6 . 770		<u> </u>					
شماره نمونه	عیار(گرم در تن)	شدت آنومالی	نوع آنومالی	ليتولوژى	X	Y			
60	11.5	درجه ۲	Sn	ت من من التحريم من التحريم من التحريم من التحريم التحريم التحريم التحريم التحريم التحريم التحريم التح	240101	3846073			
00	10.3	درجه ۲	W	ترانيت، تراتوديوريت	249101	3840073			
61	10.5	درجه ۲	W	گرانیت، گرانودیوریت	249571	3846049			
	82	درجه ۲	As						
62	2.7	درجه ۲	Мо	گرانیت، گرانودیوریت	گرانیت، گرانودیوریت	24929 گرانیت، گرانودیوریت) 249297 گرانیت، گرانودیوریت	249297 گرانیت، گرانودیوریت	3846367
	12.3	درجه ۱	W						
63	13.7	درجه ۱	W	گرانیت، گرانودیوریت	249356	3846816			
251	12	درجه ۱	Au		245292	2915125			
231	159	درجه ۳	Zn	هورتغنس	243383	3643433			
252	173	درجه ۳	Zn	هورنفلس	245149	3845884			
	2070	درجه ۲	Mn						
253	59200	درجه ۱	Fe	هورنفلس	244723	3846188			
	190	درجه ۳	Zn						

جدول ۴–۷- نمونههای شاهد ناهنجاری ژئوشیمی محدوده ویرایی

پیچویی به روش اکتشاف ژنوشیمیایی در محدوده توسیرکان ۲

شماره نمونه	عیار(گرم در تن)	شدت آنومالی	نوع آنومالی	ليتولوژى	X	Y
0.61	56800	درجه ۲	Fe	(**	0.4505.4	
261	155	درجه ۳	Zn	هورنفلس	245274	3846037
	6	درجه ۲	Au			
266	2340	درجه ۱	Mn		244075	2846600
200	57200	درجه ۲	Fe	ھورتقتس	244975	3840090
	174	درجه ۳	Zn			
	6	درجه ۲	Au			
268	96	درجه ۲	As	هورنفلس	245819	3845739
	2.8	درجه ۱	Bi			
271	6	درجه ۲	Au	1:: •	246105	2016017
	5.7	درجه ۱	Bi	ھورىقلس	240195	3840847
272	62.4	درجه ۲	Си		246062	2947060
212	167	درجه ۳	Zn	ھورتقلس	240003	3847009
286	0.68	درجه ۲	Ag	رگمانىت	247746	2848141
280	99.3	درجه ۱	As	کیت شکر	247740	3040141
288	108	درجه ۲	Pb	گرانیت گرانود رو رت	248432	3848111
200	2.6	درجه ۲	Мо		240452	5040111
291	2.6	درجه ۲	Мо	رگەلتىت	247439	3847539
271	10.2	درجه ۲	W		247437	5047557
204	110	درجه ۱	As	ج اندین جاراند در به	248260	3847620
294	10.6	درجه ۲	W	فرانيف، فرانوه يوريف	248209	3047029
205	2.9	درجه ۲	Мо	ت من من التي الم	248586	3847562
293	10.1	درجه ۲	W	تراثيف، تراتوديوريف	240300	3647302
296	1.7	درجه ۲	Bi	پگماتيت	247110	3847229
303	2.9	درجه ۲	Мо	گرانیت، گرانودیوریت	248700	3847197
304	10.7	درجه ۲	W	گرانیت، گرانودیوریت	248031	3846933
305	2.5	درجه ۲	Мо	گرانیت،گرانودیوریت	248359	3846831
312	2.1	درجه ۱	Bi	پگماتیت	246757	3846627
318	10.8	درجه ۲	Sn	پگماتیت	247394	3846158
200 4	85.6	درجه ۲	As		247014	2016710
300A	10.9	درجه ۲	Sn	کرانیت، درانودیوریت	24/814	3840/48

ناهنجاریهای کانی سنگین در این منطقه امیدبخش به شرح زیر است:

				0, 1	
شماره نمونه	عیار(گرم درتن)	نوع کانی سنگین	ليتولوژى	X	Y
H.M-208	PTS	Cerussite		243354	3845435
	PTS	Galena	سيست و مرمر		
Н.М-235	PTS	Cerussite	همينفاس	244597	3845338
	PTS	Galena	هورفعش		
H.M-241	PTS	Silver	هورنفلس	245373	3844836
H.M-242	PTS	Scheelite	هورنفلس	245737	3844742
H.M-244	PTS	Galena	هورنفلس	246311	3844271
H M 251	PTS	Cerussite	همينفاس	245383	3845435
п.141-231	PTS	Galena	هورتغنس		
H.M-259	PTS	Cinnabar	هورنفلس	245575	3845592
H.M-261	PTS	Scheelite	هورنفلس	245274	3846037
<i>Н М 263</i>	PTS	Cerussite	همينفاس	245205	3846350
П.М-203	PTS	Scheelite	هورفعش		
	PTS	Cerussite		246015	3846468
H.M-270	PTS	Scheelite	هورنفلس		
	PTS	Galena			
	PTS	Cerussite	_	246063	3847069
H.M-272	PTS	Gahenite	هورنفلس		
	PTS	Galena			
H.M-280	PTS	Scheelite	پگماتیت	246848	3847301
H.M-302	PTS	Native Copper	پگماتیت	248363	3847257
H.M-304	PTS	Native Copper	پگماتیت	248031	3846933
H.M-331	PTS	Scheelite	گرانیت، گرانودیوریت	249298	3845772
	PTS	Cerussite		246670	3842900
H.M-372	PTS	Smithsonite			
	PTS	Scheelite			
	PTS	Galena			
	27.74	Barite		250040	3845180
H.M-50	4.01	Cerussite	گرانیت، گرانودیوریت		
	6.94	Galena			
H.M-53	PTS	Cerussite	گرانیت، گرانودیوریت 🗕	249772	3845536
11,171-33	PTS	Galena			
H.M-54	PTS	Cerussite	گرانیت، گرانودیوریت	249680	3845618
	PTS	Galena			
H.M-65	PTS	Cerussite	گ انىت، گ انود يور يت	237226	3842136
11.1/1-05	PTS	Galena			

جدول ۴–۸- نمونههای کانی سنگین حاوی کانیهای مینرالیزه در محدوده ویرابی

فرازمین ساخت هندسین شاور

فرا زمین ساخت مهند مین شاور

بیچویی به روش اکتشاف ژئوشیمیایی درمحدود ه توسیرکان ۲

مهمترین رخنمون سنگی در این محدوده واحد توده گرانیتی الوند است. این واحد بخش وسیعی از شمال خاور محدوده اکتشافی را در بر می گیرد و ترکیب سنگ شناسی آن در سه گروه زیر قابل تفکیک است:

- گرانیتهای پرفیری با ترکیب گرانیت گرانودیوریت که حجم اصلی گرانیتهای الوند را تشکیل
 می دهد.
- بیوتیت گرانیتها وگرانودیوریتهای غنی از کانیهای دگرگونی و میگماتیتها که حد واسط میگماتیت ها و گرانیتهای پرفیری الوند هستند و در آنها تکه های سنگ دگرگونی و بلورهایی از آندالوزیت، سیلیمانیت، کیانیت و گرونا دیده می شود.
- تونالیت، کوارتز دیوریت و دیوریتها که بصورت قطعات گردشده یا گزنولیت های بزرگ و کوچک در حاشیه یا درون توده اصلی به شکل شناور دیده می شوند.

این واحد بداخل مجموعه شیستهای منطقه نفوذ کرده و آنها را به مجموعهای از هورنفلسهای کردیریتدار و لکهای تبدیل کرده است.

در مرحله کنترل آنومالی تعداد ۲۰ نمونه کانی سنگین، ۳ نمونه جهت آنالیز کانی شناسی به روش XRD و ۱۷ نمونه جهت آنالیز شیمیایی به روش ICP برداشت گردید که مشخصات نمونه های مینرالیزه در جدول ۴–۱۰ آورده شده است.

بررسیهای زمینشناسی نشاندهنده نفوذ توده گرانیتی الوند به داخل شیستهای منطقه و تبدیل آنها به هورنفلس است. در داخل مجموعه گرانیتی تودههای آپلیتی و پگماتیتی ناشی از فرایندهای بعد ماگمایی شکل گرفته است. توده گرانیتی گاهی متحمل فرسایش پوسته پیازی شده است.

پیچوبی به روش اکتش**اف ژ**نوشیمیا یی در محدوده توسیرکان ۲

شکل ۴–۳۶ - نمایی از نفوذ واحد گرانیتی به داخل مجموعه شیست و مرمر در مجاور روستای ویرایی

شکل ۴–۳۷- فرسایش پوست پیازی گرانیت الوند

فرازمین ساخت هندسین شاور

بیجویی به روش اکتشاف ژئوشمیایی درمحدوده توسیرکان ۲

نتایج حاصل از عملیات کنترل آنومالی نشان میدهد، مهمترین کانهزایی موجود در این محدوده اندیس مس- آهن ویرایی است. این اندیس به مختصات ۲۴۵۲۲۲ و ۳۸۴۵۱۳۱ در مجاورت روستای ویرایی واقع شده است. این اندیس متشکل از رخنمون سیلیسی حاوی کانیهای هیدروکسید آهن (هماتیت، گوتیت و لیمونیت) بهمراه مالاکیت است. این اندیس مساحتی در حدود ۶ متر مربع را در بر می گیرد. از این اندیس نمونههای ۷۵۱ و ۷۵۲ (همچنین نمونههای ۹۲۴۹ و ۷۵۰ به فاصله کمی از محل رگه و در اطراف آن) برداشت شده است.

اشکال ۴–۳۸– رگه های سیلیسی همراه هوازدگی هماتیتی-لیمونیتی، اندیس مس روستای ویرایی (کانی زایی آهن– مس به شکل کالکوپیریت،گوتیت،کوولیت و بورنیت)

نمونه های سنگی مینرالیزه	Y	X	NO
کنتاکت گرانیت الوند و شیستهای دگرگون	3846170	246561	87-LT-736
	2945057	246451	07 LT 727
تمونه هورنفلسی سده با قطعات بسیار ریز نیره رنگ	3843937	240451	8/-L1-/3/
سنگ آلتره رسی سفید رنگ با لکههایی از آهن و منگنز	3846163	246424	87-LT-738
گرانیت آلتره الوند حاوی لکههای هماتیتی قرمز رنگ	3846314	246838	87-LT-739
گرانیت آلتره الوند رسی شده درحد بسیار جزیی	3846350	246865	87-LT-740
سنگ گرانیتی آلتره دارای لکه های هماتیتی برنگ قرمز	3847335	246747	87-LT-741
سنگ گرانیتی آلتره رسی بمیزان بسیارناچیز	3847365	246776	87-LT-742
گرانیت آلترہ رسی با ہوازدگی ہماتیتی- لیمونیتی	3847016	247525	87-LT-743
گرانیت آلترہ رسی با ہوازدگی ہماتیتی- لیمونیتی	3847076	247561	87-LT-744
گرانیت آلتره شیری رنگ (رسی شده)	3847341	246953	87-LT-745
گرانیت آلتره رسی برنگ قهوه ای روشن با هوازدگی لیمونیتی	3847380	246974	87-LT-746
سنگ گرانیت الوند که آلتراسیون رسی نشان میدهد	3847618	246315	87-LT-747
گرانیت حاوی آلتراسیون رسی و سیلیسی	3847636	246355	87-LT-748
اندیس مس-آهن (گوتیت-مالاکیت) مشخص شده در نقشه زمینشناسی ۱:۱۰۰٬۰۰۰ تویسرکان جنب روستای ویرایی	3845166	245202	87-LT-749
اندیس مس حاوی کانیسازی مس- آهن	3845121	245261	87-LT-750
در محدوده اندیس مس و در داخل رگچه سیلیسی نمونهبرداری شده حاوی بورنیت و احتمالاً کوولیت	3845131	245222	87-LT-751
از داخل رگه سیلیسی اندیس مس حاوی بورنیت+گوتیت+پیریت	3845176	245244	87-LT-752
رگه سیلیسی حاوی هوازدگی لیمونیتی-هماتیتی	3845731	243607	87-LT-753
رگه سیلیسی با هوازدگی لیمونیتی-هماتیتی برنگ قرمز– قهوه ای	3845754	243651	87-LT-754
رگه سیلیسی همراه با لکه های هماتیت- لیمونیت	3845336	243628	87-LT-755

جدول ۴-۹- مشخصات نمونههای سنگی برداشت شده از منطقه امیدبخش ویرایی

فرا زمین ساخت مهند سین مثاور

۴-۱-۲-۱ مطالعات مینرالوگرافی و بررسیهای پاراژنزی

در جریان عملیات کنترل آنومالی تعداد سه نمونه جهت تهیه مقطع صیقلی و مطالعه مینرالوگرافی برداشت گردید. نتایج آن به شرح زیر است:

بیجویی به روش اکتشاف ژئوشمیایی درمحدوده توسیرکان ۲

نمونه 749-749 این نمونه عمدتاً از کوارتز تشکیل شده که شکستگیهای آن توسط رگچه های گوتیت و مالاکیت پر شده است. با توجه به مشاهده بقایای کانه کالکوپیریت می توان گفت، این کانه های ثانویه عمدتاً از تجزیه آن حاصل شده اند.

شکل ۴-۳۹- رگچه های گوتیت و مالاکیت داخل کوارتز

نمونه 751-70 این نمونه عمدتاً از کوارتز تشکیل شده که توسط رگچه های مالاکیت و پیریت قطع شده است. پیریت ها در حال تجزیه به هیدرواکسیدهای ثانویه آهن (گوتیت و لیمونیت) می باشند. گوتیت از خود بافت اسفنجی نشان می دهد.

شکل ۴-۴۰- رگچه های مالاکیت و پیریت داخل گانگ کوارتز

شکل ۴-۴۱- رگچه پیریت و مالاکیت داخل کوارتز

نمونه 752-P₀ این نمونه از کوارتز تشکیل شده که توسط رگچه های پیریت قطع شده و حفرات آن توسط مالاکیت پر شده است.

شکل ۴-۴۲- رگچه های پیریت که گانگ کوارتز را قطع نموده است

بیجویی به روش اکتشاف ژئوشیمیایی درمحدوده توسیرکان ۲

۴-۱-۲-۲- بررسیآنالیزهای کانیشناسی و شیمیایی

در جریان عملیات کنترل آنومالی از محدوده اکتشافی ویرایی تعداد ۲۰ نمونه مینرالیزه جهت آنالیز شیمیایی به روش ICP-OES و ۳ نمونه جهت آنالیز *XRD* برداشت و به آزمایشگاه ارسال شد. براساس نتایج آنالیز شیمیایی، مهمترین آنومالی مربوط به عنصر آهن می باشد. عیار آهـن در نمونه برداشت شده از اندیس آهن – مس محدوده ویرایی قابل توجه است. عیار آهن در دو نمونه ۷۵۱ و ۷۵۲ بمیزان ۴۷ و ۵۴ درصد و عیار مس در این نمونهها به ترتیب ۱۴۰۰ و ۷۰۴ گـرم در تن میباشد. در میان نمونههای برداشت شده برخی نمونهها دارای عیار سرب و روی بالایی دارند.

در مجموع بررسیهای نتایج آنالیز نمونههای مینرالیزه در محدوده اکتشافی ویرایی نشان میدهد که عیار نمونههای برداشت شده از این محدوده نسبت به منطقه حلور بالا کمتر بوده و از لحاظ اکتشافی در اولویت دوم قرار می گیرد.

نتایج آنالیز کانی شناسی نمونه های دگرسان به روش XRD نـ شاندهنده حـضور کانی های سیلیس، کائولن، مسکویت، گوتیت در آنهاست.

۴–۱–۳– بررسیهای کانیسنگین در مرحله کنترل آنومالی در مرحله کنترل آنومالی از محدوده منطقه امیدبخش شماره یک (منطقه حلوربالا) و منطقه امیدبخش شماره دو (منطقه ویرایی) مجموعاً تعداد ۴۲ نمونه کانی سنگین برداشت گردید.

بررسی و مطالعه نمونههای کانی سنگین بر روی نمونههای آبرفتی نشانگر حضور کانههای سرب و روی است. نتایج حاصل از مطالعات کانی سنگین در مرحله کنترل آنومالی در جدول ۴-۱۲ آورده شده که به شرح زیر است:

۱- در میان ۴۲ نمونه کانی سنگین برداشت شده ۱۱ نمونه حاوی کانه اسمیتزونیت است. در میان این نمونهها، نمونههای ۶۳۱ و ۶۰۴ دارای مقادیر قابل توجهی از این کانه است.

۲- با عنایت به نتایج مطالعات انجام شده ۲۰ نمونه حاوی سروزیت و گالن است. مهمترین

بیچویی به روش اکتشاف ژئوشیمایی درمحدوده توسیرکان ۲

این نمونه ها شامل ۶۰۴، ۶۳۱ و ۶۳۳ است.

۳- از کانه های گروه مس میتوان به مالاکیت اشاره کرد. مالاکیت در سه نمونه مشاهده شده است. در میان این نمونه ها نمونه های ۶۰۴، ۶۱۰ و ۶۳۱ حاوی ۱ ذره از این کانی هستند.

۵- از کانه های آهن دار مشاهده شده در کانی های سنگین برداشت گردیده می توان به مگنتیت، هماتیت و گوتیت اشاره نمود که دارای مقادیر قابل توجهی از این کانه ها نسبت به دیگر کانه های مشاهده شده است.

با توجه به نتایج مطالعات کانی سنگین در این مرحله و مقایسه آن با نتایج مطالعات نمونههای پایین دست برداشت شده در مرحله قبل این طور بنظر میرسد که کانههای سرب و روی در هر دو سری برداشت وجود دارد، با این تفاوت که در این مرحله عیار آن پایین تر بوده و غنی شدگی مرحله قبل را نشان نمیدهد.

C N			TT (1)		3.6.1.1.4	
Sam . No	Galena+ Cerussite	Goethite	Hematite	Magnetite	Malachite	Smithsonite
87–HM–600	0.30		296.80			PTS
87–HM–601	PTS(5)					PTS
87–HM–603	0.15					PTS
87–HM–604	14.04				PTS	11.44
87–HM–605	0.23					PTS
87–HM–607	PTS(6)					
87–HM–608	PTS(2)					
87–HM–609	PTS(3)					PTS
87–HM–610					PTS	
87–HM–624						
87–HM–626						
87–HM–629						
87–HM–631	41.60	141.44			PTS	4.16
87–HM–632	PTS(2)					PTS
87–HM–633	15.65					PTS
87–HM–634		68.93		693.33		
87–HM–635						
87–HM–636						
87–HM–637		46.08		272.29		
87–HM–640			620.10	1037.40		
87–HM–641						

جدول ۴-۱۰- نتایج مطالعه مهمترین نمونه های کانی سنگین

بیچویی به روش اکتشاف ژئوشیمیایی درمحدود ه توسیرکان ۲

۴-۱-۴ بررسی ژئوشیمیایی نمونههای مینرالیزه

در نتیجه عملیات کنترل آنومالی، تعداد ۵۶ نمونه مینرالیزه و دگرسان شده از محدوده زونهای دگرسانی، اندیسهای معدنی و خصوصاً بالادست نمونههای ژئوشیمی و کانی سنگین دارای ناهنجاری، بخصوص در محدودههای امیدبخش حلوربالا و ویرایی برداشت شد. این نمونهها در آزمایشگاه شرکت زرآزما مورد آنالیز قرار گرفتند. نتایج حاصل از بررسیهای ژئوشیمیایی به شرح زیر است:

۱– مقدار عنصر طلا اغلب در حد سنسورد بوده و مقادیر غیرسنسورد آن نیز تا حدود بخصوص در نمونههای منطقه حلور بالا قابل توجه است. این عنصر دارای خاصیت غیرنرمال بوده و ماکزیمم عیار آن ۳۳۷۰ میلیگرم در تن مربوط به نمونه ۲۰۳ است. از نمونههای قابل توجه دیگر نمونه ۷۰۵ و ۷۰۲ میباشد که دارای ۱۰۹۰ و ۸۹۰ میلیگرم در تن است. نمونههای مذکور از منطقه حلوربالا برداشت شده است. با توجه بررسیهای آماری دادههای این عنصر طبیعتی غیرنرمال دارد.

شکل ۴–۴۲- نمودار فراوانی طلا در نمونههای مینرالیزه

فرا رمین ساخت مهندسين مثاور

بیجویی به روش اکتشاف ژئوشیمیایی درمحدوده توسیرکان ۲

۲- آرسنیک از عناصر مهم و پاراژنز طلا در این محدوده میباشد. میانگین مقدار As در این منطقه ۴۸۹ گرم در تن و حداکثر مقدار آن ۱۰۴۰۰ گرم در تن میباشد. فراوانی آرسنیک در پوسته قارهای ۱/۵ تا ۲ گرم در تن است، ولی گاهی بر اثر تجمع این ماده به ۶۰ گرم در تن میرسد. با توجه به این مقدار غنی شدگی این عنصر نسبت به کلارک پوسته قارهای تا ۲۵۰ برابر تغییر میکند. عنصر آرسنیک دارای همبستگی خوبی با آنتیموان است. با توجه به این مقدار مقدار مقدار می میرست.

شکل ۴-۴۴- نمودار فراوانی آرسنیک در نمونههای مینرالیزه

۳– مس یکی دیگر از عناصر مهم اکتشافی است. میانگین این عنصر در میان نمونههای مینرالیزه ۱۳۹۳ گرم در تن و حداکثر مقدار آن ۲۴۵۰۰ گرم در تن است. در میان رخنمونهای مینرالیزه اغلب نمونههای واقع در محدوده آنومالی دار شماره یک دارای عیارهای بالایی است و مقدار آن بالای عنصر در نمونههای برداشت شده از اندیس آهن – مس نیز از مقدار قابل توجهی برخوردار است.

بیچویی به روش اکتشاف ژئوشیمیایی درمحدوده توسیرکان ۲

شکل ۴–۴۵- نمودار فراوانی مس در نمونههای مینرالیزه

۴- سرب و روی نیز جزء مهمترین عناصر اکتشافی است. بالاترین عیار این عناصر به ترتیب ۵۷۷۰۰ و ۴۰۸۰۰ گرم در تن و میانگین آنها به ترتیب ۳۰۴۲ و ۵۰۷۳ گرم در تن است. این عناصر خاصیت لاگ - نرمال داشته و بیش از ۱۰ نمونه دارای مقدار ناهنجار است. مهمترین نمونههای ناهنجار این عناصر مربوط به نمونههای محدوده آنومالی شماره ۱ (شمال حلور بالا) است. در این منطقه کانهزایی سرب و روی به شکل لنز و لایهای در میان شیستهای منطقه گسترش دارد.

شکل ۴–۴۶– نمودارهای فراوانی سرب و روی در نمونههای مینرالیزه

جهت بررسی روابط زایشی عناصر در واحدهای سنگی، همبستگی خوشهای بین عناصر تهیه شده است. نتایج حاصل از همبستگی خوشهای بین عناصر در ۵۶ نمونه سنگی نشانگر حضور روابط زایشی غنی بین برخی از عناصر میباشد، بهطوری که بالاترین میزان همبستگی بین عناصر Ag,Pb میباشد. در این میان مولیبدن کمترین همبستگی را با سایر عناصر دارد.

فرا زمین ساخت مهندسین شاور

بیچویی به روش اکتشاف ژئوشیمایی درمحدوده توسیرکان ۲

براساس آنالیز خوشهای (شکل ۴-۴۷) عناصر به چهار گروه مختلف تقسیم می شوند که به شرح زیر می باشد:

۱ – گروه اول متشکل از عناصر سرب و نقره است. در این گروه عناصر سرب و نقره که همبستگی نسبتاً خوبی با گوگرد دارند، در فاز سولفوری در رگههای پلی متال شکل گرفته اند.
 ۲ – در گروه دوم آرسنیک همراه با آنتیموان، طلا و گوگرد همبستگی خوبی دارد. این عناصر در زونهای دگرسانی مجاور رگههای پلی متال منطقه شکل گرفته اند.
 ۳ – در گروه سوم مس، بیسموت و قلع با همبستگی خوب در کنار یکدیگر واقع هستند. در این

گروه عناصر مذکور به صورت سولفیدی حضور دارند. غنی شدگی این عناصر مربوط به فازهای حرارت بالا در مجاورت توده نفوذی الوند است

۴- در گروه چهارم عناصر آهن، منگنز، روی و کادمیم با همبستگی خوب قرار دارند. غنی شدگی این عناصر بهمراه منگنز در گروه چهارم ناشی از عملکرد فرایندهای شستشو بر روی رگههای پلی متال است که اغلب به شکل اکسیدی و کربناته شکل می گیرند.

پیچویی به روش اکتشاف ژ ئوشیمیایی درمحدود ه توسیرکان ۲

شکل ۴–۴۷– آنالیز خوشهای نمونههای مینرالیزه

۴–۱–۵– مدل ارائه شده برای کانسارهای منطقه

با توجه به بررسی های انجام شده در محدوده امیدبخش شماره یک، این کانسارها از نوع کانسارهای پلیمتال دگرگون شده حاوی طلا است. شکل گیری این کانسارها مربوط به صعود سیالات دگرگونی حاوی مواد معدنی در امتداد مناطق برشی و ته نشینی مواد معدنی در امتداد این مناطق است. فایف و هنلی (۱۹۷۳) شرایطی را در نظر گرفته اند که در آن رخسارههای رسوبی در شرایط رخساره شیست سبز تا آمفیبولیت دگرگون می شوند. در این شرایط سنگهای مذکور

فرا زمین ساخت مندسن شاور

بیچویی به روش اکتشاف ژئوشیمایی درمحدوده توسیرکان ۲

حدود ۲٪ از آب خود را از دست می دهند و چنانچه نمک موجود باشد و اکسیژن توسط مجموعه مگنتیت _ سیلیکات آهن بافر شود، در ایـن صورت حلالیـت طـلا در درجـه حـرارت ۵۰۰ درجـه سانتیگراد به ۱/۰ گرم در تن خواهد رسید. در این صورت سیالات حاوی طلا و عناصـر پـاراژنز بـه داخل شکستگیها نفوذ کرده و در اثر پمپ شدن توسط حرکات زمین لرزه بـه طـرف بـالا حرکت می کنند. بر اساس محاسباتی که فایف و هنلی (۱۹۷۳) برای تعیین طلا، سیلیکا و آب مورد نیاز در سنگهای منبع جهت تشکیل سیال کانسارساز انجام شده اسـت ایـن نحـوه تـشکیل امکان پـذیر می.

در محدوده امیدبخش شماره دو در حوالی روستای ویرایی، کانهزایی مس و آهن از نوع کانسارهای حاصل از دگرگونی مجاورتی است که در اثر نفوذ توده گرانیتی الوند به داخل واحد شیستی حاصل شده است.